• Tidak ada hasil yang ditemukan

Introduction A trigonometric polynomial is a finite sum (1.1) t(x) = a0 2 + n X k=1 {akcoskx+bksinkx}, wherea0, a1,· · · , anand b1,· · · , bnare real numbers

N/A
N/A
Protected

Academic year: 2023

Membagikan "Introduction A trigonometric polynomial is a finite sum (1.1) t(x) = a0 2 + n X k=1 {akcoskx+bksinkx}, wherea0, a1,· · · , anand b1,· · · , bnare real numbers"

Copied!
4
0
0

Teks penuh

(1)

FOURIER SERIES

JIA-MING (FRANK) LIOU

1. Introduction A trigonometric polynomial is a finite sum

(1.1) t(x) = a0

2 +

n

X

k=1

{akcoskx+bksinkx},

wherea0, a1,· · · , anand b1,· · · , bnare real numbers. A trigonometric polynomial defines a continuous periodic function of period 2π onR,i.e. t(x) is a continuous function onRwith t(x+ 2π) =t(x) for allx∈R.

For each pair of integer (k, m),we set δk,m=

(1 ifk=m, 0 otherwise.

Lemma 1.1. Let k, mbe nonnegative integers. For allk, m (1)

Z

0

coskxcosmxdx=δk,mπ, (2)

Z

0

sinkxsinmxdx=δk,mπ, (3)

Z

0

coskxsinmxdx= 0.

Proof. We leave it to the reader as an exercise.

Given a trigonometric polynomialt(x) of the form (1.1), using the fact that, Z

0

coskxdx= Z

0

sinkxdx= 0, k≥1, we obtain

Z

0

t(x)dx= Z

0

a0 2dx+

n

X

k=1

{ak Z

0

coskxdx+bk Z

0

sinkxdx}

=a0π.

This implies that

a0= 1 π

Z

0

t(x)dx.

We can also compute Z

0

t(x) cosmxdx= Z

0

a0

2 cosmxdx+

n

X

k=1

{ak Z

0

coskxcosmxdx+bk

Z

0

sinkxcosmxdx}

=amπ

1

(2)

2 JIA-MING (FRANK) LIOU

and Z

0

t(x) sinmxdx= Z

0

a0

2 sinmxdx+

n

X

k=1

{ak Z

0

coskxsinmxdx+bk

Z

0

sinkxsinmxdx}

=bmπ.

These give us

am= 1 π

Z

0

t(x) cosmxdx, bm = 1 π

Z

0

t(x) sinmxdx.

Fourier thought that all the (continuous) period functions are infinite sum of trigonometric functions:

(1.2) a0

2 +

X

n=1

{ancosnx+bnsinnx}.

Using the similar observation, he defined the Fourier coefficients a0, a1,· · · ,and b1, b2,· · · of a periodic functiony=f(x) by

(1) a0= 1 π

Z

0

f(x)dx, (2) an= 1

π Z

0

f(x) cosnxdx, (3) bn= 1

π Z

0

f(x) sinnxdx.

The infinite series (1.2) is called the Fourier expansion of the functionf(x); we also use the notation

f(x)∼ a0 2 +

X

n=1

{ancosnx+bnsinnx}

to say that (1.2) is the Fourier series fory=f(x).

Example 1.1. Lety=f(x) be a periodic function of period 2π so thatf(x) =xon [0,2π].

Then the Fourier series is given by

(1.3) x∼ 2π

2 +

X

n=1

−2 n

sinnx.

Now, let us consider another trigonometric polynomial s(x) = α0

2 +

n

X

j=1

jcosjx+βjsinjx}.

We compute the integral Z

0

t(x)s(x)dx= Z

0

a0α0 4 dx+

n

X

j=1

a0αj 2

Z

0

cosjxdx+

n

X

j=1

a0βj 2

Z

0

sinjxdx

+

n

X

k=1

α0ak

2 Z

0

coskxdx+

n

X

k=1

α0bk

2 Z

0

sinkxdx

+

n

X

k=1 n

X

j=1

Z

0

(akcoskx+bksinkx)(αjcosjx+βjsinjx)dx

(3)

FOURIER SERIES 3

= a0α0π

2 +

n

X

k=1 n

X

j=1

akαj Z

0

coskxcosjxdx+

n

X

k=1 n

X

j=1

akβj Z

0

coskxsinjxdx

+

n

X

k=1 n

X

j=1

bkαj Z

0

sinkxcosjxdx+

n

X

k=1 n

X

j=1

bkβj Z

0

sinkxsinjxdx

= a0α0π 2 +π

n

X

k=1

{akαk+bkβk}.

This shows that

1 π

Z

0

t(x)s(x)dx= a0α0

2 +

n

X

k=1

{akαk+bkβk}.

When t(x) =s(x),we obtain 1 π

Z

0

t(x)2dx= a20 2 +

n

X

k=1

{a2k+b2k}.

These observation motivates the following theorem.

Theorem 1.1. (Parseval Identity) Let us assume thatf(x) andg(x) are periodic (continu- ous) functions of period 2π.Suppose that the Fourier expansions off(x) andg(x) are given by

f(x)∼ a0

2 +

X

n=1

{ancosnx+bnsinnx}, g(x)∼ α0

2 +

X

n=1

ncosnx+βnsinnx}.

Then

1 π

Z

0

f(x)g(x)dx= a0α0

2 +

X

n=1

{anαn+bnβn}.

This also leads to

Corollary 1.1. Letf(x) be as above. Then 1

π Z

0

f(x)2dx= a20 2 +

X

n=1

{a2n+b2n}.

Letsbe a real number and define

ζ(s) =

X

n=1

1 ns.

By p-test, the infinite series ζ(s) converges when s > 1. The function ζ(s) is called the Riemann zeta function. By (1.3) and the Parseval identity, we obtain

1 π

Z

0

x2dx= (2π)2

2 +

X

n=1

−2 n

2

.

The identity Z

0

x2dx= 8π3

3 implies that 8π2

3 = 2π2+ 4

X

n=1

1 n2.

(4)

4 JIA-MING (FRANK) LIOU

This shows that

X

n=1

1 n2 = π2

6 . In other words, ζ(2) = π2

6 .

Example 1.2. The Fourier expansion off(x) =x2,0≤x≤2π, is given by x2

2 3

2 +

X

n=1

− 4 n2

cosnx+

−4π n

sinnx

.

Using the Parseval identity, we obtain 1

π Z

0

x4dx= 2

3

2

2 +

X

n=1

16 n4 +

X

n=1

16π2 n2 . Using the above identity and ζ(2) = π2

6 ,we obtainζ(4) :

X

n=1

1 n4 = π4

90.

E-mail address:[email protected]

Referensi

Dokumen terkait

Quan điểm coi phương tiện truyền thông là một phần của lực lượng sản xuất trong bối cảnh cuộc cách mạng công nghiệp 4.0 sẽ giúp chúng ta lý giải những vấn đề như tác động của truyền