• Tidak ada hasil yang ditemukan

PDF J. -M. Liu - NJU

N/A
N/A
Protected

Academic year: 2023

Membagikan "PDF J. -M. Liu - NJU"

Copied!
62
0
0

Teks penuh

(1)
(2)
(3)

J. J. M. Liu (刘俊明M. Liu (刘俊明)) Nanjing University Nanjing University Email:

Email: [email protected][email protected] Group page

Group page http:http://pld.nju.edu.cn///pld.nju.edu.cn/

Multiferroicity:

Our experiences beyond manganites

(4)

Y. Tokura, RPP69, 797 (2006)

(5)

Content

Background & motivations

Origin of spiral spin order in manganites

Predictions of novel multiferroics

Phase competition and beyond

Exchange bias in multiferroic heterostructure

Summary & perspectives

(6)

Background: symmetry argument

+ +

-

+ +

Partially filled d shells break Time reversal

symmetry t-t, M-M

N. A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104: 6694 (2000).

Empty d shells break

Space reversal symmetry x-x, P-P

Magnetism Ferroelectricity

H=f(M, P)=f(-M, -P) = f(-M, P)=f(M, -P)

(7)

Background: symmetry argument

If spin order is spatially inhomogeneous, symmetry allows for the 3rd-order

coupling PM and then P may appear.

=

em

+P

2

/2 

Mostovoy, PRL 96, 067601 (06)

(8)

Background: spin configuration argument

AFM triangular-lattice favors FSO.

1D chain magnet with the competition between NN FM coupling (J) and NNN AFM coupling (J ) favors FSO if

|J /J|>1/4. (JPCM 7, 8605 (1995))

(9)

Background: structures and facts

T. Goto et al.

PRL 92,257201 (2004)

RMnO

3

phases

RMnO

3

phases

(10)

T. Arima et al.

PRL 96, 097202(2006)

TbMnO3

Background: structures and facts

(11)

Background: structures and facts

Kimura, Annu. Rev. Mater. Res.37, 387, 2007

(12)

Background: microscopic mechanism

Frustrated spin-orbital coupling, Dzyaloshinskii-Moriya effect between two d-orbital ions with canted spins produces a dipole.

KNB theory on spin-orbital coupling giving similar prediction.

Katsura et al, PRL 95, 057205 (05) Sergienko et al, PRB 73, 094434 (06)

(13)

Background: mechanism

Katsura, Nagaosa, Balatsky PRL95,057205, 2005

Mostovoy

PRL96, 067601, 2006 Sergienko, Dagotto PRB73,094434, 2006 Xiang et al.

PRL101,037209, 2008

Malashevich, Vanderbilt PRL101,037210, 2008

Kimura, Annu. Rev. Mater. Res.37, 387, 2007

Cooperative GdFeO3 distortion Cooperative GdFeO3 distortion

(14)

Origin of spiral-spin order: picture

Mn

O

Mn

O

Mn

DM DM

PolarizationPolarization

Spiral Spiral

Cooperative GdFeO3 distortion Cooperative GdFeO3 distortion

Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958); Moriya, Phys. Rev.120, 91 (1960)

P

E=-x+kx

2

: ~



(SS)

(15)

Origin of spiral-spin order: picture

Kimura, Ishihara et al.

PRB68, 060403(R) (2003)

Hotta et al.

PRL 90, 247203 (2003)

(16)

Origin of spiral-spin order: picture

Sergienko and Dagotto PRB73, 094434 (2006)

(17)

Dong et al. PRB78, 155121 (2008)

NNN anisotropic AFM interactions: J2b>J2a.

An approach without counting the DM

interaction.

Origin of spiral-spin order: picture

(18)

DE+SE+NNN anisotropic AFM interactions: J2b>J2a.

SSO is coming out!

(1) small wave-number, (2) phase transitions, (3) no energy gap

q=qMn/2

Dong et al. PRB78, 155121 (2008)

Origin of spiral-spin order: back to origin

(19)

DE+SE+NNN AFM+JT term

(1) proper wave-number

(3) energy gap

J2=J2b, J2a=0 J2=J2b, J2a=0

Origin of spiral-spin order: back to origin

(20)

Role of NNN anisotropic SE interaction

Origin of spiral-spin order: back to origin

(21)

3D lattice simulation (CT=3D canted spin phase)

No JT J2b=J2a

J2b=J2a

J2a=0

Origin of spiral-spin order: back to origin

(22)

Origin of spiral-spin order: ugly phase diagram

(23)

Novel multiferroics: prediction

Unknown region in X-W-T phase diagram

(24)

For doped manganites: R1-xAxMnO3, x=1/4.

DE+NN-SE+JT, without DMI and NNN-SE

New phase: spin- orthogonal stripe (SOS) phase.

Large JAF & small JT ().

CxE1-x phase: xC- AFM+(1-x)E-AFM.

Dong et al. PRL

Novel multiferroics: prediction

(25)

SOS phase: polarization at the stripe-boundaries

Dong et al. PRL

Novel multiferroics: prediction

(26)

SOS phase & C1/4E3/4 phase: S(qx, qy) & DOS

Dong et al. PRL

Novel multiferroics: prediction

(27)

Charge-ordered phase associated with SOS & C1/4E3/4

Dong et al. PRL

Higher TC & larger polarization

Novel multiferroics: prediction

(28)

Large JAF (narrow bandwidth) and small JT distortion

quadruple (AA3)B4O12 family, e.g. (A2+B33+)(B33+B4+)O12.

B-O-B angle less than 140o and the JT Q2 mode can be weak.

Zhang et al. unpublished

Novel multiferroics: candidate

(29)

Zhang et al. unpublished

Novel multiferroics: candidate

(30)

Zhang et al. unpublished

Novel multiferroics: candidate

(31)

Phase competition & beyond: picture

CMR manganites: bicritical point

(32)

Phase competition & beyond: picture

Spiral:

TbMnO3

E-AFM:

HoMnO3

T PM

IC

Reduced bandwidth Tc

TN

Bicritical point of

dual multiferroic phases?

Phase separation by disorder?

(33)

Phase competition & beyond: picture

Driven force: Double-exchange -tx+kx2 t ~ t0(1+S*S)1/2

Large P~2 C/cm2, waiting for experimental confirmation!

Polycrystal: 100 C/m2

Lorenz et al. PRB76, 104405 (07)

Prediction of FE in the E-AFM phase (HoMnO3), I. Sergienko et al., PRL 97, 227204 (2006)

(34)

Phase competition & beyond: let’s try

TbMnO3

Tb1-xHoxMnO3

(35)

Phase competition & beyond: let’s try

(36)

Phase competition & beyond: let’s try

Spiral spin order

E-AFM

(37)

Phase competition & beyond: spin ice P =0

P >0

<111>

<111>

Ho2Ti2O7 P S

(38)

Phase competition & beyond: spin ice

(39)

Phase competition & beyond: spin ice

(40)

Phase competition & beyond: spin ice

(41)

Phase competition & beyond: spin ice

(42)

Phase competition & beyond: spin ice

(43)

Phase competition & beyond: Ca3Co2-xMnxO6

PRL 100, 047601 (2008).

(44)

Phase competition & beyond: Ca3Co2-xMnxO6

PRL 102, 187202 (2009).

(45)

Phase competition & beyond: Ca3Co2-xMnxO6

(46)

Phase competition & beyond: Ca3Co2-xMnxO6

(47)

Phase competition & beyond: Eu1-xYxMnO3

(48)

Phase competition & beyond: CuCr1-xNixO2

(49)

La Sr La Sr La Sr La Sr

Exchange bias in heterostructures: story

(50)

Exchange bias in heterostructures: story

CoFeB/BiFeO

CoFeB/BiFeO33 (c,d) & CoFeB/BiFeO(c,d) & CoFeB/BiFeO33/LSMO (e,f) on STO substrates/LSMO (e,f) on STO substrates

Bea et al, PRL 100, 017204 (08)

(51)

• LaMnO3-SrMnO3: No Bhattacharya

• SrRuO3-SrMnO3: Yes Chmaissem

• Co0.9Fe0.1-BiFeO3: Yes Ramesh, Barthelemy, Blamire

• La0.7Sr0.3MnO3-BiFeO3: Yes Ramesh

G-type AFM (001) interface

Electric-controllable Electric-controllable

Exchange bias in heterostructures: story

(52)

EB in case of uncompensated interface

uncompensated compensated compensated Non-colinear

Broken symmetry:

exchange bias

long term debate!

long term debate!

Roughness? Dipole interaction?

Domain? Spin canting?

M. Kiwi, JMMM,234,584(2001)

Exchange bias in heterostructures: story

(53)

Dzyaloshinskii-Moriya interaction in perovskites

M M

O

r D

d D  

 

d D  

Exchange bias in heterostructures: novel idea

(54)

Dzyaloshinskii-Moriya interaction in perovskites





z x

y

x y

z

y z

x

J D

D

D J

D

D D

J

J DM interaction comes from

spin-orbital coupling D/J ~ 10-3

Exchange bias in heterostructures: approach

(55)

DMI @ FM/G-AFM interface

D: +-+- S

AF

: +-+- S

FM

: ++++

-> D(S

AF

xS

FM

):++++ uncompensated!!

Exchange bias in heterostructures: approach

(56)

Estimation of the EB

HDM: DM energy d: Thickness of FM layer m: FM magnetic moment hEB: Loop shift

J ~ 10meV

meV

100 Oe if d=10, m=3.0

B

1.0 degree bending a=4.0A

=1.0meV/A

Exchange bias in heterostructures: approach

(57)

Ferroelectricity driven EB

Exchange bias in heterostructures: ferroelectricity

(58)

Ferroelectricity driven EB La0.75Sr0.25MnO3-BiFeO3 DFT calculation by

K. Yamauchi and S. Picozzi

X

O

~ 0.01 A X

FE

~ 0.1 A

Exchange bias in heterostructures: ferroelectricity

(59)

Roughness-induced effect

hDM and hFE will not be canceled but may be

decreased by roughness.

Spin canting effects (may originate from exchange

coupling at the interface, or magnetic field reorientation etc.) are NOT found to affect our results qualitatively.

Exchange bias in heterostructures: Monte Carlo

(60)

Perspectives: future of single-phase multiferroics?

How to enhance P and the ordering temperature?

How to make the spin-order ferromagnetic at high T?

Additional mechanism for spin-order induced ferroelectricity

Quantitative theory of multiferroicity

(61)

Acknowledgement

S. Dong, X. Chen, C. L. Lu, S. J. Luo: Ph. D students

Prof. E. Dagotto

Prof. S. Yunoki , ORNL

Prof. G. Alvarez

量子调控、973和基金委资助

(62)

Thank you for your attentions

Referensi

Dokumen terkait

Muhaemin,Sinta ID: 6066505 Scopus ID: 55647926800 Institut Agama  Islam Negeri Palopo, Indonesia Idi Warsah,Sinta ID: 6194543Scopus ID: 57216367299 Institut Agama Islam Negeri

Semua naskah yang masuk ke jurnal ini harus mengikuti fokus dan ruang lingkup, serta pedoman penulis jurnal yang telah ditetapkan.. Naskah yang dikirimkan harus membahas manfaat