• Tidak ada hasil yang ditemukan

63

64

References

1. Wennersten, R., Sun, Q. and Li, H., 2015. The future potential for Carbon Capture and Storage in climate change mitigation–an overview from perspectives of technology, economy and risk. Journal of Cleaner Production, 103, pp.724-736.

2. Li, X., Liang, X., Lu, R., Shen, X., Lin, X. and Zhu, H., 2012. Securing smart grid:

cyber-attacks, countermeasures, and challenges. IEEE Communications Magazine, 50(8), pp.38-45.

3. Farhangi, H., 2010. The path of the smart grid," iEEE Power and Energy Magazine, vol. 8, no. 1.

4. Tsoukalas, L.H. and Gao, R., 2008, April. From smart grids to an energy internet:

Assumptions, architectures and requirements. In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (pp. 94- 98). IEEE.

5. Faruqui, A., Mitarotonda, D., Wood, L., Cooper, A. and Schwartz, J., 2011. The costs and benefits of smart meters for residential customers. White Paper, July.

6. De Geeter, A. and Boute, A., 2006. Directive 2006/32/E.C. on Energy End-Use Efficiency and Energy Services: Realising the Transition to Sustai nable Energy Markets?. Journal for European Environmental & Planning Law, 3(5), pp.414-431.

7. Covrig, C.F., Ardelean, M., Vasiljevska, J., Mengolini, A., Fulli, G., Amoiralis, E., Jiménez, M.S. and Filiou, C., 2014. Smart grid projects outlook 2014. Joint Research Centre of the European Commission: Petten, The Netherlands.

8. Zhou, K., & Yang, S. (2016). Understanding household energy consumption behavior: The contribution of energy big data analytics. Renewable and Sustainable Energy Reviews, 56, 810-819.

9. Goh, T., & Ang, B. W. (2019). Tracking economy-wide energy efficiency using LMDI: approach and practices. Energy Efficiency, 12(4), 829-847.

10. Cheng, C.H., Chen, Y.S., Sangaiah, A.K. and Su, Y.H., 2018. Evidence-based personal applications of medical computing models in risk factors of cardiovascular disease for the middle-aged and elderly. Personal and Ubiquitous Computing, 22(5), pp.921-936.

65 11. Ruellan, M., Park, H. and Bennacer, R., 2016. Residential building energy demand and thermal comfort: Thermal dynamics of electrical appliances and their impact. Energy and Buildings, 130, pp.46-54.

12. Fleury, A., Vacher, M. and Noury, N., 2009. SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE transactions on information technology in biomedicine, 14(2), pp.274-283.

13. Al-Omar, B., Al-Ali, A. R., Ahmed, R., & Landolsi, T. (2012). Role of information and communication technologies in the smart grid. Journal of Emerging Trends in Computing and Information Sciences, 3(5), 707-716.

14. Ford, R., Pritoni, M., Sanguinetti, A., & Karlin, B. (2017). Categories and functionality of smart home technology for energy management. Building and environment, 123, 543-554

15. Shafie-Khah, M., Javadi, S., Siano, P., & Catalão, J. P. S. (2017, June). Optimal behavior of smart households facing with both price-based and incentive-based demand response programs. In 2017 IEEE Manchester PowerTech (pp. 1-6). IEEE..

16. Nägele, F., Kasper, T., & Girod, B. (2017). Turning up the heat on obsolete thermostats: A simulation-based comparison of intelligent control approaches for residential heating systems. Renewable and Sustainable Energy Reviews, 75, 1254- 1268.

17. Beaudin, M., & Zareipour, H. (2017). Home Energy Management Systems: A Review of Modelling and Complexity. In Energy Solutions to Combat Global Warming (pp. 753-793). Springer, Cham.

18. Deng, R., Yang, Z., Hou, F., Chow, M. Y., & Chen, J. (2014). Distributed real-time demand response in multiseller–multibuyer smart distribution grid. IEEE Transactions on Power Systems, 30(5), 2364-2374.

19. Abdulaal, A., & Asfour, S. (2016). A linear optimization based controller method for real-time load shifting in industrial and commercial buildings. Energy and Buildings, 110, 269-283

66 20. Deng, R., Yang, Z., Chen, J., Asr, N. R., & Chow, M. Y. (2014). Residential energy consumption scheduling: A coupled-constraint game approach. IEEE Transactions on Smart Grid, 5(3), 1340-1350.

21. Sembroiz, D., Careglio, D., Ricciardi, S., & Fiore, U. (2019). Planning and operational energy optimization solutions for smart buildings. Information Sciences, 476, 439-452.

22. Chen, Y. D., Azhari, M. Z., & Leu, J. S. (2018, April). Design and implementation of a power consumption management system for smart home over fog-cloud computing.

In 2018 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG) (pp. 1-5). IEEE.

23. Woolf, P.J. and Wang, Y., 2000. A fuzzy logic approach to analyzing gene expression data. Physiological Genomics, 3(1), pp.9-15.

24. Javed, A., Larijani, H., Ahmadinia, A., & Gibson, D. (2016). Smart random neural network controller for HVAC using cloud computing technology. IEEE Transactions on Industrial Informatics, 13(1), 351-360.

25. Qayyum, N., Amin, A., Jamil, U., & Mahmood, A. (2019, January). Optimization Techniques for Home Energy Management: A Review. In 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-7). IEEE.

26. Rasheed, M.B.; Javaid, N.; Ahmad, A.; Khan, Z.A.; Qasim, U.; Alrajeh, N. An efficient power scheduling scheme for residential load management in smart homes.

Appl. Sci. 2015, 5, 1134–1163.

27. Yun, J.;Won, K.H. Building Environment Analysis based on Temperature and Humidity for Smart Energy Systems. Sensors 2012, 12, 13458–13470.

28. Faruqui, A.; Sergici, S. Household response to dynamic pricing of electricity: A survey of 15 experiments.J. Regul. Econ. 2010, 38, 193–225.

29. Grygierek, K.; Ferdyn-Grygierek, J. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings. Sensors 2018, 18, 1144.

67 30. Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Webber, M. E., Gibescu, M., and Slootweg, J. G. (2018). Online building energy optimization using deep reinforcement learning. IEEE Transactions on Smart Grid. (Accepted).

31. Zeng, P., Li, H., He, H., and Li, S. (2018). Dynamic Energy Management of a Microgrid using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning. IEEE Transactions on Smart Grid. (Accepted).

32. Hafeez G, Wadud Z, Khan IU, Khan I, Shafiq Z, Usman M, et al. Efficient energy management of IoT-enabled smart homes under price-based demand response program in smart grid. Sensors (Switzerland). 2020;20(11).

33. Mshali H, Lemlouma T, Moloney M, Magoni D. A survey on health monitoring systems for health smart homes. Int J Ind Ergon [Internet]. 2018;66:26–56. Available from: https://doi.org/10.1016/j.ergon.2018.02.002

34. Gonzalez-Briones A, Hernandez G, Pinto T, Vale Z, Corchado JM. A Review of the main machine learning methods for predicting residential energy consumption. Int Conf Eur Energy Mark EEM. 2019;2019-Septe.

35. Pallonetto F, De Rosa M, D’Ettorre F, Finn DP. On the assessment and control optimisation of demand response programs in residential buildings. Renew Sustain Energy Rev [Internet]. 2020;127(December 2019):109861. Available from:

https://doi.org/10.1016/j.rser.2020.109861

36. Sattarpour T, Nazarpour D, Golshannavaz S. A multi-objective HEM strategy for smart home energy scheduling: A collaborative approach to support microgrid operation. Sustain Cities Soc [Internet]. 2018;37(September 2017):26–33. Available from: http://dx.doi.org/10.1016/j.scs.2017.09.037

37. Fong S, Li J, Song W, Tian Y, Wong RK, Dey N. Predicting unusual energy consumption events from smart home sensor network by data stream mining with misclassified recall. J Ambient Intell Humaniz Comput [Internet]. 2018;9(4):1197–

221. Available from: http://dx.doi.org/10.1007/s12652-018-0685-7

38. Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J. and Zakeri, B., 2020. Internet of Things (IoT) and the energy sector. Energies, 13(2), p.494.

39. (Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J. and Zakeri, B., 2020. Internet of Things (IoT) and the energy sector. Energies, 13(2), p.494.)

68 40. (Corlu, C.G., de la Torre, R., Serrano-Hernandez, A., Juan, A.A. and Faulin, J., 2020.

Optimizing energy consumption in transportation: Literature review, insights, and research opportunities. Energies, 13(5), p.1115.)

41. (Shah, A.S., Nasir, H., Fayaz, M., Lajis, A. and Shah, A., 2019. A review on energy consumption optimization techniques in IoT based smart building environments.

Information, 10(3), p.108.)

42. Baig, F., Beg, S., & Khan, M. F. (2012). Controlling Home Appliances Remotely through Voice Command. arXiv preprint arXiv:1212.1790.

43. Blessing, L. T. M., Chakrabarti, A., & Wallace, K. M. M. (1995, August). A design research methodology.In Proceedings of the 10th International Conference on Engineering Design (ICED'95) (Vol. 23, pp. 50-55). Heurista.

44. Shaalan, H. E. (2003). Generation of electric power. Handbook of electric power calculation, 3rd ed.McGraw-Hill.

45. Sou, K. C., Weimer, J., Sandberg, H., & Johansson, K. H. (2011, December).

Scheduling smart home appliances using mixed integer linear programming.

InDecision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on (pp. 5144-5149). IEEE.

46. Rashidifar, R. (2020). Leaning Lean: A Case of Reengineering in the Automotive Industry.

47. Himeur, Y., Alsalemi, A., Al-Kababji, A., Bensaali, F., & Amira, A. (2020). Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations. Information Fusion, 64, 99-120.

48. Metallidou, C. K., Psannis, K. E., & Egyptiadou, E. A. (2020). Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access, 8, 63679-63699.

49. Benavente-Peces, C., & Ibadah, N. (2020). Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers. Energies, 13(13), 3497.

50. King, J., & Perry, C. (2017). Smart buildings: Using smart technology to save energy in existing buildings. Amercian Council for an Energy-Efficient Economy.

69 51. Ilbeigi, M., Ghomeishi, M., & Dehghanbanadaki, A. (2020). Prediction and Optimization of Energy Consumption in an Office Building Using Artificial Neural Network and a Genetic Algorithm. Sustainable Cities and Society, 102325.

52. Y. T. Lee, W. H. Hsiao, C. M. Huang and S. C. T. Chou, "An integrated cloud-based smart home management system with community hierarchy," IEEE Trans. Consumer Electron, vol. 62, no. 1, pp. 1-9, Feb. 2016.

53. E. Rodriguez-Diaz, J. C. Vasquez and J. M. Guerrero, "Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together,"

IEEE Consumer Electron. Magazine, vol. 5, no. 1, pp. 74-80, Jan. 2016.

54. D. S. Kim, S. Y. Son and J. Lee, "Developments of the in-home display systems for residential energy monitoring," IEEE Trans. Consumer Electron, vol. 59, no. 3, pp.

492-498, August 2013.

55. Y. S. Son, T. Pulkkinen, K. D. Moon and C. Kim, "Home energy management system based on power line communication," IEEE Trans. Consumer Electron, vol. 56, no. 3, pp. 1380-1386, Aug. 2010.

56. N. Kushiro, S. Suzuki, M. Nakata, H. Takahara and M. Inoue, "Integrated residential gateway controller for home energy management system," in IEEE Transactions on Consumer Electronics, vol. 49, no. 3, pp. 629-636, Aug. 2003.

57. M. Erol-Kantarci and H. T. Mouftah, "Wireless Sensor Networks for Cost-Efficient Residential Energy Management in the Smart Grid," in IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 314-325, June 2011.

58. T. Fiedler and P. M. Mircea, "Energy management systems according to the ISO 50001 standard — Challenges and benefits," 2012 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, 2012, pp. 1-4.

59. K. Dittawit and F. A. Aagesen, "Home energy management system for electricity cost savings and comfort preservation," 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCEBerlin), Berlin, 2014, pp. 309-313.

60. Pipattanasomporn, M., Kuzlu, M., and Rahman, S., "An algorithm for intelligent home energy management and demand response analysis," IEEE Trans. Smart Grid, Vol. 3, pp. 2166–2173, 2012.

70 61. Di Giorgio, A., and Pimpinella, L., "An event driven smart home controller enabling consumer economic saving and automated demand side management," Appl. Energy, Vol. 96, pp. 92–103, August 2012.

62. Hernandez, S., R. Romero, and D. Giral. 2010. "Optimization of the Use of Residential Lighting with Neural Network." International Conference on Computational Intelligence and Software Engineering (CiSE), Wuhan, December 10–

12, 1–5.

63. Ha, L. D., S. Ploix, E. Zamai, and M. Jacomino. 2006. "Tabu Search for the Optimization of Household Energy Consumption." IEEE International Conference on Information Reuse and Integration, Waikoloa, HI, USA, September 16–18, 86–92.

64. Ahamed, T. P. I., S. D. Maqbool, and N. H. Malik. 2013. "Reinforcement Learning Algorithm for Solving Load Commitment Problem Considering a General Load Model." Journal of Energy and Power Engineering 7: 1150–1162

65. Roy, A., S. K. Das Bhaumik, A. Bhattacharya, K. Basu, D. J. Cook, and S. K. Das.

2003. "Location Aware Resource Management in Smart Homes." Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, Fort Worth, TX, March 26, 481–488.

66. Gudi, N., L. Wang, V. Devabhaktuni, and S. S. S. R. Depuru. 2010. "Demand Response Simulation Implementing Heuristic Optimization for Home Energy Management." North American Power Symposium (NAPS), Urbana-Champaign, U.S., September 26–28, 1–6.

67. Gudi, N., L. Wang, V. Devabhaktuni, and S. S. S. R. Depuru. 2011. "A Demand-side Management Simulation Platform Incorporating Optimal Management of Distributed Renewable Resources." IEEE/PES Power Systems Conference and Exposition (PSCE), Phonix, AZ, USA, March 20–23, 1–7.

68. Wood, G., and M. Newborough. 2003. "Dynamic Energyconsumption Indicators for Domestic Appliances: Environment, Behaviour and Design." Energy and Buildings 35 (8): 821–841

69. Pedrasa, M. A. A., T. D. Spooner, and I. F. MacGill. 2010. "Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services." IEEE Transactions on Smart Grid 1 (2): 134–143.

71 70. Corno, F., and F. Razzak. 2012. "Intelligent Energy Optimization for User Intelligible Goals in Smart Home Environments." IEEE Transactions on Smart Grid 3 (4): 2128–

2135.

71. Ali, S. Q., I. A. T. Parambath, and N. H. Malik. 2013. "Learning Automata Algorithms for Load Scheduling." Electric Power Components and Systems 41 (3):

286–303.

72. Pipattanasomporn, M., M. Kuzlu, and S. Rahman. 2012. "An Algorithm for Intelligent Home Energy Management and Demand Response Analysis." IEEE Transactions on Smart Grid 3 (4): 2166–2173.

73. ADELI, E. and HEDMAN, G., Home Energy Management Systems.

74. Bakay, M.S. and Ağbulut, Ü., 2021. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms. Journal of Cleaner Production, 285, p.125324.

75. Asare-Bediako, B., Kling, W.L. and Ribeiro, P.F., 2012, September. Home energy management systems: Evolution, trends and frameworks. In 2012 47th International Universities Power Engineering Conference (UPEC) (pp. 1-5). IEEE.

76. Asare-Bediako, B., Kling, W.L. and Ribeiro, P.F., 2012, September. Home energy management systems: Evolution, trends and frameworks. In 2012 47th International Universities Power Engineering Conference (UPEC) (pp. 1-5). IEEE.

77. Jouannic, A., 2020. Accelerating the energy transition with Home Energy Management. Delta-EE.

78. LaMarche, J., Cheney, K., Christian, S. and Roth, K., 2017. Home energy management: products & trends. eScholarship, University of California.

79. LaMarche, J., Cheney, K., Akers, C., Roth, K. and Sachs, O., 2012. Home energy displays: consumer adoption and response (No. DOE/GO-102012-3805). National Renewable Energy Lab.(NREL), Golden, CO (United States).

80. Asare-Bediako, B., Kling, W.L. and Ribeiro, P.F., 2012, September. Home energy management systems: Evolution, trends and frameworks. In 2012 47th International Universities Power Engineering Conference (UPEC) (pp. 1-5). IEEE.

81. Jouannic, A., 2020. Accelerating the energy transition with Home Energy Management. Delta-EE.

Dokumen terkait