• Tidak ada hasil yang ditemukan

PDF Presence of a purely tetragonal phase in ultrathin BiFeO3 films ... - NJU

N/A
N/A
Protected

Academic year: 2023

Membagikan "PDF Presence of a purely tetragonal phase in ultrathin BiFeO3 films ... - NJU"

Copied!
8
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Acta Materialia

journalhomepage:www.elsevier.com/locate/actamat

Full length article

Presence of a purely tetragonal phase in ultrathin BiFeO 3 films:

Thermodynamics and phase-field simulations

Yang Zhang

a,b

, Fei Xue

b,

, Zuhuang Chen

c

, Jun-Ming Liu

a,d

, Long-Qing Chen

b

aLaboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

bDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA

cSchool of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China

dInstitute for Advanced Materials and Laboratory of Quantum Engineering and Materials, South China Normal University, Guangzhou 510 0 06, China

a rt i c l e i nf o

Article history:

Received 18 July 2019 Revised 22 October 2019 Accepted 31 October 2019 Available online 8 November 2019 Keywords:

Ferroelectric Thin films

Phase-field simulation Morphotropic phase boundary

a b s t ra c t

ThestabilityofapurelytetragonalphaserelativetothenominalrhombohedralphaseinultrathinBiFeO3 films is investigated usingthermodynamics and phase-field simulations. The thermodynamic analysis demonstratesthe possible presenceofapurely tetragonalstate primarilydueto theinterfacial effect fromtheconstraintoftheadjacentlayeralthoughthebuilt-inpotentialandcompressivein-planestrain alsoplayarole.Phase-field simulationsofthecorresponding ultrathinfilmsrevealthe coexistence of tetragonalandrhombohedralphasesatcertainfilmthicknessarisingfromstrainphaseseparation.Itis shownthatthepiezoelectriccoefficientd33ofthetwo-phasemixtureisupto200%higherthanthatof therhombohedralsinglephase.

© 2019ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.

1. Introduction

Ferroelectric (FE)thinfilmshavebeenextensivelystudied due to their wide rangeof potential applications such as mechanical sensorsandactuators,non-volatilememories,high-frequencyelec- tronic components, etc. [1–5]. To explore device miniaturization andpossibleintriguing physics,there havebeen increasing inter- estsinultrathinfilmswiththicknesslessthantensofnanometers [6–9].Naturally,thereductionofdimensionsgivesrisetothesize effectwhichmayalterthedomainstructuresandperformancesof ultrathinfilmswhicharedramaticallydifferentfromthoseoftheir bulk counterparts [10]. For instance, it was previously believed that there exists a so-called“critical thickness” below whichthe spontaneouspolarizationwassuppressed[11].Thermodynamically, the size effect originates fromthe competitions among the bulk freeenergy,electrostaticenergy,elasticenergy,andsurfaceenergy [12–14].Inparticular, itisshownthatthedepolarizationfield in- ducedby uncompensated bound chargeson the top andbottom surfacesoffilms largelycontrolsthecriticalthicknessforthefer- roelectricityinultrathinFEfilms[15].

However, subsequent theoretical and experimental investiga- tions indicated that the ferroelectricity could persist with the thicknessdown toseveralnanometersorevenone-unit-cellscale intheultrathinFEfilmsorsuperlattices[16–19].Ingeneral, there

Corresponding author.

E-mail address: xuefei5376@gmail.com (F. Xue).

are two conventional approaches to eliminating the influence of thedepolarizationfieldandthusstabilizingtheout-of-planespon- taneous polarization. Oneis to form109°or180°stripe domains withpolarizationspointingupanddownperiodically[20–22].The alternating positive and negative bound charges on the surfaces can reduce the electrostatic energy and thus can drastically de- creaseoreveneliminate thecritical thickness.Forexample,Fong etal.[16]in2004 observedferroelectricity withsuch180°stripe domains in three-unit-cell-thick (1.2nm) epitaxial PbTiO3 films grownon(001)SrTiO3substrates,andin2009,similarresultswere found by Tenne et al. [18] in strained epitaxial BaTiO3 films as thin as 1.6nm grown also on (001)SrTiO3 substrates. Neverthe- less, many nanoscale electronic devices nowadays such as mem- ory applicationsrequiresingledomainstructures withstableand switchablepolarizations.Then,theotherapproachistogrowultra- thinfilmsonconductingbottomelectrodelayersandexposetheir surfaces tothe ion-rich environment inorder to compensate the boundcharges.In2006,Fongetal.[17]observedmonodomainpo- larization in c-axis epitaxialultrathin PbTiO3 films grown on the conductingSrRuO3 layersby themetalorganicchemicalvapor de- position.Therefore,theboundchargesonbothtopandbottomin- terfaces werecompensated by freecharges, andhencethe depo- larization fieldcould be eliminated.Inaddition tothecompensa- tion by free charges,further measurements and characterizations showedthat thepropertiesof ultrathinFEfilms are alsoaffected by other interactions such as in-plane epitaxial strains, applied electric fields, dislocations, and the interfacial energy [23–27].

https://doi.org/10.1016/j.actamat.2019.10.054

1359-6454/© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

(2)

Therefore,itisimportanttofullyunderstandtheinterplaybetween thesefactorsforpotentialapplications.

AmongFEmaterials,bismuthferriteBiFeO3(BFO)isparticularly interesting because of its room-temperature multiferroicity [28]. BulkBFOpossessestherhombohedral(R)perovskitestructurewith spacegroupR3candFEorderbelowTC∼1100K,antiferromagnetic orderbelowTN∼650K,andantiferrodistortiveorderbelow1200K [28,29].Moreover, strainedBFOfilms canformasupertetragonal (super T) phase under large compressive strain, an orthorhombic (O) phase under tensile strain, and several transient monoclinic phases [30–33]. Apart from the temperature control and strain engineering, many researches pointed out that the structures of substrates or electrodesthat films were directlygrown on could also play an essential role in the domain patterns of BFO,espe- ciallyinultrathinfilms[19,34–36].Hanetal.[35]andGengetal.

[34]foundthecoexistenceofRandOphasesinultrathinBFOfilms driven by the interfacialoxygen octahedral coupling. The strain- inducedmorphotropicphaseboundary(MPB)couldprovidealarge piezoelectric response. Recently, Wang et al. [19] observed sta- ble andswitchable out-of-plane spontaneous polarization inBFO films withevenone unit-cellthicknessgrownonnear-tetragonal- SrRuO3-buffered(001)SrTiO3substrate.Interestingly,theBFOfilms exist in a purely T phase because of multiple factors including thechargescreeningonbothsurfaces,sizableionicpolarizationof theoxideelectrodeattheinterface,andthecrystallographicstruc- ture ofthe electrode. The ferroelectricity atthe two-dimensional limitmakesBFOapotentialcandidateforhigh-densitynon-volatile memories. Inspiredby those findings,we theoreticallyinvestigate theformationandstabilityofthepurelyTphaseinultrathinBFO films.

In this work, we report the purely T phase in ultrathin BFO films usingthermodynamic analyses andphase-field simulations.

Section 2 introduces the model based on the Ginzburg-Landau- Devonshire theory,containing the phenomenological descriptions of all the free energy terms and the coefficients needed. In Section3,thermodynamicanalysesbasedonthesingle-domainas- sumptionare presented.Then Section 4describesthe phase-field simulation results of multidomain structures, which demonstrate thecoexistenceofthepurelyTandR-likephasesandtheenhance- mentofpiezoelectriccoefficients.Section5istheconclusion.

2. Model

Fig.1isthesketchofthesystemthatwestudy.Toproducethe Tphase,we assumethat thebound chargesattwointerfacesare fullycompensatedandconsider theeffectsofthebuilt-in electric fieldandthein-planeepitaxialstrain.

2.1. Phenomenologicaldescription

Basedon theGinzburg-Landau-Devonshiretheory,weconsider both thepolarization P andoxygenoctahedral tilt(OOT)

θ

asor-

derparameterstodescribethefreeenergytermsofBFO.Following previousworks[37–41],thetotalfreeenergyfortheultrathinfilm systemcanbewrittenas

=

V

fbulk+felast+fgrad+felec

dV+

S

fsurfdS, (1)

where fbulk, felast,fgrad,and felec are the volume densities ofbulk free energy,elastic energy, gradient energy, andelectrostatic en- ergy,respectively,whilefsurfisthearealdensityofsurfaceenergy.

ThebulkfreeenergydensitytermisdescribedbyLandaupoly- nomials extended up to the eighth order with respect to order parameters. For the elastic energy term, the total strain tensor ɛ containscontributions fromthe electrostriction,rotostriction,and elastic strain,respectively [42].See Supplementary MaterialA for

Fig. 1. (Color online) Sketch of the system. The system is divided into four layers, i.e., air, BFO, electrode, and substrate. The bound charges at interfaces of the BFO layer are assumed to be fully compensated, and the built-in electric field and in- plane epitaxial strain are considered in the BFO layer.

detailed expressions for the bulk free energy andelastic energy terms.

The gradient energyterm isintroduced by thespatial deriva- tivesofPand

θ

(SeeSupplementaryMaterialA)as

fgrad

P,

θ

=1

2gi jklPi,jPk,l+1

2

v

i jkl

θ

i,j

θ

k,l, (2)

wheregijkl andvijkl are rank-4gradient energycoefficienttensors forPand

θ

,respectively,andPi,j=

Pi/

xj,

θ

i,j=

θ

i/

xj.

Theelectrostaticenergyisgenerallygivenby

felec

(

P,E

)

=P·E12ET

0

κ

E, (3)

whereEisthetotalelectricfield,

0isthevacuumdielectriccon- stant,and

κ

istherank-2backgrounddielectricconstanttensor.

FortheultrathinFEfilmstructureatthenanoscale,itisessen- tialtoconsiderthecontributionofsurfaces.Byintroducingtheso- calledextrapolationlengths

δ

Pand

δ

θforPand

θ

,respectively,the surfaceenergydensityisdefinedas[43]

fsurf

P,

θ

= 1 2

δ

P

g44

P12+P22

+g11P32

+ 1 2

δ

θ

v

44

θ

12+

θ

22

+

v

11

θ

32

. (4)

Thisformis used for(001)-oriented films,and theanisotropy ofthe surface effectis introduced by the gradient energy coeffi- cients. Itis noteworthythat

δ

P and

δ

θ are difficultto obtainand vary withsurface conditions, i.e., interfaces between the FE film andthe electrode or air. Inthis paper, we use

δ

P and

δ

θ as the

measures ofthe surfaceeffect.Smaller values of

δ

P and

δ

θ indi-

catethestrongersurfaceeffect.

2.2.Coefficients

All the temperature-independent coefficients in the bulk and elasticenergyterms[Eqs.(S1)–(S7)andEqs.(S9)–(S12)]aretaken fromfirst-principlecalculationsattemperatureT=0Kreportedin literature[41].Onlya1andb1aretemperaturedependent,andthe valuesofthetransitiontemperaturesarefromliterature[40].Co- efficientsofthebulkandelasticenergytermsarelistedinTableSI (seeSupplementaryMaterialB).

Tothebestof ourknowledge,the gradientenergycoefficients forBFOin Eqs.(2) and(S13) are not knowndirectly eitherfrom

(3)

Fig. 2. (Color online) Energy contours (Unit: 10 9J/m 3) for BFO of bulks at T = 0 K under stress-free boundary conditions (a), films under εs= −2% at T = 298 K (b), films under εs= −2% and E app= 5 MV / cm at T = 298 K (c), and ultrathin films with default parameters at h f= 3 . 5 nm (d), h f= 2 . 8 nm (e), and h f= 2 . 0 nm (f). R, R , and T indicate the rhombohedral, R-like, and purely T phases, respectively. Only the contour lines with their values close to the energy minima are shown.

experimentsorfirst-principlecalculations. However,followingthe earlierliterature[44],onemayfitthemviaphase-fieldsimulations iftherelativerelationsamongthosecoefficientsandthevaluesof theenergydensityinvariousdomainwallsaregiven.SeeSupple- mentaryMaterialCforthedetailedfittingprocedures,andthefit- tedgradientenergycoefficientsarelistedinTableSII.

3. Thermodynamicanalysis

In this section, we consider the situation of monodomain in whichtheorderparametersarehomogeneous.Fig.2(a)showsthe energylandscapeofabulksystem(onlyfbulkandfelastarenonzero) underthestress-freeboundaryconditionsatzerotemperature.For anyfixedvaluesofP2 andP3,otherorderparametercomponents, i.e., P1,

θ

1,

θ

2, and

θ

3, are optimized to minimize the total free energydensity.It isobviousthat four(eightinthreedimensions) rhombohedralminimaarethelowest-energystates.

Furthermore, we studythe profiles includingthe electrostatic, elastic, and surface free energies of the ultrathin film. The total electricfield of felec in Eq. (3) is calculated by solving the Pois- son equation andthe relation E=−

ϕ

with

ϕ

the electrostatic potential.Fortheultrathinfilms,theelectrostaticenergyisusually rewrittenas

felec=−1

2Edep·P

Ebi+Eapp

·P, (5)

where Edep, Ebi, and Eapp are the depolarization field, the built- in field, and the external applied field, respectively. It should be notedthatinthispaper,weassumethattheboundchargesonthe topsurfaceandbottom interfaceare fullyneutralizedbythe free chargesfrom theairandelectrode, andhence thedepolarization fieldiszero.Moreover,theshiftsinhysteresisloops[19]revealthe existenceofabuilt-infieldEbi,anditcanbeexpressedas Ebi=−

ϕ

2

ϕ

1

hf nz=−

δϕ

hfnz, (6)

where

ϕ

1 and

ϕ

2 are the work functionsteps ofthe bottom and top interfaces, respectively,

δϕ

is then the difference in the

work function step [37], hf is the thickness of films, and nz= (0,0,1)Tistheunitvectorfrombottomtotop.Therefore,theelec- trostaticenergywithoutanexternalappliedfieldisgivenby

felec=

δϕ

hfP3. (7)

For the elastic free energy felast, one needs to take into ac- count the mechanical boundaryconditions forthin films [45,46], i.e.

ε

11=

ε

22=

ε

s,

ε

12=

ε

21=0,

σ

33=

σ

13=

σ

31=

σ

23=

σ

32=0. Here, ɛij and

σ

ij are the components of elastic strain and stress, respectively,andɛsisthein-planesubstratestrain.Inaddition,the volume densityofsurfaceenergy fsurfVol shouldbe includedby av- eragingitalongthe[001]direction,andtheeffectiveextrapolation lengths

δ

Peff and

δ

effθ for P and

θ

are introduced respectively (See Supplementary Material D). Finally, the total free energy density canbefurtherexpressedas

ft =

δϕ

hfP3+a1

P12+P22

+a3P32+a11

P14+P24

+a33P34+a12P12P22+a13

P12P32+P22P32

+b1

θ

12+

θ

22

+b3

θ

32+b11

θ

14+

θ

24

+b33

θ

34

+b12

θ

12

θ

22+b13

θ

12

θ

32+

θ

22

θ

32

+t11

P12

θ

12+P22

θ

22

+t33P32

θ

32+t12

P12

θ

22+P22

θ

12

+t13

P12

θ

32+P22

θ

32

+t31

P32

θ

12+P32

θ

22

+t44P1P2

θ

1

θ

2

+t44

(

P1P3

θ

1

θ

3+P2P3

θ

2

θ

3

)

+

C11+C12−2C122 C11

ε

s2

+sixth-andeighth-orderterms, (8)

wherethecoefficientswithsuperscriptsignsindicatetherenor- malizedcoefficients,andthesixth-andeighth-ordertermsremain the same as inEqs. (S2), (S3), and (S5)-(S7). See Supplementary MaterialDforthedetails oftheserenormalizedcoefficients. Note thata1,a3,b1,andb3arefunctionsofthefilmthicknesshf.

From Eqs. (8) and (S18)-(S20), five parameters besides the filmthicknesshf haveinfluences ontheenergyprofiles. Theyare temperature T, in-plane substrate strain ɛs, built-in potential

δϕ

,

effective extrapolation length of polarization

δ

effP , and effective extrapolation length of OOT

δ

θeff. Their roles can be illustrated with energy contours. Fig. 2(b) gives the energy contours at T=298Kunder thestrain

ε

s=−2% (effective energyexpression fbulk+felast). Compared with Fig. 2(a), the four minima change fromthe Rphase to themonoclinic (MA,or R-like)phase dueto the compressive strains. Then, adding an external electric field alongthe[001]directionwithEapp=5MV/cm(describingtheef- fectofthebuilt-inpotential)breaks thesymmetryalong[001],as showninFig.2(c)(effectiveenergyexpression fbulk+felast+felec).

One mayobservetheappearance ofa purelyTphase inFig. 2(c) withthe spontaneous polarization P3∼1.1C/m2.In fact, inaddi- tion tothe stableR/R-like phases, theenergyprofiles in Fig.2(a) and (b) also include the existence of such T metastable phases according to our numerical results, but the energy difference

(4)

Table 1

Default parameters used in this work.

Parameter Value

T 298 K

ɛ s −2 . 0%

δϕ −1 . 0 V

δeffP 10 ˚A

δeffθ 0.1 ˚A

betweentheRandTphasesaretoohightoobservetheTphases.

Next,thesurfaceeffectonthephasestabilitiesisstudied.Fig.2(d) and(e)istheenergycontourswiththesamevaluesofparameters asFig.2(c)exceptthevalueofhf.Thedefaultvaluesofthesefive parametersarelistedinTable1.Allthefollowingresultsarebased onthedefaultvaluesunlessnotedotherwise.Forafilmwiththick- nesshf=3.5nm,asshowninFig.2(d),thereexistboththeR-like phaseandthepurelyTphase,whiletheformerisstable.Forhf= 2.8nm[Fig.2(e)],however,theTphasebecomesthestatewiththe lowestenergyalthoughtheR-likephaseismetastable.Finally,the R-likephasebecomesunstableandonlytheTphaseremainswith sufficientlysmallhf,e.g.,hf=2.0nminFig.2(f).Sincethecontri- butionsofthesurfaceenergyandelectrostaticenergyareinversely proportional tothethicknesshf [Eqs.(S16)and(7)],thetendency in Fig. 2(d)–(f) indicates that the surface effect and the built-in potentialhelptostabilizethepurelyTphasewithdecreasingfilm thickness. It should be noted that the above T phase has only onenonzeropolarization component(out-of-planeP3),withthree zeroOOTcomponents,inagreementwiththeexperimentalresults [19].

Fig.2(d)–(f)istheresultsforthreetypical valuesofhf.Tofur- ther understandthe behaviorsofthe purely TandR-like phases, itisnecessarytocomputethetotalenergiesofthetwophasesas functionsoffilm thickness.Fig. 3(a)givesthecurves oftotalfree energy densities ft withrespect to thefilm thickness hf forboth the purelyTandR-likephases. One mayclearlyobserve thatthe phase transition betweentwo phases occursat hcriticalf ∼ 3 nm. For hf<hcriticalf , the total free energy ofthe T phase isthe low- est one, andthe corresponding region can be referred as “Stable T”; the region with hf>hcriticalf , on the other hand, can be re- ferred as“Stable R” sincethe R-like phaseis stable, asshownin the insert of Fig. 3(a). For hf→∞,felec and fsurf can be ignored, sotheenergydensitiesofthepurelyTandR-likephasesconverge tosolutionofBFOfilmswithmechanicalfilmboundaryconditions [Fig.2(c)],whicharerepresentedbytheblueandreddashedlines inFig.3(a),respectively.Ourrecentexperimentalresultsalsoshow that the BFO films grown on SrRuO3-buffered DyScO3 substrate exhibit a “criticalthickness” around 2nmbelow whichtheR-like phasetransitstothepurelyTphase.

To further compare the contribution from each energy term, the curvesofenergydifferencesbetweenthepurely Tphase and the R-like phase versus film thickness are plotted in Fig. 3(b).

For four energy terms andtotal free energydensity fi (i.e., fbulk, felast,felec, fsurfVol,andft), theenergydifference isdefined as fi=

fipurelyTfR-like

i ,where fipurelyTand fR-like

i aretheenergydensity ofthepurelyTphaseandtheR-likephase,respectively.Itisobvi- ousthatif fi<0,suchenergyfavorstheformationofthepurelyT phase,andviceversa.FromFig.3(b),wecouldclearlyfindthatthe elastic,electrostatic,andsurfaceenergytermsallfavorthepurely T phase.As fortheir hierarchy, their valuesaround the regionof the phase transition ( ft=0) are compared. Since fsurfVol is the lowest at the range hf=2.5 ∼ 10 nm, it is the surface energy that dominatesthe formationofthepurely Tphase.At thesame time,theelasticandelectrostaticenergiesalsomakecontributions tothestabilityofthepurelyTphase.

Fig. 3. (Color online) (a) Curves of the energy density f t with respect to the film thickness h ffor the purely T and R-like phases. Blue and red dashed lines indicate the case of h f∞ for the T and R-like phases, respectively. Insert: zoom-in curves of the grey rectangular area. A dot-dashed line separates the regions of “Stable T”

and “Stable R”. (b) Curves of the differences of the total free energy density and each energy term between the purely T phase and the R-like phase with respect to the film thickness h f. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Anotherinteresting phenomenon in Fig. 3(a)is that there ex- istsa peak inthe curve ofenergydensityft for theR-like phase athf∼4.4nm,whereastheenergycurveforthepurelyTphaseis monotonicallyincreasing.Itcanbeexplainedbythesubtlebalance andcompetitionbetweentwothickness-relatedenergyterms,i.e., theelectrostaticenergyfelec andthesurfaceenergy fsurfVol (SeeSup- plementaryMaterialEforthedetails).Itshouldbementionedthat ifone variessome oftheparametersinTable1,differenttenden- ciesmaybeobtained.However,itislargelythebalanceoffelecand fsurfVolthatdeterminesthebehaviorsofftforboththepurelyTphase andtheR-likephase.

DifferentparametersinTable1playdifferentrolesinthecriti- calthicknesshcriticalf betweenthepurelyTandR-likephases.Toex- ploretheinfluenceofeachparameteronthecriticalthicknessand phase transition, the phase diagrams of certain parameters with respecttothefilmthicknessareillustratedinFig.4.Foreachsub- figure,theother fourparameters areassumedtotake thedefault valuesinTable1,andthedashedwhitelineindicatestheposition of the default value of the controlled parameter. From Fig. 4(a), one can find that the temperature T has a minor impact on the phasetransition.Thecriticalthicknessrisesslowlywithincreasing temperature,showing thathighertemperaturemayfavorthe for- mationoftheTphaseinBFO.Nevertheless,thein-planesubstrate strainandthebuilt-inpotential aremoreimportant.Asshownin Fig. 4(b)and (c), it is evident that the greater compressive sub- stratestrainandlargerabsolutevalue ofthebuilt-inpotentialen- large the region of “StableT”. As for the extrapolation length of

(5)

Fig. 4. (Color online) Phase diagrams of ultrathin BFO films with respect to film thickness h fand temperature T (a), in-plane substrate strain ɛ s(b), effective built-in potential δϕ(c), effective extrapolation length of polarization δPeff(d), and effective extrapolation length of OOT δeffθ (e). White lines indicate the value of the default parameters in Table 1 .

polarization inFig. 4(d), theseparation line oftwo phases (solid blackline)isverticalaroundthedefaultvalue,indicatingthatthe surfaceeffectofthepolarizationhaslittleinfluenceonthestability oftheTphase.Itisnotablethatforthesmallervaluesof

δ

Peffbe- yondthescopeinFig.4(d),thesymmetryofthephasesbecomes complicated,whichwillnot bediscussed inthispaper.Moreover, theextrapolationlength ofOOTplays asignificantroleintheR/T transition,asshowninFig.4(e).Since

δ

θeffmeasuresthestrengthof

thesurfaceenergyforOOT,onecansaythatitistheinterfacialef- fectofOOTthatfavorsthepurelyTphasethemostintheultrathin BFOfilms.Notethattheinterfacialeffectsfromthetopandbottom interfacescannotbedistinguishedinthethermodynamicanalyses.

WeemphasizetheimportanceofthebottomlayersbecauseinBFO films, the constraint of the bottom layers usually dominates the surfaceenergy [19,34,35]. Onthe other hand, forthe BFO layers inBFOsuperlattices,we expectthat both thetopandbottom in- terfacialeffects are important.The deterministic factor is thetilt patternin the layers that are adjacent to the BFO layers. If the oxygen octahedra within the adjacent layers havesmall or even notilts,theywouldconfinetheformationofOOTintheBFOlay- ers.Inaddition,theanisotropy ofthegradientenergycoefficients forOOT,i.e.,v11<<v44[44],leadstostrongerOOTcouplingalong the[100]and[010]directionsthanthatalongthe[001]direction.

Altogether,thepurelyTphasewouldbethelowest-energystateif thesurfaceeffectiscrucial,whichisthecaseofultrathinfilms.It isnoteworthythattheaboveanalysesarebasedontheassumption thattheadjacentelectrodesorsubstratespossessnoOOTorsmall

θ

3(sincev11<<v44).Usually,theOOTofthesubstrateplaysasig- nificant role, andtheOOT in theelectrode dependson its thick- ness and the tilt patternof the substrate [47]. Since SrTiO3 and DyScO3 substrateshavedifferenttilt patterns,we expectthat the two substrates provide different interfacialcouplings on the BFO films. Recently, Han et al.[35] observed an Ophase inultrathin BFOfilmsdirectlygrown onthe(110)-orientedNdGaO3 substrate.

Interestingly, such Ophase wasfound in the BFOlayers close to thesubstrate, while thelayers closetothe surfacearestill the R phase.Thisphasetransitionalongthe[001]directionindicatesthe dominantinfluenceofinterfacialoxygenoctahedralcoupling.

4. Phase-fieldsimulations

Sofar,weonlyfocusonthethermodynamicstabilityofasingle domaininultrathinBFOfilms.Real thinfilms areexpectedtoex- hibitcomplicateddomainpatternsduetothecompetitionsamong theshort-rangebulk,gradient,andsurfaceenergyterms,together with the long-range electric and elastic energy terms. Fig. 5(a)

(6)

Fig. 5. (Color online) (a) Curves of the total energy density f tversus substrate strain ɛ sfor the purely T phase and the R-like phase at h f= 3 nm . The green line indicates the common tangent of two curves. (b-d) Domain patterns with εs= −2 . 4% , εs= −2 . 2% , and εs = −1 . 8% , respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

showsthecurvesofthetotalfreeenergydensityftversus thein- plane strain ɛs forthe purely T phase andthe R-like phase with filmthicknesshf=3.0nm,showingthatthephasetransitionbe- tween twophaseswouldhappenat

ε

s ∼ −2%.The commontan- gentofthetwocurves(solidgreenline)indicatestheexistenceof two-phase mixtureswhichcan formthrough theso-called“strain phaseseparation”[48].

In order to further investigate the inhomogeneous domain structures and properties of ultrathin BFO films, we perform phase-fieldsimulationsonthesystemillustratedinFig.1.Assum- ing fullycharge-compensatedinterfacesofthefilms andwiththe introduction of the built-in potential, the short-circuit electrical boundary conditions are employed, andthe potential ofthe bot- tomlayerofBFOfilmsandwholeelectrodeissettobezero,while thepotentialofthetoplayeroffilmsequalstothebuilt-inpoten- tial

δϕ

.SeeSupplementaryMaterialFforthedetailedsystemset- tingsofphase-fieldsimulationsincludingthesystemsizes,bound- aryconditions,andnumericalmethods.

Thedomainstructures withdifferentin-planesubstratestrains areshowninFig.5(b)–(d).Owingtothebuilt-inpotentialthatcre- ates an electric field pointingto the positive [001] direction, the finaldomainstructureonlycontainsfourR-likephasevariantsand one Tphasevariant.When thecompressivestrain isratherlarge, asillustratedinFig.5(b),thedomainpatternisthepurelyTphase.

For smaller compressive strain in Fig. 5(d),the domain structure isR-likemulti-domains.Underanintermediatecompressivestrain, however,thedomainpatternexhibitsthecoexistenceofthepurely TandR-likephasesasshowninFig.5(c).

Weexpectthatthestrain-inducedMPBsseparatingthepurelyT phaseandtheR-likephasewouldenhancethepiezoelectricprop- ertiesofultrathinBFOfilms. Thelongitudinal piezoelectriccoeffi- cient d33 iscalculatedby thechangeofthe straincomponentɛ33

withrespecttotheexternalappliedelectricfieldcomponentEapp3 , i.e., d33=

ε

33/

Eapp3 [49–51]. See Supplementary Material G for detailedproceduresofcalculatingd33viaboththethermodynamic andphase-fieldsimulations.

Fig. 6. (Color online) Longitudinal piezoelectric coefficient d 33as a function of in- plane strain ɛ sfrom phase-field simulations (dots) and thermodynamic analysis for the purely T and R-like phases (lines).

The solid lines in Fig. 6 show the results of d33 obtainedby the thermodynamic analysisas a function ofɛs.The valuesfrom thethermodynamicanalysisarecomparabletothevalueunderthe stress-freeconditions(∼16pC/N based onthe coefficientsinthis paper).Notethatd33 oftheR-likephaseislargerthanthatofthe Tphase. The T phase only has one nonzero polarization compo- nentandallOOTcomponentsarezero.Extraappliedelectricfields alongthe samedirectionjustchange themagnitudeofthe order parameters, and thus the induced strain is small. For the R-like phase,however, its polarization directionrotatestowards the ex- ternalfield directionalong [001], so the strain ɛ33 would be in- creasedby a largerextent. Onecan observesimilar trends under differentfilmthicknesses,asshowninFig.S2(c).

The values of d33 from phase-field simulations are listed by the dots in Fig. 6. Compared to the thermodynamic results, the piezoelectriccoefficients underlargecompressive in-plane strains

(7)

(

ε

s<−2.3%) aresimilarsince bothare purelyTphaseswithonly one domain variant. Then, for d33 with small in-plane strains (

ε

s>−1.8%), the phase-fieldresults are larger than the thermo- dynamicones. This is because the thermodynamic analysis only considers one R-like domain, while the phase-field results exist fourR-likedomainvariantsandtransitionregions (domainwalls) that separate these R-like domains. The domain wall regions are more sensitive to the applied electric field, which leads to enhanced piezoelectric responses [50].Near the MPBs, the R-like and T phases coexist, resulting in a large deviation from the thermodynamic values with in-plane strain −2.3%<

ε

s<−1.8%

inFig. 6. The enhancement ofd33 in thisrange iscaused by the phasetransitionfromtheR-likephasetotheTphase.Itisnotable that the piezoelectric coefficient d33 is increasedby up to 200%, comparedtothatofthesingleRdomain.

5. Conclusions

We study thethermodynamic stabilities of thetetragonal and rhombohedral phases in the ultrathin BFO films using both the thermodynamicanalysisandphase-fieldsimulations.Accordingto the thermodynamic analysis, the purely T phase rather than the RorR-likephase isfound tobe thestablestate inthinnerfilms.

Thesurfaceeffect,namely,theconstraintfromtheelectrodeorthe substrate,isresponsibleforthestabilizationoftheTphase,while thebuilt-in potential and compressive substratestrain also favor theTphase.Thestabilitiesofthetwophasesaremainlycontrolled bythecompetitionsbetweenthebulkfreeenergyandsurfaceen- ergyterms. Ourphase-fieldsimulations reveal the coexistence of thepurelyTandR-likephases,andthepiezoelectriccoefficientof thetwo-phasemixtureissignificantlyenhancedcomparedtothat ofsingle-domainBFObulkcrystals.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgments

Y.Z. gratefully acknowledges the financial support from China ScholarshipCouncilunderNo.201706190099.NationalNaturalSci- enceFoundation of China Z.H.C. acknowledges the support from theNationalNatural ScienceFoundation ofChina underthe con- tractnumbers51802057 andU1932116.Division ofMaterialsSci- encesandEngineeringNationalScienceFoundationF.X.andL.Q.C.

acknowledgethesupport bythe NationalScienceFoundationun- derDMREFGrantDMR-1629270.

Supplementarymaterials

Supplementary material associated with this article can be found,intheonlineversion,atdoi:10.1016/j.actamat.2019.10.054. References

[1] P. Sharma, Q. Zhang, D. Sando, C. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Non- volatile ferroelectric domain wall memory, Sci. Adv. 3 (2017) e1700512.

[2] L.W. Martin , A.M. Rappe , Thin-film ferroelectric materials and their applica- tions, Nat. Rev. Mater. 2 (2016) 16087 .

[3] J. Scott , Applications of modern ferroelectrics, Science 315 (2007) 954 . [4] N. Setter , D. Damjanovic , L. Eng , G. Fox , S. Gevorgian , S. Hong , A. Kingon ,

H. Kohlstedt , N. Park , G. Stephenson , I. Stolitchnov , A. Taganstev , D. Taylor , T. Yamada , S. Streiffer , Ferroelectric thin films: review of materials, properties, and applications, J. Appl. Phys. 100 (2006) 051606 .

[5] P. Muralt , Ferroelectric thin films for micro-sensors and actuators: a review, J.

Micromech. Microeng. 10 (20 0 0) 136 .

[6] L. Xie , L. Li , C.A. Heikes , Y. Zhang , Z. Hong , P. Gao , C.T. Nelson , F. Xue , E. Kioupakis , L. Chen , D.G. Schlom , P. Wang , X. Pan , Giant ferroelectric polariza- tion in ultrathin ferroelectrics via boundary-condition engineering, Adv. Mater.

29 (2017) 1701475 .

[7] L. Wang , M.R. Cho , Y.J. Shin , J.R. Kim , S. Das , J.-G. Yoon , J.-S. Chung , T.W. Noh , Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO 3/SrTiO 3composite barriers, Nano Lett. 16 (2016) 3911 . [8] J. Liu , W. Chen , B. Wang , Y. Zheng , Theoretical methods of domain structures

in ultrathin ferroelectric films: a review, Materials 7 (2014) 6502 .

[9] Y. Wang , W. Chen , B. Wang , Y. Zheng , Ultrathin ferroelectric films: growth, characterization, physics and applications, Materials 7 (2014) 6377 .

[10] C.H. Ahn , K.M. Rabe , J.-M. Triscone , Ferroelectricity at the nanoscale: local po- larization in oxide thin films and heterostructures, Science 303 (2004) 488 . [11] S. Li , J.A. Eastman , Z. Li , C.M. Foster , R.E. Newnham , L.E. Cross , Size effects in

nanostructured ferroelectrics, Phys. Lett. A 212 (1996) 341 .

[12] Y. Zhang , J. Li , D. Fang , Size dependent domain configuration and electric field driven evolution in ultrathin ferroelectric films: a phase field investigation, J.

Appl. Phys. 107 (2010) 034107 .

[13] G. Cao , H. Huang , X. Ma , Thickness dependence of switching behavior in fer- roelectric BaTiO 3thin films: a phase-field simulation, Appl. Sci. 7 (2017) 1162 . [14] M. Dawber , K.M. Rabe , J.F. Scott , Physics of thin-film ferroelectric oxides, Rev.

Mod. Phys. 77 (2005) 1083 .

[15] J. Junquera , P. Ghosez , Critical thickness for ferroelectricity in perovskite ultra- thin films, Nature 422 (2003) 506 .

[16] D.D. Fong , B.G. Stephenson , S.K. Streiffer , J.A. Eastman , O. Auciello , P.H. Fuoss , C. Thompson , Ferroelectricity in ultrathin perovskite films, Science 304 (2004) 1650 .

[17] D.D. Fong , A.M. Kolpak , J.A. Eastman , S.K. Streiffer , P.H. Fuoss , G.B. Stephenson , Carol Thompson , D.M. Kim , K.J. Choi , C.B. Eom , I. Grinberg , A.M. Rappe , Stabi- lization of monodomain polarization in ultrathin PbTiO 3films, Phys. Rev. Lett.

96 (2006) 127601 .

[18] D.A. Tenne , P. Turner , J.D. Schmidt , M. Biegalski , Y.L. Li , L.Q. Chen , A. Soukias- sian , S. Trolier-McKinstry , D.G. Schlom , X.X. Xi , D.D. Fong , P.H. Fuoss , J.A. East- man , G.B. Stephenson , C. Thompson , S.K. Streiffer , Ferroelectricity in ultrathin BaTiO 3films: probing the size effect by ultraviolet Raman spectroscopy, Phys.

Rev. Lett. 103 (2009) 177601 .

[19] H. Wang , Z. Liu , H. Yoong , T. Paudel , J. Xiao , R. Guo , W. Lin , P. Yang , J. Wang , G. Chow , T. Venkatesan , E. Tsymbal , H. Tian , J. Chen , Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit, Nat. Commun. 9 (2018) 3319 .

[20] C.M. Folkman , S.H. Baek , H.W. Jang , C.B. Eom , C.T. Nelson , X.Q. Pan , Y.L. Li , L.Q. Chen , A. Kumar , V. Gopalan , S.K. Streiffer , Stripe domain structure in epi- taxial (001) BiFeO 3thin films on orthorhombic TbScO 3substrate, Appl. Phys.

Lett. 94 (2009) 251911 .

[21] Z. Chen , J. Liu , Y. Qi , D. Chen , S.-L. Hsu , A.R. Damodaran , X. He , A.T. N’Diaye , A. Rockett , L.W. Martin , 180 °ferroelectric stripe nanodomains in BiFeO 3thin films, Nano Lett. 15 (2015) 6506 .

[22] D. Chen , Z. Chen , Q. He , J.D. Clarkson , C.R. Serrao , A.K. Yadav , M.E. Nowakowski , Z. Fan , L. You , X. Gao , D. Zeng , L. Chen , A.Y. Borisevich , S. Salahuddin , J.-M. Liu , J. Bokor , Interface engineering of domain structures in BiFeO 3thin films, Nano Lett. 17 (2016) 486 .

[23] G. Liu , Q. Zhang , H.-H. Huang , P. Munroe , V. Nagarajan , H. Simons , Z. Hong , L.-Q. Chen , Reversible polarization rotation in epitaxial ferroelectric bilayers, Adv. Mater. Interfaces 3 (2016) 16004 4 4 .

[24] Q.Y. Qiu , V. Nagarajan , S.P. Alpay , Film thickness versus misfit strain phase di- agrams for epitaxial PbTiO 3ultrathin ferroelectric films, Phys. Rev. B 78 (2008) 064117 .

[25] A.G. Zembilgotov , N.A. Pertsev , H. Kohlstedt , R. Waser , Ultrathin epitaxial ferro- electric films grown on compressive substrates: competition between the sur- face and strain effects, J. Appl. Phys. 91 (2002) 2247 .

[26] A. Munkholm , S.K. Streiffer , M.V. Ramana Murty , J.A. Eastman , Carol Thomp- son , O. Auciello , L. Thompson , J.F. Moore , G.B. Stephenson , Antiferrodistortive reconstruction of the PbTiO 3(001) surface, Phys. Rev. Lett. 88 (2001) 016101 . [27] M.-W. Chu , I. Szafraniak , R. Scholz , C. Harnagea , D. Hesse , M. Alexe , U. Gösele ,

Impact of misfit dislocations on the polarization instability of epitaxial nanos- tructured ferroelectric perovskites, Nat. Mater. 3 (2004) 87 .

[28] G. Catalan , J.F. Scott , Physics and applications of bismuth ferrite, Adv. Mater. 21 (2009) 2463 .

[29] P. Fischer , M. Polomska , I. Sosnowska , M. Szymanski , Temperature dependence of the crystal and magnetic structures of BiFeO 3, J. Phys. C Solid State Phys. 13 (1980) 1931 .

[30] D. Sando , A. Barthélémy , M. Bibes , BiFeO 3epitaxial thin films and devices:

past, present and future, J. Phys. Condens. Mat. 26 (2014) 473201 .

[31] D. Sando , B. Xu , L. Bellaiche , V. Nagarajan , A multiferroic on the brink: uncov- ering the nuances of strain-induced transitions in BiFeO 3, Appl. Phys. Rev. 3 (2016) 011106 .

[32] J.C. Yang , Q. He , S.J. Suresha , C.Y. Kuo , C.Y. Peng , R.C. Haislmaier , M.A. Motyka , G. Sheng , C. Adamo , H.J. Lin , Z. Hu , L. Chang , L.H. Tjeng , E. Arenholz , N.J. Po- draza , M. Bernhagen , R. Uecker , D.G. Schlom , V. Gopalan , L.Q. Chen , C.T. Chen , R. Ramesh , Y.H. Chu , Orthorhombic BiFeO, Phys. Rev. Lett. 109 (2012) 247606 . [33] Z. Chen , Z. Luo , C. Huang , Y. Qi , P. Yang , L. You , C. Hu , T. Wu , J. Wang , C. Gao ,

T. Sritharan , L. Chen , Low-symmetry monoclinic phases and polarization rota- tion path mediated by epitaxial strain in multiferroic BiFeO 3thin films, Adv.

Funct. Mater. 21 (2011) 133 .

(8)

[34] W. Geng , X. Guo , Y. Zhu , Y. Tang , Y. Feng , M. Zou , Y. Wang , M. Han , J. Ma , B. Wu , W. Hu , X. Ma , Rhombohedral–orthorhombic ferroelectric morphotropic phase boundary associated with a polar vortex in BiFeO 3films, ACS Nano 12 (2018) 11098 .

[35] M.J. Han , Y.J. Wang , D.S. Ma , Y.L. Zhu , Y.L. Tang , Y. Liu , N.B. Zhang , J.Y. Ma , X.L. Ma , Coexistence of rhombohedral and orthorhombic phases in ultrathin BiFeO 3films driven by interfacial oxygen octahedral coupling, Acta Mater. 145 (2018) 220 .

[36] Y. Yang , C.M. Schlepütz , C. Adamo , D.G. Schlom , R. Clarke , Untilting BiFeO: the influence of substrate boundary conditions in ultra-thin BiFeO 3on SrTiO 3, APL Mater. 1 (2013) 052102 .

[37] G. Gerra , A.K. Tagantsev , N. Setter , Ferroelectricity in asymmetric metal-ferro- electric-metal heterostructures: a combined first-principles–phenomenological approach, Phys. Rev. Lett. 98 (2007) 207601 .

[38] A.N. Morozovska , E.A. Eliseev , M.D. Glinchuk , L.-Q. Chen , V. Gopalan , Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction, Phys. Rev. B 85 (2012) 094107 . [39] A.K. Tagantsev , E. Courtens , L. Arzel , Prediction of a low-temperature ferroelec-

tric instability in antiphase domain boundaries of strontium titanate, Phys. Rev.

B 64 (2001) 224107 .

[40] D.V. Karpinsky , E.A. Eliseev , F. Xue , M.V. Silibin , A. Franz , M.D. Glinchuk , I.O. Troyanchuk , S.A. Gavrilov , V. Gopalan , L.-Q. Chen , A.N. Morozovska , Ther- modynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO 3), Npj Comput. Mater. 3 (2017) 20 .

[41] S. Yuan , W. Chen , J. Liu , Y. Liu , B. Wang , Y. Zheng , Torsion-induced vortex switching and Skyrmion-like state in ferroelectric nanodisks, J. Phys. Condens.

Matter 30 (2018) 465304 .

[42] P. Marton , A. Klíˇc , M. Pa ´sciak , J. Hlinka , First-principles-based Landau–Devon- shire potential for BiFeO 3, Phys. Rev. B 96 (2017) 174110 .

[43] W. Chen , Y. Zheng , B. Wang , D. Ma , F. Ling , Vortex domain structures of an epi- taxial ferroelectric nanodot and its temperature-misfit strain phase diagram, Phys. Chem. Chem. Phys. 15 (2013) 7277 .

[44] F. Xue , Y. Gu , L. Liang , Y. Wang , L.-Q. Chen , Orientations of low-energy do- main walls in perovskites with oxygen octahedral tilts, Phys. Rev. B 90 (2014) 220101(R) .

[45] Y. Gu , K. Rabe , E. Bousquet , V. Gopalan , L.-Q. Chen , Phenomenological thermo- dynamic potential for CaTiO 3single crystals, Phys. Rev. B 85 (2012) 064117 . [46] L. Chen , Phase-field method of phase transitions/domain structures in ferro-

electric thin films: a review, J. Am. Ceram. Soc. 91 (2008) 1835 .

[47] D. Kan , R. Aso , H. Kurata , Y. Shimakawa , Thickness-dependent structure–prop- erty relationships in strained (110) SrRuO 3 thin films, Adv. Funct. Mater. 23 (2013) 1129 .

[48] F. Xue , Y. Li , Y. Gu , J. Zhang , L.-Q. Chen , Strain phase separation: formation of ferroelastic domain structures, Phys. Rev. B 94 (2016) 220101(R) .

[49] L. Liang , Y. Li , L.-Q. Chen , S. Hu , G.-H. Lu , Thermodynamics and ferroelectric properties of KNbO 3, J. Appl. Phys. 106 (2009) 104118 .

[50] Y. Cao , G. Sheng , J.X. Zhang , S. Choudhury , Y.L. Li , C.A. Randall , L.Q. Chen , Piezoelectric response of single-crystal PbZr 1-xTi xO 3near morphotropic phase boundary predicted by phase-field simulation, Appl. Phys. Lett. 97 (2010) 252904 .

[51] N.A . Pertsev , A .G. Zembilgotov , A.K. Tagantsev , Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films, Phys. Rev.

Lett. 80 (1998) 1988 .

Referensi

Dokumen terkait

Nilai koefisien regresi X atau Brand Ambassador sebesar 1,148, maka dapat dinyatakan bahwa setiap perubahan atau penambahan satu satuan pada variabel brand ambassador, maka brand