This dissertation aimed to discover the relationship between lactic acid bacteria and acrylamide binding capabilities. The research concluded that the examined LAB and bifidobacteria varied in their removal abilities, but all exhibited noteworthy levels of acrylamide removal. The most effective 6 strains selected showed that these bacteria could remove AA under gastrointestinal system conditions and maintain the levels of AA binding. This dissertation, along with the previous studies by other scientists on LAB and their ability to remove toxins, opens the door for using the LAB group and bifidobacteria as food supplements. This dissertation not only suggests the application of the addition of LAB in food to remove acrylamide formation but also that LAB should be added to the ready-to-eat foods (meat, sandwiches, salads) that can be
consumed directly. This could improve the human gut microbiota and reduce the risk of toxin accumulation. Further research is needed in this specific area.
7.1 Research Implications and limitations
The dissertation concluded by confirming the relation between acrylamide and LAB and bifidobacteria, stating that selective strains of LAB and bifidobacteria positively impact acrylamide removal. On repeating the tests and exposing the bacteria to the gastrointestinal system conditions, acrylamide removal was consistent, and the bacteria tolerated a low-pH environment. Further research is needed to study LAB’s ability to remove other groups of toxins in order to select the bacteria that are most effective in removing toxins for use in different applications. Additionally, the selected bacteria can be added to the different stages of food processing (pre, during, and post) to study the impact at each stage. Each stage should be compared to adding bacteria to the digestive system. The enzymatic activity of the bacteria can add value if studied thoroughly.
Several research ideas can be considered, but this dissertation has assuredly added to knowledge and shown that LAB and bifidobacteria can bind to one of the carcinogenic toxins in food.
103
References
Abdelhammid, B. B., Abdelkader, D. B., Abdelkader, M., Ahmed, B., & Mohammed, B. (2019). Acrylamide content in Algerian food and preliminary assessment of acrylamide exposure in Algerian households Acrylamidgehalt in algerischer Nahrung und vorläufige Bewertung der Acrylamidbelastung in algerischen Haushalten. Archiv für Lebensmittelhygiene, 70, 48-55.
Abt, E., Robin, L. P., McGrath, S., Srinivasan, J., DiNovi, M., Adachi, Y., & Chirtel, S.
(2019). Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011-2015 data. Food Additives & Contaminants: Part A, 36(10), 1475-1490.
Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P., & Ayyash, M. (2017).
Characterization of potential probiotic lactic acid bacteria isolated from camel milk [Article]. LWT - Food Science and Technology, 79, 316-325.
https://doi.org/10.1016/j.lwt.2017.01.041
Adunphatcharaphon, S., Petchkongkaew, A., & Visessanguan, W. (2021). In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723. Toxins, 13(4), 286.
Ahn, J. S., Castle, L., Clarke, D. B., Lloyd, A. S., Philo, M. R., & Speck, D. R. (2002).
Verification of the findings of acrylamide in heated foods. Food Additives &
Contaminants, 19(12), 1116-1124.
Akıllıoglu, H. G., & Gökmen, V. (2014). Mitigation of acrylamide and hydroxymethyl furfural in instant coffee by yeast fermentation. Food Research International, 61, 252-256. https://doi.org/https://doi.org/10.1016/j.foodres.2013.07.057
Albedwawi, A. S., Al Sakkaf, R., Yusuf, A., Osaili, T. M., Al-Nabulsi, A., Liu, S.-Q., Palmisano, G., & Ayyash, M. M. (2022). Acrylamide Elimination by Lactic Acid Bacteria: Screening, Optimization, In Vitro Digestion and Mechanism.
Microorganisms, 10(3), 557.
Albedwawi, A. S., Turner, M. S., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Liu, S. Q., Shah, N. P., & Ayyash, M. M. (2021). An overview of microbial
mitigation strategies for acrylamide: Lactic acid bacteria, yeast, and cell-free extracts: Microbial mitigation of acrylamide [Review]. LWT, 143, 111159.
https://doi.org/10.1016/j.lwt.2021.111159
104
Alexandraki, V., Tsakalidou, E., Papadimitriou, K., & Holzapfel, W. (2013). Status and Trend of the Conservation and Sustainable use of Micro-organism in Food Processes. Commission on Genetic Resources for Food and Agriculture. FAO Background Study Paper No. 65. Retrieved from:
https://www.fao.org/3/mg309e/mg309e.pdf. Accessed on 01/02/2022
Alizadeh, A. M., Hosseini, H., Meybodi, N. M., Hashempour-Baltork, F., Alizadeh- Sani, M., Tajdar-oranj, B., Pirhadi, M., & Khaneghah, A. M. (2021). Mitigation of potentially toxic elements in food products by probiotic bacteria: A
comprehensive review. Food Research International, 110324.
https://doi.org/10.1016/j.foodres.2021.110324
Alkalbani, N. S., Turner, M. S., & Ayyash, M. M. (2019). Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage [Article]. Microbial Cell Factories, 18(1), 188.
https://doi.org/10.1186/s12934-019-1239-1
Anese, M., Suman, M., & Nicoli, M. C. (2010). Acrylamide removal from heated foods. Food Chemistry, 119(2), 791-794.
https://doi.org/https://doi.org/10.1016/j.foodchem.2009.06.043
Atabati, H., Abouhamzeh, B., Abdollahifar, M. A., Sadat Javadinia, S., Gharibian Bajestani, S., Atamaleki, A., Raoofi, A., Fakhri, Y., Oliveira, C. A. F., &
Mousavi Khaneghah, A. (2020). The association between high oral intake of acrylamide and risk of breast cancer: An updated systematic review and meta- analysis [Review]. Trends in Food Science and Technology, 100, 155-163.
https://doi.org/10.1016/j.tifs.2020.04.006
Ayyash, M., Abushelaibi, A., Al-Mahadin, S., Enan, M., El-Tarabily, K., & Shah, N.
(2018). In-vitro investigation into probiotic characterisation of Streptococcus and Enterococcus isolated from camel milk [Article]. LWT - Food Science and
Technology, 87, 478-487. https://doi.org/10.1016/j.lwt.2017.09.019
Bahati, P., Zeng, X., Uzizerimana, F., Tsoggerel, A., Awais, M., Qi, G., Cai, R., Yue, T., & Yuan, Y. (2021). Adsorption Mechanism of Patulin from Apple Juice by Inactivated Lactic Acid Bacteria Isolated from Kefir Grains. Toxins, 13(7), 434 Bangar, S. P., Sharma, N., Kumar, M., Ozogul, F., Purewal, S. S., & Trif, M. (2021).
Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Bioscience, 44, 101444.
https://doi.org/10.1016/j.fbio.2021.101444
105 Barišić, V., Flanjak, I., Tot, A., Budeč, M., Benšić, M., Jozinović, A., Babić, J.,
Šubarić, D., Miličević, B., & Ačkar, Đ. (2020). 5-Hydroxymethylfurfural and acrylamide content of cocoa shell treated with high voltage electrical discharge.
Food Control, 110, 107043. https://doi.org/10.1016/j.foodcont.2019.107043 Bartkiene, E., Jakobsone, I., Juodeikiene, G., Vidmantiene, D., Pugajeva, I., &
Bartkevics, V. (2013). Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control, 30(1), 35-40
Bartkiene, E., Jakobsone, I., Pugajeva, I., Bartkevics, V., Zadeike, D., & Juodeikiene, G. (2016a). Reducing of acrylamide formation in wheat biscuits supplemented with flaxseed and lupine. LWT, 65, 275-282.
https://doi.org/10.1016/j.lwt.2015.08.002
Bartkiene, E., Jakobsone, I., Pugajeva, I., Bartkevics, V., Zadeike, D., & Juodeikiene, G. (2016b). Reducing of acrylamide formation in wheat biscuits supplemented with flaxseed and lupine. LWT - Food Science and Technology, 65, 275-282.
https://doi.org/https://doi.org/10.1016/j.lwt.2015.08.002
Başaran, B., Aydın, F., & Kaban, G. (2020). The determination of acrylamide content in brewed coffee samples marketed in Turkey. Food Additives & Contaminants:
Part A, 37(2), 280-287
Becalski, A., Lau, B. P.-Y., Lewis, D., & Seaman, S. W. (2003). Acrylamide in foods:
occurrence, sources, and modeling. Journal of agricultural and food chemistry, 51(3), 802-808
Borrelli, R. C., & Fogliano, V. (2005). Bread crust melanoidins as potential prebiotic ingredients. Molecular Nutrition & Food Research, 49(7), 673-678
Boyacı Gündüz, C. P., & Cengiz, M. F. (2015). Acrylamide contents of commonly consumed bread types in Turkey. International journal of food properties, 18(4), 833-841
Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., & Carrière, F. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature protocols, 14(4), 991- 1014
Burgain, J., Scher, J., Francius, G., Borges, F., Corgneau, M., Revol-Junelles, A. M., Cailliez-Grimal, C., & Gaiani, C. (2014). Lactic acid bacteria in dairy food:
surface characterization and interactions with food matrix components. Advances in colloid and interface science, 213, 21-35
106
Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF):
A review on metabolism, toxicity, occurrence in food and mitigation strategies.
LWT-food science and technology, 44(4), 793-810
Cha, M. (2013). Enzymatic control of the acrylamide level in coffee. European Food Research and Technology, 236(3), 567-571
Claeys, W. L., De Vleeschouwer, K., & Hendrickx, M. E. (2005). Quantifying the formation of carcinogens during food processing: acrylamide. Trends in Food Science & Technology, 16(5), 181-193
Claus, A., Weisz, G. M., Schieber, A., & Carle, R. (2006). Pyrolytic acrylamide formation from purified wheat gluten and gluten‐supplemented wheat bread rolls. Molecular Nutrition & Food Research, 50(1), 87-93
Codex Alimentarius. (2009a). Code of Practice for the Reduction of Acrylamide in Foods. CAC/RCP. Retrieved from:
http://www.codexalimentarius.org/input/download/standards/11258/CXP_067e.p df. Accessed on 20/02/2022
Codex Alimentarius. (2009b). Code of Practice for the Reduction of Acrylamide in Foods. CAC/RCP 67–2009. (prevention and reduction of food and feed contamination, Issue. Retrieved from:
http://www.codexalimentarius.org/input/download/standards/11258/CXP_067e.p df. Accessed on 20/2/2021
Dapkevicius, M. d. L. E., Sgardioli, B., Câmara, S., Poeta, P., & Malcata, F. X. (2021).
Current trends of enterococci in dairy products: A comprehensive review of their multiple roles. Foods, 10(4), 821
Dastmalchi, F., Razavi, S. H., Faraji, M., & Labbafi, M. (2016). Effect of Lactobacillus casei-casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll. Journal of food science and technology, 53(3), 1531-1539
Delgado, R. M., Arámbula-Villa, G., Luna-Bárcenas, G., Flores-Casamayor, V., Veles- Medina, J. J., Azuara, E., & Salazar, R. (2016). Acrylamide content in tortilla chips prepared from pigmented maize kernels contenido de acrilamida en frituras de tortilla preparadas a partir de maíces pigmentados. Revista Mexicana de Ingeniería Química, 15, 69-78.
https://doi.org/http://www.scielo.org.mx/pdf/rmiq/v15n1/1665-2738-rmiq-15-01- 00069.pdf
107 Di Francesco, A., Mari, M., Ugolini, L., Parisi, B., Genovese, J., Lazzeri, L., & Baraldi,
E. (2019). Reduction of acrylamide formation in fried potato chips by
Aureobasidum pullulans L1 strain. International Journal of Food Microbiology, 289, 168-173. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2018.09.018 Dias, F. F. G., Bogusz Junior, S., Hantao, L. W., Augusto, F., & Sato, H. H. (2017).
Acrylamide mitigation in French fries using native l-asparaginase from Aspergillus oryzae CCT 3940. LWT, 76, 222-229.
https://doi.org/10.1016/j.lwt.2016.04.017
Dimitrieska-Stojkovikj, E., Angeleska, A., Stojanovska-Dimzoska, B., Hajrilai-Musliu, Z., Koceva, D., Uzunov, R., Ilievska, G., Stojković, G., & Jankuloski, D. (2019).
Acrylamide Content in Food Commodities Consumed in North Macedonia and Its Risk Assessment in the Population. Journal of Food Quality and Hazards Control, 6, 101-108. https://doi.org/10.18502/jfqhc.6.3.1383
Duda-Chodak, A., Tarko, T., Sroka, P., & Satora, P. (2016). A review of the
interactions between acrylamide, microorganisms and food components. Food and Function, 7(3), 1282-1295. https://doi.org/10.1039/c5fo01294e
Dybing, E., Farmer, P. B., Andersen, M., Fennell, T. R., Lalljie, S. P. D., Müller, D. J.
G., Olin, S., Petersen, B. J., Schlatter, J., & Scholz, G. (2005). Human exposure and internal dose assessments of acrylamide in food. Food and Chemical
Toxicology, 43(3), 365-410
Elmore, J. S., Briddon, A., Dodson, A. T., Muttucumaru, N., Halford, N. G., &
Mottram, D. S. (2015). Acrylamide in potato crisps prepared from 20 UK-grown varieties: effects of variety and tuber storage time. Food chemistry, 182, 1-8.
European Food Safety Authority (EFSA). (2015b). Scientific opinion on acrylamide in food: EFSA Panel on Contaminants in the Food Chain. EFSA Journal, 13(6), 4104
Food and Agricultural Organization of the United Nations/World Health Organization (FAO/WHO). (2011). Food and Agricultural Organization of the United
Nations/World Health Organization (World Health Organization; Food and Agriculture Organization of the United Nations, Geneva; Rome
Food and Drug Administration (FDA). (2016). Guidance for Industry: Acrylamide in Foods. Food and Drug Administration (FDA). Retrieved from:
https://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminan ts/ucm2006782.htm. Accessed on 20/02/2021
108
Food Drink Europe. (2014). Acrylamide toolbox 2013 (Food Drink Europe, Brussels, Issue. Retrieved from:
https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_catalogue _acrylamide_toolbox__201401_en.pdf. Accessed on 20/02/2021
Fredriksson, H., Tallving, J., Rosen, J., & Åman, P. (2004). Fermentation reduces free asparagine in dough and acrylamide content in bread. Cereal Chemistry, 81(5), 650-653
Ge, N., Xu, J., Peng, B., & Pan, S. (2017). Adsorption mechanism of tenuazonic acid using inactivated lactic acid bacteria. Food Control, 82, 274-282
George, F., Mahieux, S., Daniel, C., Titécat, M., Beauval, N., Houcke, I., Neut, C., Allorge, D., Borges, F., & Jan, G. (2021). Assessment of Pb (II), Cd (II), and Al (III) removal capacity of bacteria from food and gut ecological niches: insights into biodiversity to limit intestinal biodisponibility of toxic metals.
Microorganisms, 9(2), 456
Gertz, C., & Klostermann, S. (2002). Analysis of acrylamide and mechanisms of its formation in deep‐fried products. European Journal of Lipid Science and Technology, 104(11), 762-771
Haskard, C., Binnion, C., & Ahokas, J. (2000). Factors affecting the sequestration of aflatoxin by Lactobacillusrhamnosus strain GG. Chemico-biological
interactions, 128(1), 39-49
HEATOX Project. (2006a). Guidelines to Authorities and Consumer Organisations on Home Cooking and Consumption. Retrieved from:
http://www.ub.edu/cecem/Index/documents_index/D59_guidelines_to_authoritie s_and_consumer_organisations_on_home_cooking_and_consumption.pdf.
Accessed on 12/12/2020
HEATOX Project. (2006b). Manual on Strategies to Food Industries, Restaurants, etc., to Minimise Acrylamide Formation. Retrieved from: www.heatox.org. Accessed on 20/ 12/ 2020
HEATOX Project. (2006a). Guidelines to Authorities and Consumer Organisations on Home Cooking and Consumption. Retrieved from www.heatox.org. Accessed on 20/ 12/ 2020
Hernandez-Mendoza, A., Garcia, H. S., & Steele, J. L. (2009a). Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food and Chemical Toxicology, 47(6), 1064-1068.
https://doi.org/10.1016/j.fct.2009.01.042
109 Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L.,
Canani, R. B., Flint, H. J., & Salminen, S. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology &
Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
Hogervorst, J. G. F., van den Brandt, P. A., Godschalk, R. W. L., van Schooten, F.-J., &
Schouten, L. J. (2019). Interaction between dietary acrylamide intake and genetic variants for estrogen receptor-positive breast cancer risk. European journal of nutrition, 58(3), 1033-1045.
International Agency for Research on Cancer (IARC). (1994). Some industrial chemicals: IARC monographs on the evaluation of carcinogenesis risks to humans. World Health Organization Press, Geneva
Jin, C., Wu, X., & Zhang, Y. (2013). Relationship between antioxidants and acrylamide formation: A review. Food Research International, 51(2), 611-620.
https://doi.org/https://doi.org/10.1016/j.foodres.2012.12.047
Keramat, J., LeBail, A., Prost, C., & Soltanizadeh, N. (2011). Acrylamide in Foods:
Chemistry and Analysis. A Review [Review]. Food and Bioprocess Technology, 4(3), 340-363. https://doi.org/10.1007/s11947-010-0470-x
Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018).
Benefaction of probiotics for human health: A review. Journal of food and drug analysis, 26(3), 927-939. https://doi.org/10.1016/j.jfda.2018.01.002
Khorshidian, N., Yousefi, M., Shadnoush, M., Siadat, S. D., Mohammadi, M., &
Mortazavian, A. M. (2020). Using probiotics for mitigation of acrylamide in food products: a mini review [Review]. Current Opinion in Food Science, 32, 67-75. https://doi.org/10.1016/j.cofs.2020.01.011
Kitahara, Y., Okuyama, K., Ozawa, K., Suga, T., Takahashi, S., & Fujii, T. (2012).
Thermal decomposition of acrylamide from polyacrylamide: time-resolved pyrolysis with ion-attachment mass spectrometry. Journal of thermal analysis and calorimetry, 110(1), 423-429.
Koszucka, A., Nowak, A., Nowak, I., & Motyl, I. (2020). Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry [Review]. Critical Reviews in Food Science and Nutrition, 60(10), 1677-1692. https://doi.org/10.1080/10408398.2019.1588222 Kotemori, A., Ishihara, J., Zha, L., Liu, R., Sawada, N., Iwasaki, M., Sobue, T.,
Tsugane, S., & Group, J. S. (2018). Dietary acrylamide intake and the risk of
110
endometrial or ovarian cancers in Japanese women. Cancer science, 109(10), 3316-3325.
Lin, Z., Ye, Y., Li, Q., Xu, Z., & Wang, M. (2011). A further insight into the biosorption mechanism of Au (III) by infrared spectrometry. BMC Biotechnology, 11(1), 1-13.
Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H., & Hu, X. (2015). Role of plant polyphenols in acrylamide formation and elimination. Food Chemistry, 186, 46- 53. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.03.122
Luz, C., Ferrer, J., Mañes, J., & Meca, G. (2018b). Toxicity reduction of ochratoxin A by lactic acid bacteria. Food and Chemical Toxicology, 112, 60-66.
https://doi.org/10.1016/j.fct.2017.12.030
Maan, A. A., Anjum, M. A., Khan, M. K. I., Nazir, A., Saeed, F., Afzaal, M., & Aadil, R. M. (2022). Acrylamide formation and different mitigation strategies during food processing–a review. Food reviews international, 38(1), 70-87.
McCullough, M. L., Hodge, R. A., Um, C. Y., & Gapstur, S. M. (2019). Dietary acrylamide is not associated with renal cell cancer risk in the CPS-II Nutrition Cohort. Cancer Epidemiology and Prevention Biomarkers, 28(3), 616-619.
Meghavarnam, A. K., & Janakiraman, S. (2018). Evaluation of acrylamide reduction potential of l-asparaginase from Fusarium culmorum (ASP-87) in starchy products. LWT, 89, 32-37.
https://doi.org/https://doi.org/10.1016/j.lwt.2017.09.048
Mekawi, E. M., Sharoba, A. M., & Ramadan, M. F. (2019). Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract. Journal of Food Measurement and Characterization, 13(4), 3298-3306.
Mesías, M., & Morales, F. J. (2016). Acrylamide in coffee: Estimation of exposure from vending machines. Journal of Food Composition and Analysis, 48, 8-12.
https://doi.org/https://doi.org/10.1016/j.jfca.2016.02.005
Mesías, M., Sáez-Escudero, L., Morales, F. J., & Delgado-Andrade, C. (2019).
Reassessment of acrylamide content in breakfast cereals. Evolution of the Spanish market from 2006 to 2018. Food Control, 105, 94-101.
Mojska, H., Gielecińska, I., & Stoś, K. (2012). Determination of acrylamide level in commercial baby foods and an assessment of infant dietary exposure. Food and Chemical Toxicology, 50(8), 2722-2728.
111 Mostafa, R. A., Ali, M. I. K., & Mahmoud, M. A. (2019). Comparative Study between
Fermented Lactic Acid Bacteria Solution and Brine Solution on Reduction of Acrylamide formed during Production of Fried Potato. Journal of Food and Nutritional Disorders, 8, 1-6.
Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002a). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448. https://doi.org/10.1038/419448a Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002b). Food chemistry:
acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448.
Mousavinejad, G., Rezaei, K., & Khodaiyan, F. (2015). Reducing acrylamide in fried potato pancake using baker’s yeast, lactobacilli and microalgae. Quality
Assurance and Safety of Crops & Foods, 7(5), 779-787.
Mustăţea, G., & Popa, M. E. (2015). Acrylamide in food–EU versus FDA approaches.
Bulletin UASVM Food Science and Technology, 72, 2. DOI:
10.15835/buasvmcn-fst:11654
Nascimento, L. C. S., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019).
Probiotic potential and safety of enterococci strains. Annals of Microbiology, 69(3), 241-252.
Nasiri Esfahani, B., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2017).
Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Additives & Contaminants: Part A, 34(11), 1904-1914.
National Toxicology Program (NTP). (2011). Report on Carcinogens. Retrieved from:
http://ntp.niehs.nih.gov/ntp/roc/twelfth/profiles/Acrylamide.pdf. Accessed on 20/12/2020
Nematollahi, A., Meybodi, N. M., & Khaneghah, A. M. (2021). An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: Perspectives and future challenges. Food Control, 127, 108144. https://doi.org/10.1016/j.foodcont.2021.108144
Niderkorn, V., Morgavi, D., Aboab, B., Lemaire, M., & Boudra, H. (2009). Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal of Applied Microbiology, 106(3), 977-985.
https://doi.org/10.1111/j.1365-2672.2008.04065.x
Normandin, L., Bouchard, M., Ayotte, P., Blanchet, C., Becalski, A., Bonvalot, Y., Phaneuf, D., Lapointe, C., Gagné, M., & Courteau, M. (2013). Dietary exposure to acrylamide in adolescents from a Canadian urban center. Food and Chemical Toxicology, 57, 75-83. https://doi.org/https://doi.org/10.1016/j.fct.2013.03.005
112
Passos, C. P., Ferreira, S. S., Serôdio, A., Basil, E., Marková, L., Kukurová, K., Ciesarová, Z., & Coimbra, M. A. (2018). Pectic polysaccharides as an
acrylamide mitigation strategy – Competition between reducing sugars and sugar acids. Food Hydrocolloids, 81, 113-119.
https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.02.032
Pedreschi, F., Mariotti, M. S., & Granby, K. (2014). Current issues in dietary
acrylamide: formation, mitigation and risk assessment. Journal of the Science of Food and Agriculture, 94(1), 9-20.
Pelucchi, C., Bosetti, C., Galeone, C., & La Vecchia, C. (2015). Dietary acrylamide and cancer risk: An updated meta‐analysis. International journal of cancer, 136(12), 2912-2922.
Pelucchi, C., Rosato, V., Bracci, P. M., Li, D., Neale, R. E., Lucenteforte, E., Serraino, D., Anderson, K. E., Fontham, E., & Holly, E. A. (2017). Dietary acrylamide and the risk of pancreatic cancer in the International Pancreatic Cancer Case–Control Consortium (PanC4). Annals of Oncology, 28(2), 408-414.
Perera, D. N., Hewavitharana, G. G., & Navaratne, S. (2021). Comprehensive study on the acrylamide content of high thermally processed foods. Biomed research international, 2021. 6258508. https://doi.org/10.1155/2021/6258508
Petka, K., Tarko, T., & Duda-Chodak, A. (2020). Is acrylamide as harmful as we think?
A new look at the impact of acrylamide on the viability of beneficial intestinal bacteria of the genus Lactobacillus. Nutrients, 12(4), 1157.
Pundir, C. S., Yadav, N., & Chhillar, A. K. (2019). Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: A review. Trends in Food Science & Technology.
Qi, Y., Zhang, H., Wu, G., Zhang, H., Gu, L., Wang, L., Qian, H., & Qi, X. (2018).
Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry, 250, 98- 104. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.01.012
Rannou, C., Laroque, D., Renault, E., Prost, C., & Sérot, T. (2016). Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the Maillard reaction in foods [Review]. Food Research International, 90, 154-176.
https://doi.org/10.1016/j.foodres.2016.10.037
Rivas-Jimenez, L., Ramírez-Ortiz, K., González-Córdova, A. F., Vallejo-Cordoba, B., Garcia, H. S., & Hernandez-Mendoza, A. (2016). Evaluation of acrylamide- removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system. Microbiological research, 190, 19-26.
113 Sanchez-oter, M. G., Mendez-santiago, C. N., Luna-vazquez, F., Soto-Rodríguez, I.,
Garcia, H. S., & Serrano-nino, J. C. (2017). Assessment of the dietary intake of acrylamide by young adults in Mexico. Journal of Food and Nutrition Research, 5(12), 894-899. https://doi.org/http://pubs.sciepub.com/jfnr/5/12/3/index
Sangsila, A., Faucet-Marquis, V., Pfohl-Leszkowicz, A., & Itsaranuwat, P. (2016).
Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control, 62, 187-192.
Serrano-Niño, J. C., Cavazos-Garduño, A., Cantú-Cornelio, F., Gonzalez-Cordova, A.
F., Vallejo-Cordoba, B., Hernández-Mendoza, A., & García, H. S. (2015a). In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT, 64(2), 1334-1341.
https://doi.org/10.1016/j.lwt.2015.07.015
Serrano‐Niño, J. C., Cavazos‐Garduño, A., González‐Córdova, A. F., Vallejo‐Cordoba, B., Hernández‐Mendoza, A., & García, H. S. (2014). In vitro Study of the
Potential Protective Role of L actobacillus Strains by Acrylamide Binding.
Journal of food safety, 34(1), 62-68.
Shao, X., Xu, B., Chen, C., Li, P., & Luo, H. (2021). The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: a review. Critical Reviews in Food Science and Nutrition, 1-14.
Shen, Y., Zhao, S., Zhao, X., Sun, H., Shao, M., & Xu, H. (2019a). In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT, 100, 119-125.
Shen, Y., Chen, G., & Li, Y. (2019b). Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chemistry, 96(3), 545-553.
Shi, R., Liu, Y., Mu, Q., Jiang, Z., & Yang, S. (2017). Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for
acrylamide reduction in potato chips and mooncakes. International Journal of Biological Macromolecules, 96, 93-99.
https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.11.115
Shoukat, S. (2020). Potential anti-carcinogenic effect of probiotic and lactic acid
bacteria in detoxification of benzo [a] pyrene: A review. Trends in Food Science
& Technology. 450-459
Sun, Z., Qin, R., Li, D., Ji, K., Wang, T., Cui, Z., & Huang, Y. (2016). A novel bacterial type II l-asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. International Journal of Biological Macromolecules, 92, 232-239. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.07.031