ContentslistsavailableatScienceDirect
Applied Surface Science
j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c
Full Length Article
Synthesis of barbituric acid doped carbon nitride for efficient solar-driven photocatalytic degradation of aniline
Lin Li
a, Qingguo Meng
b, Haiqin Lv
b, Lingling Shui
a, Yongguang Zhang
c, Zhang Zhang
c,d, Zhihong Chen
b,c,∗, Mingzhe Yuan
b, Richard Nötzel
a,c, Xin Wang
a,c,∗, Jun-Ming Liu
d,e, Guofu Zhou
aaInstituteofElectronicPaperDisplays,SouthChinaAcademyofAdvancedOptoelectronics,SouthChinaNormalUniversity,Guangzhou,Guangdong Province,China
bShenyangInstituteofAutomation,Guangzhou,ChineseAcademyofSciences,Guangzhou511458,China
cInternationalAcademyofOptoelectronicsatZhaoqing,SouthChinaNormalUniversity,GuangdongProvince,China
dInstituteofAdvancedMaterials,SouthChinaAcademyofAdvancedOptoelectronics,SouthChinaNormalUniversity,Guangzhou,GuangdongProvince, China
eLaboratoryofSolidStateMicrostructures,NanjingUniversity,Nanjing210093,China
a r t i c l e i n f o
Articlehistory:
Received11July2017 Receivedinrevisedform 12September2017 Accepted19September2017 Availableonline20September2017
Keywords:
Carbonnitride Copolymerizing Barbituricacid Photodegradation Aniline
a b s t r a c t
Aseriesofbarbituricaciddopedcarbonnitride(CN-BA)photocatalystsweresuccessfullypreparedby copolymerizingdicyandiamidewithbarbituricacid(BA).UnderAM1.5simulatedsunlight,CN-BApho- tocatalystsexhibitenhancedphotocatalyticactivitycomparedtopurecarbonnitrideforthedegradation ofaniline.Thehighestactivityisobtainedwith2%dopedCN-BAphotocatalyst.
Results:onthephotodegradationofanilineindicatethatfortheoptimizedCN-BAphotocatalyst,thecon- centrationofanilinesolutionwasreducedgraduallyfrom16mg/Lto1.354mg/Lin2h.Thiscorresponds toa6timeshigherphotodegradationefficiencythanpurecarbonnitridesamples.Theenhancedpho- tocatalyticactivityofCN-BAreliesontheenhancedsurfacearea,thehigherlightabsorptionandthe reducedrecombinationofthephoto-generatedelectron-holepairs.Thisinterpretationresultsfrommul- tiplecharacterizationswithEPR,BET,N2adsorption,Solid-state13CNMR,UV–visDRS,FESEM,andTEM.
Undersimulatedsunlightirradiation,CN-BAisexcitedandgenerateselectron-holepairs.Thephoto- generatedelectronsintheCN-BAconductionbandreactwiththemolecularoxygentoform•O2−.Part ofthe•O2−transformsinto•OH,whichfurtheroxidesaniline.Meanwhile,photo-generatedholesinthe valencebandofCN-BAcanbenefittotheformationof•OHordirectlyoxideaniline.
©2017PublishedbyElsevierB.V.
1. Introduction
Anilineisanimportantprecursorandintermediatecompound which has been widely applied in the industrial production of polyurethanes, pharmaceuticals, pesticides and rubber addi- tives[1,2].However,anilineisahighlytoxicandcancer-causing compound which is now considered as a major environmen-
∗ Correspondingauthorat:InstituteofElectronicPaperDisplays,SouthChina AcademyofAdvancedoptoelectronics,SouthChinaNormalUniversity,Guangzhou, GuangdongProvince,China;ShenyangInstituteofAutomation,Guangzhou,Chinses AcademyofSciences,Guangzhou,China;InternationalAcademyofOptoelectron- icsatZhaoqing,SouthChinaAcademyofAdvancedoptoelectronics,SouthChina NormalUniversity,GuangdongProvince,China.
E-mailaddresses:[email protected](Z.Chen),[email protected] (X.Wang).
tal pollutant. Nowadays, the major treatment processes for industrial anilinewastewaterare basedonbio-degradationand physical-adsorptionmethods[3].Buttheanilinebio-degradation efficiency is quite low because of its high biological-toxicity.
Physical-absorptionmethodiscostlyand unsuitablefordegrad- inglow-concentrationindustrialanilinewastewater.Therefore,it iscriticaltolookforalow-cost,high-efficientandenvironmental friendlymethodfortreatingindustrialanilinewastewater.
Inrecentyears,semiconductor-basedphotocatalyticdegrada- tionhasbeenregardedasalowcost,efficientandenvironmental friendlystrategytotreatwastewatercontaininganiline[4–8].TiO2 havebeenwidelyusedasaphotocatalystsforthephotocatalytic degradationofanilineinanaqueoussolutionundervisiblelight irradiation.However,TiO2canonlyrespondtoUVirradiation,so thereisaweakvisible-lightresponsewhenusingTiO2-basedpho- tocatalystswhichstronglylimitsitspracticalapplicationsunder
http://dx.doi.org/10.1016/j.apsusc.2017.09.161 0169-4332/©2017PublishedbyElsevierB.V.
solarlight.Therefore,developingnovelhighvisible-light-response photocatalystswithhigh-efficiencyandstabilityhasbecomeahot topicinthefieldofthephotocatalyticdegradationofaniline.
Recently,apolymericsemiconductor photocatalyst,graphitic carbonnitride(CN),hasattractedagreatattentionbecauseofits relativenarrowbandgap,sufficientlynegativeconduction-band positionandhighchemicalstability[9].However,thephotocat- alytic activity of CNversus the degradation organic pollutants isquitelow because ofits relativelyfastcharge recombination andinsufficientabsorptioninthevisible-lightspectralrange.To improvethe photocatalytic performance ofCN, variousmodifi- cationmethods havebeenappliedthroughstructure regulation [10–19],doping[20–27],surfacehetero-junctionandcopolymer- ization[28–37].Amongthose methods,copolymerizationofCN has been regarded as an efficient route, not only for obtain- ing an enhance light-absorption, but also for creating surface hetero-structureswhichcouldreducetherecombinationofphoto- generatedelectron-holes.
In this study, barbituricaciddoped graphitic carbon nitride (CN-BA) photocatalysts were synthesized by copolymerizing dicyandiamide(DCDA)withbarbituricacid(BA)toimprovethe opticalabsorption,electronicandphotoelectricpropertiesofcar- bonnitride.Moreover,thecatalyticactivityofCN-BAversusthe degradationof anilinein aqueoussolutionwasinvestigated for thefirsttime.Allas-preparedCN-BAsamplesexhibitedahigher photocatalyticdegradationofanilineinaqueoussolutionrespect topureCNandtheCN-BA-2.0sample(seedetailsintheexperi- mentalsection)resultedinthehighestphotocatalyticactivity.The concentrationofanilineinaqueoussolutiondegradedfrom16to 1.354mg/LinthepresenceofCN-BA-2.0undersimulatedsunlight irradiationfor2h.Thestructure,surfaceareaandopticalproper- tiesofCN-BAsampleswerecharacterizedbyXRD,SEM,TEM,XPS, DRSandEPRspectra.ThecombinedbenefitsoftheBAdopingin termsofoptical,surfaceandtexturepropertiesleadtoasignificant improvementinthephotocatalyticactivityfordegradationofani- lineinaqueoussolutionundersimulatedsunlightirradiation.The mechanismleadingtothephotocatalyticdegradationofanilinewas alsoinvestigatedsystemically.
2. Experimatalmethods 2.1. Chemicals
Allchemicalreagentswereofanalyticalgrade.Dicyandiamide and barbituric acid (BA) were purchased from Sigma-Aldrich Química.Deionizedwaterwasusedthroughoutinphotocatalytic experiments.
2.2. SynthesisofCNandCN-BA
ForthesynthesisofCNsamples,2.0gofdicyandiamidewere sealedinaquartzboatandheatedinairto550◦Cfor4hwitha heating-rateof2.3◦C/min[38].
TheBAdoped CNsampleswere synthesizedfrom dicyandi- amideandBAbyathermalpolymerizationprocess.Inatypical process,2.0gofdicyandiamideand differentqualityofBAwere dispersedin 20mLof deionizedwater. Water wassuccessively removedbyheatingat100◦Cunderstirring.Thedriedsolidwas grinded,transferredintoaquartzboatand becalcined inairat 550◦Cfor4hattheheating-rateof2.3◦C/min.Resultingsamples weredenotedasCN-BA-X,whereX(0.2,0.5,1.0,2.0,3.0)represents themassfractionofBA.
2.3. Characterization
Crystallographic phases of powder were analyzed by X-ray diffraction(XRD)fromX’PertPRO.Fouriertransformedinfrared (FTIR)spectrawereacquiredwithaNicoletMagna-IR170spec- trometer.Thesolid-state[13]CNMRspectrawererecordedusing a Bruker Advance III 500 spectrometer. X-ray photoelectron spectroscopy (XPS) measurements were performed on Thermo ESCALAB250Xiinstrument witha monochromatized AlKaline source(150W).Electronparamagneticresonance(EPR)measure- mentswereperformedonaBrukerER200-SRCspectrometer.The UV–vis diffuse reflectance spectra(UV–vis DRS)were recorded onaU-41000,HITACHIspectrophotometer,Tokyo,Japanbyusing BaSO4 asareflecting sample.Surfacemorphologyandstructure wereexaminedbyZEISS Ultra55 field-emissionscanningelec- tronmicroscope(FESEM).Transmissionelectronmicroscopy(TEM) imageswerecollectedbyusingaJEM-2100HRfieldemissionelec- tronmicroscope.TheBrunauer–Emmett–Teller(BET)surfacearea wasdeterminedwithaQuantachromeInstrumentsQuadrasorbSI.
2.4. Photocatalytictestfordegradationofaniline
Theconcentrationofanilineintheaqueoussolutionwasmea- suredusinga colorimetricmethod.In atypicalexperiment,the photocatalyticdegradationofanilinewasmeasuredusinga300W Xelamp(AM1.5,outputlightcurrentis15A)assimulatedsun- light.100mg oftheas-preparedphotocatalyst wereaddedinto 150mLofanaqueoussolutioncontainingananilineconcentra- tionof16mg/L.Thesuspensionwasstirredfor30minwithlight irradiationtoreachtheabsorption-desorptionequilibrium.Then simulatedsunlightirradiationwasactivatedbyshiningthesus- pensionwitha300WXelamp(outputlightintensityis1sun,AM 1.5,100mW/cm2).Attimeintervalsof30min,thesolutionwas sampledandcentrifugedtoremovethecatalysts.Theconcentra- tionofanilinewithinthecentrifugedsolutionwasdeterminedby acolorimetricmethod.Thedetectionlimitmethodwasestimated tobe1.6mg/L.
2.5. Thecolorimetricmethod
TheKHSO4(50g/L),NaNO2(50g/L),NH3SO3NH2(25g/L)andN- (1-Naphthyl)ethylenediaminedihydrochloride(20g/L)solutions werepreparedin 50mLconicalflasks, respectively.1mLofthe photodegraded(centrifuged)solutionand9mLofdeionizedwater wereintroducedintothe25mLtesttubewithaglassstopper,then 1mLofKHSO4 solutionwasaddedtothesolution.Afterthat,a dropofNaNO2solutionwasintroducedintothesolution.Finally theNH3SO3NH2solutionwasusedtowipeouttheNaNO2excessby addingintotheabovemixtureuntilauniformsolutionwasformed.
Afterbubbles wereentirelywiped out, 1mLof N-(1-Naphthyl) ethylenediaminedihydrochloridechromogenicagentwasadded andthesolutionwasdilutedto25mLwithdeionizedwater.The absorbanceoftheanilinesolutionwasthendetectedby1cmcell at545nmonaUV–visspectroscopyafter30min.
2.6. Photo-electrochemicalexperiments
Topreparetheworkingelectrodes,300mgofthesampleand 20mg2-Naphthol
weregrindedanddispersedinethanoltoformaslurry.Then theslurrywascoatedonFTOconductiveglasssheet.Afterdrying at120◦Cfor2hinvacuum,theworkingelectrodeswereobtained.
Photocurrentmeasurementswerecarriedout ina conventional three-electrodeelectrochemicalworkstation(CHI660E).Ptsheet andAg/AgClelectrodewereusedasthecounterandreferenceelec- trodes,respectively.A0.5MNa2SO4 aqueoussolutionservedas
Fig.1.XRD(A)patternsofthesamplesofCNandCN-BA-X,andFTIRspectra(B)ofthesamplesofCNandCN-BA-2.0.
theelectrolyte.Theirradiatedareaoftheworkingelectrodewas 1cm2.Theintensityoftheincidentlightwas100mW/cm2 (AM 1.5G,300-Wxenonlamp).The320speriodon-and-offphotocur- rentresponsesofCNandCN-BA-2.0sampleswereobtainedat0V biasvsAg/AgCl.
3. Resultsanddiscussion 3.1. XRDandFTIRcharacterization
XRDanalysiswasappliedtocheckthecrystalphaseofCNand CN-BAsamples.AsshowninFig.1A,XRDpatternsofpureCNand BA-dopedCNsamplesshowdistinctdiffractionpeaksat13.0◦and 27.3◦,suggestingthattheBAdopingdoesnotchangetheCNphase structure.Thediffractionpeakat13.0◦wasindexedtothe(100) plane,correspondingtotheinterlayerstructuralofCNsheets.The diffractionpeakat27.3◦wasindexedto(002)plane,thegraphite- likematerial.
FTIRspectra(Fig.1B)wererecordedforCNandCN-BA-2.0sam- ples.Thesimilarstretchpeakswereobserved,suggestingthatthe BAdopingdoesnotalter thecorechemical skeleton integrality ofCN.TypicalstretchmodesofaromaticCNheterocyclesinthe regionof1200–1600cm−1 andbreathingmodeoftheheptazine units(C6N7)at810cm−1wereobservedinbothCNandCN-BA-2.0 samples, confirming the presence of a triazine phase. In addi- tion,wecouldobservethatbroadbandsappear intherangeof 2900–3700cm−1duetotheN HvibrationandH2Omolecules.
3.2. XPScharacterization
XPS measurementswere conducted to get insights intothe chemicalcompositionandchemicalstateoftheelementsinthe BA-dopedCNsamples.AsshowninFig.2A,thesurveyspectraof CN-BA-2.0andCNindicatethepresenceofC,NandOelements withoutothercontaminants, whichconfirmsthattheelemental compositioncorrespondstoCN-BA-2.0andCNsamples.Fig.2B showsthehigh-resolutionC1sspectraofCN-BA-2.0andCNsam- ples.TwopeakswereobservedfortheCNsampleat285.1eVand 288.6eV,correspondingtoC N CandC (N)3,respectively.Com- paredtotheCNsample,thetwopeaksforCN-BA-2.0wereslightly shiftedandlocatedat285.2eVand288.5eV,respectively[39].This slightshiftinthepeaksofCN-BA-2.0isprobablyduetointroduction ofBAintotheframeworkofCN,whichchangesitsbindingenergy.
Fig.2Cpresentsthehigh-resolutionN1sspectraofCN-BA-2.0and CNsamples.Fourpeaksof theCNsamplecan bedistinguished at398.9eV,399.8eV,401.1eVand404.6eV.Thestrongerpeakat 398.9eVwasassignedtotheringnitrogeninthesp2C N Cbonds.
Theweakpeakat399.8eVindicatedthepresenceoftertiarynitro-
genN(C)3groups.Inaddition,thepeakat401.1eVwasattributed tothepresenceofaminogroups(CNH)andthepeakat404.6eV wasassignedtothechargeeffectsorthepositivechargelocaliza- tioninheterocycles[40].Additionally,thepeaksforC N Cbonds andN(C)3groupsofCN-BA-2.0samplewerealsoslightlyshifted, likelyduetotheformationoftri-s-triazinebasedcovalentnetworks throughBAdopedCN[41].Fig.2Dpresentsthehigh-resolution O1sXPSspectraofCN-BA-2.0andCNsamples.Asinglepeakwas observedat532.2eV,whichisinagreementwiththeCN-BA-2.0and CNcomposition.ThispeakwasduetotheH2Ogroupsadsorbedon theCN-BA-2.0surface.AgradualincreaseintheC/Nmolarratio from0.805forpristineCNto0.814forCN-BA-2.0revealsthesuc- cessfulintegrationofBAringsintotheCNnetwork.
3.3. Solid-state13CNMRcharacterization
Solid-state13CNMRspectroscopywasusedtofurthercharacter- izetheBA-dopedCN,asshowninFig.3.Thespectrumclearlyshows theappearanceofanewbroadpeakat97.9ppmfortheCN-BA-2.0 sample,whichindicatesthatBAwasdopedintheCN-conjugated networkbuttheheptazinc-basedstructureofCNdidnotchange [42,43].
3.4. EPRcharacterization
EPR measurements were performedto investigate the elec- tronicbandstructureofCNandBA-dopedCNsamples.Samplesin darkorvisiblelightirradiationshowthepresenceofonlyonesin- gleLorentzianlinecenteredat3146.3Gwithag-valueof2.0034 (Fig.4).Thissuggeststhepresenceofwell-definedsemiconductor properties.TheEPRsignalintensityofCN-BA-2.0is1354,whichis about6timeshigherthaninCN(212).Itwaspreviouslydemon- stratedthattheefficientgenerationofphotochemicalradicalpairs ishighlybeneficialinphotocatalyticdegradationreactions.Inter- estingly,anenhancedEPRsignalwasobservedwhenCNandCN-BA wereirradiatedwithvisiblelight, indicatingan efficientphoto- chemicalgenerationofradicalpairswithinthesemiconductors.
3.5. N2adsorption–desorptionisothermscharacterization
N2adsorption-desorptionmeasurementswerecarriedtoinves- tigatetextualpropertiesofCNandCN-BA-2.0samples.Asshowin Fig.5,samplesexhibitasimilarIVbehaviorwithaH1typehys- teresisloop.Inadditional,theinsetindicatesthattheBETsurface areaofCN-BA-2.0(16.251m2/g)ishigherthaninCN(10.469m2/g).
However,theporesizeofCN-BA-2.0(4.450nm)wascomparable withtheundopedCN(4.458nm).ThissuggeststhattheBETsur- faceareaandtheporesizeofpureCNwereamplifiedanddecreased,
Fig.2.High-resolutionXPSspectraoftheaspreparedCN-BA-2.0andCNsamples:Thesurveyspectra(A),C1s(B),N1s(C)andO1s(D)spectraoftheCN-BA-2.0andCN samples.
Fig.3. Solid-state13CNMRspectraforCNandCN-BA-2.0samples.
respectivelyupondoping.Thesestructuralmodificationsremark- ablyimprovedthephotocatalyticactivityrespecttopureCN.
3.6. UV–visDRScharacterization
UV–visDRSspectraofCNandCN-BA-Xsamplesareshownin Fig.6.Interestingly,CN-BAsamplesshowahigherlight-absorption inthevisiblerangerespecttopureCN.Thiscorrespondstoachange ofthepowdercolorfrombrightyellowtodeeporange(seeinset inFig.6),suggestingthatBAdopinginducedmodificationscould enhancethelight-absorptioninvisiblelightregion.
Fig.4.EPRspectrainthedarkandundervisiblelight(>420nm)forCNandCN- BA-2.0samples.
3.7. SEMandTEMcharacterization
TEMandSEManalyseswereappliedtostudythemorphology andthemicrostructureofCNandCN-BA-2.0samples.Asshown inFig.7A,theSEMimageofCNclearlyshowdenseclumpsand stackedmassiveparticles,whiletheimageofCN-BA-2.0(Fig.7B) showsthatthesampleisconstitutedofalooserlamellarstructure, resultingintheenlargedsurfacearea.Moreover,itcanbeclearly seenfromTEMimagesofCN(Fig.7C)andCN-BA-2.0(Fig.7D)that densestacksinCNskeletontransformintomuchthinnersheets structuresafterBAdoping.
Fig.5.N2adsorption-desorptionisothermsofCNandCN-BA-2.0,theinsetshows thesurfaceandporesizeofCNandCN-BA-2.0samples.
Fig.6.UV–visDRSspectraofthesamplesofCNandCN-BA-X,theinsetistheoptical pictureofas-preparedCN-BA-Xsamples.
3.8. PhotocatalyticactivityandstabilityofCNandCNdopedofBA ThephotocatalyticpropertiesofCNandCN-BAsampleswere evaluatedbystudyingthedegradationofanilineinaqueoussolu- tion under simulated sunlight irradiation. Experimental results arereported inFig.8.Asshown in Fig.8A,BA-dopedCN sam- plesshowedahigherphotocatalytic activityrespecttoCN;this may be resulted from the enhanced surface area and optical absorbance and the reduction of the recombination of photo- generatedelectron-holepairs.Meanwhile,theCN-BA-2.0shows thehighestphotocatalyticactivityforthedegradationofaniline.
AsthemassfractionofBAwasincreasedover2.0,adecreaseinthe photocatalyticactivityofCN-BAwasobserved.Theprobablereason forthisisthatatoohighBAdopingcouldleadtohigherrecombi- nationofphoto-generatedelectron-holepairs,whichcancelsthe beneficialeffectduetothehighersurfaceareaandwideroptical absorbance.Fig.8Bshowstemporalabsorbancespectraandoptical chromogenicimagesofaqueousanilinewhichgiveadirectestima- tionoftheanilineconcentrationwithinthesolution.Thetypical absorptionpeak ofthechromogenicanilineaqueoussolutionat 545nmgraduallydecreaseswiththesimulatedsunlightirradiation time;thisisassociatedwithagradualcolorchangeofthesolution fromdarkpurpletotransparent.
Tofurtherinvestigatethephotocatalyticreactionofdegrada- tionofaniline,thereactionkineticsofdegradationofanilinewas conducted,andthekineticequationofanilinedegradationshows
afirst-orderkineticmodel(Eq.(1))accordingtothekineticlinear curves.
R=dC dt = kKC
1+KC (1)
WhereRisthedegradationrateofthereactant(mg•L−1•min−1), Candtrepresenttheconcentrationofthereactant(mg•L−1)and theirradiationtime,respectively.Meanwhile,kandKrepresentthe reactionrateconstant(mg•L−1•min−1)andtheadsorptioncoef- ficientof reactant(L•mg−1).WhiletheEq.(1) waschanged the first-orderkineticmodelthroughsimplifiedwhentheinitialcon- centration(C0)wasverylow.Specificasfollow:
lnC0
C =kKt=Kappt (2)
WhereKapp istheapparentfirst-orderrateconstant(min−1).As showninFig.9Aand9B,theapparentfirst-orderrateconstantorder ofBAdopedCNsampleswasCN-BA-2.0>CN-BA-3.0>CN-BA-1.0>
CN-BA-0.5>CN-BA-0.2>CN.ItwasfoundthatCN-BA-2.0showsthe highestapparentfirst-orderrateconstant(0.02189min−1),which isabout6timeshigherthanthatofpristineCN(0.00293min−1).
Photo-electrochemicalexperimentswereperformedtoinvesti- gatetheabilityoftheas-preparedsamplesforphotoinducedcharge carriersgenerationandseparation. ItcanbeseenfromFig.10A thatpureCNexhibitslowerphotocurrentintensitythanCN-BA- 2.0sample,indicatingthattherewasefficientphotoinducedcharge generation after BAwas doped into pureCN.Additionally, the higherphotocurrentintensityindicatesbetterseparationefficiency ofelectronsandholes[44].Therefore,theresultclearlyrevealed thatBAdopedinCNframeworkcansignificantlyenhancethesep- arationofphoto-generatedelectron-holepair.
Itisveryimportanttoevaluatethestabilityofphotocatalystsfor practicalapplications.Therefore,wecarriedoutrepeatedphotocat- alyticexperimentswithCN-BA-2.0foranilinedegradationunder thesameconditions.AsshownFig.10B,thephotocatalyticactiv- ityofCN-BA-2.0sampleisslightlydeactivatedafterfivesuccessive cyclesofphotodegradationofaniline,whichindicatesthatthepho- tocatalysthasgoodstabilityundersimulatedsunlightirradiation.
3.9. Freeradicalandholescavengingexperiments
Inthephotocatalyticoxygenprocess,aseriesofreactiveoxy- gen species, suchas •OH, •O2−, h+ or H2O2 weresupposed to beinvolved.Todistinguishthereactiveoxy-radical,thetrapping experimentsandreactiveradicalqualitativedetectionwerecon- ducted. In the trapping experiment, isopropanol (IPA), N2 and ammoniumoxalate(AO)wereservedasthehydroxylradical(•OH) scavenger,superoxideradical(•O2−)scavengerandhole(h+)scav- enger,respectively[45].Itcanbeseen(Fig.11A)thattheaddition ofIPA,N2andAOintheanilinesolutionhasstrongadverseeffect onthephotocatalyticactivityofCN-BAsamples,suggestingthat
•OH, •O2− andh+ maybethemain oxygenspeciesinthepho- tocatalyticoxygenprocess.Thestrongesthinderingeffectonthe photocatalyticactivityinthoseoxygenspeciesis•O2−>•OH>h+, suggestingthatthe•OHwasgeneratedfromtheindependentreac- tionof•O2− orh+.Forfurtherunderstandingthephotocatalytic oxygenprocess,theradicalspeciesweredetectedbytheEPRtest, asshowninFig.11B−11D.FromFig.11B,theresultsrevealed thattheintensityof•O2− signalsoftheCNandCN-BA-2.0sam- ples increasedundervisiblelight irradiation,whichis indicates that theCNand CN-BA-2.0samples generatethe •O2− radicals undervisiblelightirradiation.FromFig.11C,itcanbeclearlyfound thatthe•OHsignalscanonlybeobservedintheCN-BA-2.0test- ingsystemsundervisiblelightirradiation.Inadditional,thesinglet oxygenradical(1O2)signals(Fig.11D)wasfoundinbothCNand CN-BA-2.0testingsystems undervisiblelightirradiation,which
suggeststhatthe•O2−radicalswouldtranslatedto[1]O2andH2O2 (2•O2−+2H+→1O2+H2O2).Basedonthetrappingandradicalqual- itativeexperiments,sometranslatedto•OHandsomeofthe•O2− translatedto[1]O2+H2O2,while theh+ maytransferto•OH or
oxidetheanilinedirectly.Therefore,accordingtotheabovediscus- sion,theproposedphotocatalyticmechanismofCN-BAwasgiven andshown inFig.12.Under visiblelightirradiation,theCN-BA wasexcitedandcouldgenerateelectron-hole pairs.Thephoto-
Fig.7.TheSEMandTEMimagesoftheCNsample(AandC)andtheCN-BA-2.0sample(BandD).
Fig.8.ThephotocatalyticactivitiesofthesamplesofCNandCN-BA-X(A)andtheabsorbancespectrumchangesofanilineinthepresenceofCN-BA-2.0(B),theinsetisthe colorchangeofanilineinthepresenceofCN-BA-2.0.
Fig.9.Kineticstudiesofanilinedegradation(A)andthebargraph(B)oftheapparentrateconstantsofCNandCN-BA-X.
Fig.10.TransientphotocurrentresponseofCN-BA-2.0andCNsamples(A);therepeatedphotocatalyticexperimentsofCN-BA-2.0foranilinedegradationundersimulated sunlightirradiation(B).
Fig.11.Thetrappingexperimentresults(A)ofCN-BA-2.0andtheEPRspectraofthe•O2−radical(B),the•OHradical(C),andthesingletoxygenradical(1O2)(D)ofCNand CN-BA-2.0samples.
generatedelectronswouldreactwiththemolecularoxygentoform
•O2−andthensomeofthe•O2−translateto•OH,whichfurther oxideaniline.Thephoto-generatedholecanfurthertransferto•OH oroxideanilinedirectly.
4. Conclusion
TheBA-dopedCNnanostructurephotocatalystsweresuccess- fullysynthesizedbycopolymerizingdicyandiamidewithbarbituric acid (BA). The BA doped CN samples exhibited the improved morphologyof nanostructure, suppressedrecombination ofthe photo-generatedelectron-holepairsandhighsunlightabsorption.
ThesepropertiesmaketheBA-dopedCNsamplesasahigh-efficient photocatalyticmaterialtodegradeaniline.Theresultofdegrada- tionanilineindicatedthatthebestsample(CN-BA-2.0)shownthe dyedanilinesolutionchangedgraduallyfromdarkpurpletowhite
after2hundersimulatedsunlight (Xelamp)irradiation.Mean- while,thereactionrateconstantofthebestsample(CN-BA-2.0) increased6-foldforphoto-degradationofanilinecomparedtothe pureCNsample.Inphotocatalyticoxidationreactionprocess,the
•O2−/•OOHradicalplaysakeyroleandisfavorableforthepho- tocatalyticdegradationofaniline.It isensurethatweprovidea simpleandpracticalroutetoimprovethephotocatalyticactivityof pureCNthroughCNdopedBA.
AuthorContributions
L.L., ZH.C. and X.W. designed the experiments. L.L., Z.C., performedthefabricationexperimentsandelectrochemicalmea- surements. ZH.C. and X.W. supervised the project. L.L., QG.M., HQ.L., LL.S., YG.Z., Z.Z.,ZH.C., MZ.Y., R.N.,JM.L., GF.Z., and X.W.
discussedtheresults,performeddataanalysisandcontributedto
Fig.12.ThemechanismoftheBA-dopedCNsamplesphotodegradedaniline.
manuscriptwriting.Alltheauthorsreviewedandcommentedon themanuscript.
Acknowledgment
The authors acknowledge the financial support from the NSFC (Grant No. 51602111), the National Key R&D Pro- gramof China(2016YFB0401502), Guangdong ProvincialGrant (2015A030310196,2014B090915005),GuangdongProvincialSci- enceandTechnologyProject(2017A050506009),thePearlRiver S&T Nova Program of Guangzhou (201506040045), the Hun- dred Talent Programof Chinese Academy Sciences (QG Meng), Guangzhou Post-doctoral Initial Funding and the National 111 Project (ZH Chen), Nansha Science and Technology Project (2016GJ005).
References
[1]H.Tang,J.Li,Y.Bie,L.Zhu,J.Zou,Photochemicalremovalofanilineinaqueous solutions:switchingfromphotocatalyticdegradationtophoto-enhanced polymerizationrecovery,J.Hazard.Mater175(2010)977–984.
[2]W.S.Chen,C.P.Huang,Mineralizationofanilineinaqueoussolutionby electro-activatedpersulfateoxidationenhancedwithultrasound,Chem.Eng.
J.266(2015)279–288.
[3]J.Anotai,M.C.Lu,P.Chewpreecha,KineticsofanilinedegradationbyFenton andelectro-Fentonprocesses,WaterRes.40(2006)1841–1847.
[4]L.Sánchez,J.Peral,X.Domènech,Anilinedegradationbycombined photocatalysisandozonation,Appl.Catal.B-Environ.19(1998)59–65.
[5]A.Kumar,N.Mathur,PhotocatalyticoxidationofanilineusingAg+-loaded TiO2suspensions,Appl.Catal.A-Gen.275(2004)189–197.
[6]R.Hu,X.Wang,S.Dai,D.Shao,T.Hayat,A.Alsaedi,Applicationofgraphitic carbonnitridefortheremovalofPb(II)andanilinefromaqueoussolutions, Chem.Eng.J.260(2015)469–477.
[7]W.Xiao,P.Zhou,X.Mao,D.Wang,Ultrahighaniline-Removalcapacityof hierarchicallystructuredlayeredmanganeseoxides:trappinganiline betweeninterlayers,J.Mater.Chem.A3(2015)8676–8682.
[8]S.G.Pati,K.Shin,M.Skarpeli-Liati,J.Bolotin,S.N.Eustis,J.C.Spain,T.B.
Hofstetter,Carbonandnitrogenisotopeeffectsassociatedwiththe dioxygenationofanilineanddiphenylamine,Environ.Sci.Technol.46(2012) 11844–11853.
[9]X.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,J.M.Carlsson,K.Domen, M.Antonirtti,Ametal-freepolymericphotocatalystforhydrogenproduction fromwaterundervisiblelight,Nat.Mater.8(2009)76–80.
[10]G.Algara-Siller,N.Severin,S.Y.Chong,T.Björkman,R.G.Palgrave,A.Laybourn, M.Antonietti,Y.Z.Khimyak,A.V.Krasheninnikov,J.P.Rabe,U.Kaiser,A.I.
Cooper,A.Thomas,M.J.Bojdys,Triazine-Based,graphiticcarbonnitride:a two-Dimensionalsemiconductor,Angew.Chem.Int.Ed.53(2014)1–6.
[11]Y.S.Jun,J.Park,S.U.Lee,A.Thomas,W.H.Hong,G.D.Stucky,
Three-Dimensionalmacroscopicassembliesoflow-Dimensionalcarbon nitridesforenhancedhydrogenevolution,Angew.Chem.Int.Ed.125(2013) 11289–11293.
[12]Q.Cui,J.Xu,X.Wang,L.Li,M.Antonietti,M.Shalom,Phenyl-Modifiedcarbon nitridequantumdotswithdistinctphotoluminescencebehavior,Angew.
Chem.Int.Ed.55(2016)3672–3676.
[13]D.M.Chen,J.J.Yang,H.Ding,Synthesisofnanoporouscarbonnitrideusing calciumcarbonateastemplateswithenhancedvisible-lightphotocatalytic activity,Appl.Surf.Sci.391(2017)384–391.
[14]H.Lan,L.Li,X.An,F.Liu,C.Chen,H.Liu,J.Qu,Microstructureofcarbonnitride affectingsynergeticphotocatalyticactivity:hydrogenbondsvs.structural defects,Appl.Catal.B-Environ.204(2017)49–57.
[15]L.Lin,H.Ou,Y.Zhang,X.Wang,Tri-s-triazine-Basedcrystallinegraphitic carbonnitridesforhighlyefficienthydrogenevolutionphotocatalysis,ACS Catal.6(2016)3921–3931.
[16]M.R.Gholipour,F.Beland,T.O.Do,Post-Calcinedcarbonnitridenanosheetsas anefficientphotocatalystforhydrogenproductionundervisiblelight irradiation,ACSSustainableChem.Eng.5(2017)213–220.
[17]Z.Zhang,Y.J.Zhang,L.H.Lu,Y.J.Si,S.Zhang,Y.Chen,K.Dai,P.Duan,L.M.
Duan,J.H.Liu,Graphiticcarbonnitridenanosheetforphotocatalytichydrogen production:theimpactofmorphologyandelementcomposition,Appl.Surf.
Sci.391(2017)369–375.
[18]L.Shi,L.Liang,F.X.Wang,M.S.Liu,K.L.Chen,K.N.Sun,N.Q.Zhang,J.M.Sun, Higheryieldurea-derivedpolymericgraphiticcarbonnitridewith mesoporousstructureandsuperiorvisible-light-responsiveactivity,ACS SustainableChem.Eng.3(2015)3412–3419.
[19]Q.Gu,H.M.Sun,Z.Y.Xie,Z.W.Gao,C.Xue,MoS2-coatedmicrospheresof self-sensitizedcarbonnitrideforefficientphotocatalytichydrogengeneration undervisiblelightirradiation,Appl.Surf.Sci.396(2017)1808–1815.
[20]Z.Lin,X.Wang,Nanostructureengineeringanddopingofconjugatedcarbon nitridesemiconductorsforhydrogenphotosynthesis,Angew.Chem.Int.Ed.
52(2013)1735–1738.
[21]Q.J.Fan,J.J.Liu,Y.C.Yu,S.L.Zuo,B.S.Li,Asimplefabricationforsulfurdoped graphiticcarbonnitrideporousrodswithexcellentphotocatalyticactivity degradingRhBdye,Appl.Surf.Sci.391(2017)360–368.
[22]B.Chai,J.T.Yan,C.L.Wang,Z.D.Ren,Y.C.Zhu,Enhancedvisiblelight photocatalyticdegradationofRhodamineBoverphosphorusdopedgraphitic carbonnitride,Appl.Surf.Sci.391(2017)376–383.
[23]S.S.Yi,J.M.Yan,B.R.Wulan,S.J.Li,K.H.Liu,Q.Jiang,Noble-metal-freecobalt phosphidemodifiedcarbonnitride:anefficientphotocatalystforhydrogen generation,Appl.Catal.B-Environ.200(2017)477–483.
[24]S.N.Guo,Y.Zhu,Y.Y.Yan,Y.L.Min,J.C.Fan,Q.J.Xu,Holeystructuredgraphitic carbonnitridethinsheetswithedgeoxygendopingviaphoto-Fenton reactionwithenhancedphotocatalyticactivity,Appl.Catal.B-Environ.185 (2016)315–321.
[25]S.Guo,Z.Deng,M.Li,B.Jiang,C.Tian,Q.Pan,H.Fu,Phosphorus-Dopedcarbon nitridetubeswithalayeredmicronanostructureforenhancedvisible-Light photocatalytichydrogenevolution,Angew.Chem.Int.Ed.128(2016) 1862–1866.
[26]Y.Kofuji,S.Ohkita,Y.Shiraishi,H.Sakamoto,S.Tanaka,S.Ichikawa,T.Hirai, Graphiticcarbonnitridedopedwithbiphenyldiimide:efficientphotocatalyst forhydrogenperoxideproductionfromwaterandmolecularoxygenby sunlight,ACSCatal.6(2016)7021–7029.
[27]P.-W.Chen,K.Li,Y.-X.Yu,W.-D.Zhang,Cobalt-dopedgraphiticcarbonnitride photocatalystswithhighactivityforhydrogenevolution,Appl.Surf.Sci.392 (2017)608–615.
[28]M.Y.Ye,Z.H.Zhao,Z.F.Hu,L.Q.Liu,H.M.Ji,Z.R.Shen,T.Y.Ma,0D/2D heterojunctionsofvanadatequantumDots/Graphiticcarbonnitride nanosheetsforenhancedvisible-Light-Drivenphotocatalysis,Angew.Chem.
Int.Ed.129(2017)1–6.
[29]G.Liu,G.Zhao,W.Zhou,Y.Liu,H.Pang,H.Zhang,D.Hao,X.Meng,P.Li,T.
Kako,J.Ye,Insitubondmodulationofgraphiticcarbonnitridetoconstruct p?nhomojunctionsforenhancedphotocatalytichydrogenproduction,Adv.
Funct.Mater.37(2016)6822–6829.
[30]J.Zhang,M.Zhang,R.Q.Sun,X.Wang,Afacilebandalignmentofpolymeric carbonnitridesemiconductorstoconstructisotypeheterojunctions,Angew.
Chem.Int.Ed.124(2012)10292–10296.
[31]Y.Chen,J.S.Zhang,M.W.Zhang,X.C.Wang,Molecularandtextural engineeringofconjugatedcarbonnitridecatalystsforselectiveoxidationof alcoholswithvisiblelight,Chem.Sci.4(2013)3244–3248.
[32]Z.Chen,P.Sun,B.Fan,Q.Liu,Z.Zhang,X.Fang,Texturalandelectronic structureengineeringofcarbonnitrideviadopingwith–deficientaromatic pyridineringforimprovingphotocatalyticactivity,Appl.Catal.B-Environ.
170–171(2015)10–16.
[33]J.Xu,L.Zhang,R.Shi,Y.Zhu,Chemicalexfoliationofgraphiticcarbonnitride forefficientheterogeneousphotocatalysis,J.Mater.Chem.A1(2013) 14766–14772.
[34]M.Zhang,X.Wang,Twodimensionalconjugatedpolymerswithenhanced opticalabsorptionandchargeseparationforphotocatalytichydrogen evolution,Energ.Environ.Sci.7(2014)1902–1906.
[35]J.Zhang,M.Zhang,S.Lin,X.Fu,X.Wang,Moleculardopingofcarbonnitride photocatalystswithtunablebandgapandenhancedactivity,J.Catal.310 (2014)24–30.
[36]L.Ge,C.Han,J.Liu,Novelvisiblelight-inducedg-C3N4/Bi2WO6composite photocatalystsforefficientdegradationofmethylorange,Appl.Catal.
B-Environ.108–109(2011)100–107.
[37]Q.Xiang,J.Yu,M.Jaroniec,Preparationandenhancedvisible-Light photocatalyticH2-ProductionactivityofGraphene/C3N4composites,J.Phys.
Chem.C115(2011)7355–7363.
[38]J.S.Zhang,X.Chen,K.Takanabe,K.Maeda,K.Domen,J.D.Epping,X.Fu,M.
Antonietti,X.Wang,Synthesisofacarbonnitridestructureforvisible-Light catalysisbycopolymerization,Angew.Chem.Int.Ed.122(2010)451–454.
[39]B.Chai,T.Peng,J.Mao,K.Li,L.Zan,Graphiticcarbonnitride
(g-C3N4)-Pt-TiO2nanocompositeasanefficientphotocatalystforhydrogen productionundervisiblelightirradiation,Phys.Chem.Chem.Phys.14(2012) 16745–16752.
[40]J.Liu,Y.Liu,N.Liu,Y.Han,X.Zhang,H.Huang,Y.Lifshitz,S.T.Lee,J.Zhong,Z.
Kang,Metal-freeefficientphotocatalystforstablevisiblewatersplittingviaa two-electronpathway,Science347(2015)970–974.
[41]J.N.Qin,S.B.Wang,H.Ren,Y.D.Hou,X.C.Wang,Photocatalyticreductionof CO2bygraphiticcarbonnitridepolymersderivedfromureaandbarbituric acid,Appl.Catal.B-Environ.179(2015)1–8.
[42]J.S.Zhang,X.Chen,K.Takanabe,K.Maeda,K.Domen,J.D.Epping,X.Fu,M.
Antonietti,X.Wang,Synthesisofacarbonnitridestructureforvisible-Light catalysisbycopolymerization,Angew.Chem.Int.Ed.122(2010)451–454.
[43]B.V.Lotsch,M.Döblinger,J.Sehnert,L.Seyfarth,J.Senker,O.Oeckler,W.
Schnick,Unmaskingmelonbyacomplementaryapproachemploying
electrondiffraction,solid-StateNMRspectroscopy,andtheoretical calculations-Structuralcharacterizationofacarbonnitridepolymer,Chem.
Eur.J.13(2007)4969–4980.
[44]B.Y.Peng,S.S.Zhang,S.Y.Yang,H.J.Wang,H.Yu,S.Q.Zhang,F.Peng,Synthesis andcharacterizationofg-C3N4/Cu2Ocompositecatalystwithenhanced photocatalyticactivityundervisiblelightirradiation,Mater.Res.Bull.56 (2014)19–24.
[45]Y.Cui,Z.Ding,P.Liu,M.Antonietti,X.Fu,X.Wang,Metal-freeactivationof H2O2byg-C3N4undervisiblelightirradiationforthedegradationoforganic pollutants,Phys.Chem.Chem.Phys.14(2012)1455–1462.