Fig. 11 Simply supported beam: modal shapes for various values ofλ
References
1. Navier CLMH (1827) Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques. Mem Ac Sc In Fr 7:375–393
2. Poisson CLMH (1828) Mémoire sur l’équilibre et du mouvement des corps élastiques. Mem Ac Sc In Fr 8:357–570
3. Cauchy AL (1829) Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Exer Math 4:293–319
4. Rogula D (1965) Influence of spatial acoustic dispersion on dynamical properties of disloca- tions. Bull Acad Pol Sci Ser Sci Tech 13:337–343
5. Kröner E, Datta BK (1966) Nichtlokal Elastostatik: Ableitung aus der Gittertheorie. Z Phys 196:203–21
6. Kunin IA (1966) Model of elastic medium with simple structure and space dispersion. Prikl Mat Mekh 30:542–550
7. Kröner E (1967) In Mechanics of Generalized Continua: Proceedings of the IUTAM- Symposium on The Generalized Cosserat Continuum and the Continuum. Theory of Dis- locations with Applications, Freudenstadt and Stuttgart (Germany), E Kroner, Editor. Springer Berlin Heidelberg, Berlin, Heidelberg 1968, 330–340
8. Rogula D (1892) Introduction to nonlocal theory of material media. In: Rogula D (ed) Nonlocal theory of material media. CISM courses and lectures, vol 268. Springer, Wien, pp 125–222 9. Lakes RS (1991) Experimental micro mechanics methods for conventional and negative Pois-
sons ratio cellular solids as Cosserat continua. J Eng Mater Tech 113:148–155
10. Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51:303–313
11. Eringen AC (1972) Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10:425–435
12. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710
13. Challamel N, Wang CM (2008) The small length scale effect for a non-local cantilever beam:
a paradox solved. Nanotechnology 19:345703
14. Fernández-Sáez J, Zaera R, Loya JA, Reddy JN (2016) Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved. Int J Eng Sci 99:107–116 15. Romano G, Barretta R, Diaco M, Marotti de Sciarra F (2017) Constitutive boundary conditions
and paradoxes in nonlocal elastic nano-beams. Int J Mech Sci 121:151–156
16. Mahmoud FF (2017) On the non-existence of a feasible solution in the context of the differ- ential form of Eringen’s constitutive model: A proposed iterative model based on a residual nonlocality formulation. Int J Appl Mech 9:17594
17. Benvenuti E, Simone A (2013) One-dimensional nonlocal and gradient elasticity: closed-form solution and size effects. Mech Res Commun 48:46–51
18. Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38:7359–80
19. Pisano AA, Fuschi P (2003) Closed form solution for a nonlocal elastic bar in tension. Int J Solids Struct 40:13–23
20. Marotti de Sciarra F (2008) On non-local and non-homogeneous elastic continua. Int J Solids Struct 46:651–676
21. Borino G, Failla B, Parrinello F (2003) A symmetric nonlocal damage theory. Int J Solids Struct 40:3621–45
22. Polizzotto C, Fuschi P, Pisano AA (2004) A strain-difference-based nonlocal elasticity model.
Int J Solids Struct 41:2383–2401
23. Polizzotto C, Fuschi P, Pisano AA (2006) A non homogeneous nonlocal elasticity model. Eur J Mech A Solids 25:308–333
24. Fuschi P, Pisano AA, Polizzotto C (2019) Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int J Mech Sci 151:661–671
25. Romano G, Barretta R (2017) Nonlocal elasticity in nanobeams: the stress-driven integral model. Int J Eng Sci 115:14–27
26. Apuzzo A, Barretta R, Luciano R, Marotti de Sciarra F, Penna R (2017) Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos Part B 123:105–111
27. Barretta R, Canadija M, Feo L, Luciano R, Marotti de Sciarra F, R Penna R (2018) Exact solutions of inflected functionally graded nano-beams in integral elasticity. Compos Part B 142:273–286
28. Barretta R, Fazelzadeh SA, Feo L, Ghavanloo E, Luciano R (2018) Nonlocal inflected nano- beams: A stress-driven approach of bi-Helmholtz type. Compos Struct 200:239–245 29. Barretta R, Caporale A, Faghidian SA, Luciano R, Marotti de Sciarra F, Medaglia CM (2019)
A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Compos. Part B 164:590–598
30. Barretta R, Fabbrocino F, Luciano R, Marotti de Sciarra F (2018) Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams.
Physica E 97:13–30
31. Di Paola M, Failla G, Pirrotta A, Sofi A, Zingales M (2013) The mechanically based non-local elasticity: an overview of main results and future challenges. Philos T R Soc, A 371:20120433 32. Aifantis EC (1994) Gradient effects at macro, micro and nano scales. J Mech Behav Mater
5:355–375
33. Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35:259–280 34. Tarasov VE, Aifantis EC (2015) Non-standard extensions of gradient elasticity: Fractional
nonlocality, memory and fractality. Commun Nonlinear Sci Numer Simulat 22:197–227 35. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient
theory and its applications in wave propagation. J Mech Phys Solids 78:298–313
36. Di Paola M, Zingales M (2008) Long-range cohesive interactions of nonlocal continuum mechanics faced by fractional calculus. Int J Solids Struct 45:5642–5659
37. Carpinteri A, Cornetti P, Sapora A (2011) A fractional calculus approach to nonlocal elasticity.
Eur Phys J 193:193–204
38. Drapaca CS, Sivaloganathan S (2012) A fractional model of continuum mechanics. J Elast 107:105–123
39. Challamel N, Zorica D, Atanackoviˇc TM, Spasiˇc DT (2013) On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. C R Mécanique 341:298–303 40. Carpinteri A, Cornetti P, Sapora A (2014) Nonlocal elasticity: an approach based on fractional
calculus. Meccanica 49:2551–2569
41. Tarasov VE (2018) No nonlocality. No fractional derivative. Commun Nonlinear Sci Numer Simul 62:157–163
42. Cottone G, Di Paola M, Zingales M (2009) Elastic waves propagation in 1D fractional non-local continuum. Physica E 42:95–103
43. Sapora A, Cornetti P, Carpinteri A (2013) Wave propagation in nonlocal elastic continua mod- elled by a fractional calculus approach. Commun Nonlinear Sci Numer Simul 18:63–74 44. Alotta G, Failla G, Zingales M (2014) Finite element method for a nonlocal Timoshenko beam
model. Finite Elem Anal Des 89:77–92
45. Di Paola M, Failla G, Zingales M (2013) Non-local stiffness and damping models for shear- deformable beams. Eur J Mech A-Solids 40:69–83
46. Alotta G, Failla G, Pinnola FP (2017) stochastic analysis of a nonlocal fractional viscoelastic bar forced by gaussian white noise. ASCE-ASME J Risk Uncertain Eng Syst Part B 3:030904- 030904-7 (2017)
47. Alotta G, Di Paola M, Failla G, Pinnola FP (2018) On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos Part B 137:102–110
48. Di Paola M, Pirrotta A, Zingales M (2010) Mechanically-based approach to non-local elasticity:
variational principles. Int J Solids Struct 47:539–548
49. Failla G, Sofi A, Zingales M (2015) A new displacement-based framework for non-local Tim- oshenko beams. Meccanica 50:2103–2122
50. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces.
J Mech Phys Solids 48:175–209
51. Alotta G, Di Paola M, Pinnola FP, Zingales M (2020) A fractional nonlocal approach to non- linear blood flow in small-lumen arterial vessels. Meccanica 55:891–906
52. Fafalis DA, Filopoulos SP, Tsamasphyros GJ (2012) On the capability of generalized continuum theories to capture dispersion characteristics at the atomic scale. Eur J Mech A/Solids 36:25–37 53. Tsamasphyros GJ, Koutsoumaris CC (2016) Mixed nonlocal-gradient elastic materials with
applications in wave propagation of beams. AIP Conf Proc 1790:150031
54. Mindlin RD (1963) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78 55. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity Int. J
Solids Struct 1:414–438
56. Li L, Li X, Hu Y (2016) Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci 102:77–92
57. Barretta R, Marotti de Sciarra F (2018) Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int J Eng Sci 130:187–198
58. Press WH, Teukolsky SA, Vetterling et al WT (1997) Numerical recipes in fortran 77: the art of scientific computing. Cambridge University Press
59. Fuchs MB (1991) Unimodal beam elements. Int J Solids Struct 27:533–45