The chosen TPC is a semi-isolated converter where the load is isolated from the rest of the circuit.
The TPC was simulated in MATLAB/SIMULINK with two MPPT methods. Perturb and Observe (P&O) and Incremental Conductance (IC). The temperature and irradiance are varied to simulate environmental changes in a real-world environment. Both MPPT methods lead to a similar result.
The IC method slightly performs better than P&O. This indicates that TPC is more stable regarding environmental changes than regular two-port converters. As for the recommendation, it is recommended to apply more than two MPPT methods to expand the comparison further.
References
[1] ‘Renewable electricity growth is accelerating faster than ever worldwide, supporting the emergence of the new global energy economy - News’, IEA. https://www.iea.org/news/renewable-electricity-growth- is-accelerating-faster-than-ever-worldwide-supporting-the-emergence-of-the-new-global-energy- economy (accessed Dec. 05, 2021).
[2] ‘UN Climate Change Conference (COP26) at the SEC – Glasgow 2021’, UN Climate Change Conference (COP26) at the SEC – Glasgow 2021. https://ukcop26.org/ (accessed Dec. 05, 2021).
[3] ‘Installed solar energy capacity’, Our World in Data. https://ourworldindata.org/grapher/installed-solar- PV-capacity (accessed Dec. 14, 2021).
[4] ‘Renewable Energy Market Update 2021 – Analysis’, IEA. https://www.iea.org/reports/renewable- energy-market-update-2021 (accessed Nov. 09, 2021).
[5] D. Mulvaney, Solar Power: Innovation, Sustainability, and Environmental Justice. Univ of California Press, 2019.
[6] M. A. El-Sharkawi, Electric Energy: An Introduction. Boca Raton: CRC Press, 2004. doi:
10.1201/9781420057898.
[7] A. Martzopoulou, D. Vafiadis, and V. P. Fragos, ‘Energy Gain in Passive Solar Greenhouses Due to CO2 Enrichment’, Energies, vol. 13, no. 5, Art. no. 5, Jan. 2020, doi: 10.3390/en13051242.
[8] ‘Solar Energy | EESI’. https://www.eesi.org/topics/solar/description (accessed Dec. 05, 2021).
[9] W. Palz, Solar Power for the World: What You Wanted to Know about Photovoltaics. CRC Press, 2013.
[10] Wolf, ‘Historical Development of Solar Cells’, 1976.
[11] D. Lincot, ‘The new paradigm of photovoltaics: From powering satellites to powering humanity’, Comptes Rendus Physique, vol. 18, no. 7, pp. 381–390, Sep. 2017, doi: 10.1016/j.crhy.2017.09.003.
[12] ‘Modern manufacturing technology for modular photovoltaic panels: State-of-the-art and future trends - IOPscience’. https://iopscience.iop.org/article/10.1088/1757-899X/1182/1/012062/meta (accessed Dec. 05, 2021).
[13] P. F. Varadi, Sun Above the Horizon: Meteoric Rise of the Solar Industry. CRC Press, 2014.
[14] S. D. A. Al-Majidi, ‘Efficient Maximum Power Point Tracking Techniques for a Grid-connected Photovoltaic System using Artificial Intelligence’, Thesis, Brunel University London, 2020. Accessed:
Dec. 05, 2021. [Online]. Available: http://bura.brunel.ac.uk/handle/2438/21643 [15] ‘3.17 Photonic Energy Production - ScienceDirect’.
https://www.sciencedirect.com/science/article/pii/B9780128095973003369 (accessed Dec. 05, 2021).
[16] ‘Solar Photovoltaic Cell Basics | Department of Energy’. https://www.energy.gov/eere/solar/solar- photovoltaic-cell-basics (accessed Dec. 05, 2021).
[17] R. Israels, A. Maaß, and J. Hamaekers, ‘The octet rule in chemical space: generating virtual molecules’, Mol Divers, vol. 21, no. 4, pp. 769–778, Nov. 2017, doi: 10.1007/s11030-017-9775-2.
[18] J. Kim et al., ‘Doping of crystalline silicon solar cell by making use of atmospheric and sub- atmospheric plasma jet’, in 2012 Abstracts IEEE International Conference on Plasma Science, Jul.
2012, pp. 7D-3-7D–3. doi: 10.1109/PLASMA.2012.6384087.
[19] R. P. Huebener, ‘Less Can Be More: Semiconductors’, in Conductors, Semiconductors, Superconductors: An Introduction to Solid-State Physics, R. P. Huebener, Ed. Cham: Springer International Publishing, 2019, pp. 73–96. doi: 10.1007/978-3-030-31420-0_6.
[20] T. Soga, ‘Chapter 1 - Fundamentals of Solar Cell’, in Nanostructured Materials for Solar Energy Conversion, T. Soga, Ed. Amsterdam: Elsevier, 2006, pp. 3–43. doi: 10.1016/B978-044452844- 5/50002-0.
[21] ‘Sustainability | Free Full-Text | Simplified I-V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter | HTML’. https://www.mdpi.com/2071-1050/9/4/657/htm (accessed Dec. 06, 2021).
[22] ‘Photovoltaic Power System: Modeling, Design, and Control | Wiley’, Wiley.com.
https://www.wiley.com/en-
ae/Photovoltaic+Power+System%3A+Modeling%2C+Design%2C+and+Control-p-9781119280347 (accessed Dec. 06, 2021).
[23] ‘A comprehensive review and classified comparison of MPPT algorithms in PV systems |
SpringerLink’. https://link.springer.com/article/10.1007/s12667-021-00427-x (accessed Dec. 11, 2021).
[24] ‘Voltage at the maximum power point - Vmp | PVEducation’.
https://www.pveducation.org/pvcdrom/voltage-at-the-maximum-power-point-vmp (accessed Nov. 09, 2021).
[25] ‘Cells, Modules, Panels and Arrays’, FSEC Energy Research Center.
https://energyresearch.ucf.edu/consumer/solar-technologies/solar-electricity-basics/cells-modules- panels-and-arrays/ (accessed Dec. 06, 2021).
[26] ‘Monocrystalline Silicon Cell - an overview | ScienceDirect Topics’.
https://www.sciencedirect.com/topics/engineering/monocrystalline-silicon-cell (accessed Feb. 27, 2021).
[27] G. F. Nemet, How Solar Energy Became Cheap: A Model for Low-Carbon Innovation. London:
Routledge, 2019. doi: 10.4324/9780367136604.
[28] S. Mughal and R. Jarial, A Review on Solar Photovoltaic Technology and Future Trends. 2018.
[29] ‘Mono vs Poly vs Thin film panels’, Exsolar. https://www.exsolar.co.za/mono-vs-poly-vs-thin-film- panels.html (accessed Apr. 12, 2021).
[30] ‘Types of photovoltaic cells - Energy Education’.
https://energyeducation.ca/encyclopedia/Types_of_photovoltaic_cells (accessed Feb. 27, 2021).
[31] R. C. Neville, ‘CHAPTER IX - POLYCRYSTALLINE AND AMORPHOUS SOLAR CELLS’, in Solar Energy Conversion (Second Edition), R. C. Neville, Ed. Amsterdam: Elsevier Science, 1995, pp.
339–362. doi: 10.1016/B978-044489818-0/50009-0.
[32] Q. Luo, ‘8 - Applications in photovoltaics’, in Solution Processed Metal Oxide Thin Films for Electronic Applications, Z. Cui and G. Korotcenkov, Eds. Elsevier, 2020, pp. 109–140. doi:
10.1016/B978-0-12-814930-0.00008-6.
[33] ‘Renewable Power Generation Costs in 2020’, /publications/2021/Jun/Renewable-Power-Costs-in- 2020. https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020 (accessed Dec. 06, 2021).
[34] L. Premalatha and N. A. Rahim, ‘The Effect of Dynamic Weather Conditions on Three Types of PV Cell Technologies – A Comparative Analysis’, Energy Procedia, vol. 117, pp. 275–282, Jun. 2017, doi:
10.1016/j.egypro.2017.05.132.
[35] ‘Converter topologies in photovoltaic applications – A review - ScienceDirect’.
https://www.sciencedirect.com/science/article/abs/pii/S1364032118303903 (accessed Dec. 09, 2021).
[36] K. V. G. Raghavendra et al., ‘A Comprehensive Review of DC–DC Converter Topologies and Modulation Strategies with Recent Advances in Solar Photovoltaic Systems’, Electronics, vol. 9, no. 1, Art. no. 1, Jan. 2020, doi: 10.3390/electronics9010031.
[37] ‘Rashid, Power Electronics: Devices, Circuits, and Applications, International Edition, 4/e, 4th Edition | Pearson’. https://www.pearson.com/uk/educators/higher-education-educators/program/Rashid- Power-Electronics-Devices-Circuits-and-Applications-International-Edition-4-e-4th-
Edition/PGM1045578.html (accessed Dec. 09, 2021).
[38] A. M. Trzynadlowski, Introduction to Modern Power Electronics. John Wiley and Sons, 2016.
Accessed: Dec. 09, 2021. [Online]. Available: https://lib.hpu.edu.vn/handle/123456789/21323
[39] S. Ghosh, S. Satpathy, S. Das, S. Debbarma, and B. K. Bhattacharyya, ‘Different Controlling
Method of Closed Loop DC-DC Buck Converter: A review’, in 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Dec. 2018, pp. 29–33. doi: 10.1109/ICSSIT.2018.8748695.
[40] F. Mumtaz, N. Zaihar Yahaya, S. Tanzim Meraj, B. Singh, R. Kannan, and O. Ibrahim, ‘Review on non-isolated DC-DC converters and their control techniques for renewable energy applications’, Ain Shams Engineering Journal, vol. 12, no. 4, pp. 3747–3763, Dec. 2021, doi: 10.1016/j.asej.2021.03.022.
[41] P. P. Surya, D. Irawan, and M. Zuhri, ‘Review and comparison Of DC-DC converters for maximum power point tracking system in standalone photovoltaic (PV) module’, in 2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Oct.
2017, pp. 242–247. doi: 10.1109/ICAMIMIA.2017.8387595.
[42] R. Kanthimathi and J. Kamala, ‘Analysis of different flyback Converter topologies’, in 2015
International Conference on Industrial Instrumentation and Control (ICIC), May 2015, pp. 1248–1252.
doi: 10.1109/IIC.2015.7150939.
[43] S. Musumeci and S. Di Mauro, ‘Low voltage single fuel cell interface by Push-Pull converter: A case of study’, in 2017 6th International Conference on Clean Electrical Power (ICCEP), Jun. 2017, pp.
541–548. doi: 10.1109/ICCEP.2017.8004741.
[44] M. Mao, L. Cui, Q. Zhang, K. Guo, L. Zhou, and H. Huang, ‘Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies’, Energy Reports, vol. 6, pp. 1312–1327, Nov. 2020, doi: 10.1016/j.egyr.2020.05.013.
[45] H. Shahid, M. Kamran, Z. Mehmood, M. Y. Saleem, M. Mudassar, and K. Haider, ‘Implementation of the novel temperature controller and incremental conductance MPPT algorithm for indoor
photovoltaic system’, Solar Energy, vol. 163, pp. 235–242, Mar. 2018, doi:
10.1016/j.solener.2018.02.018.
[46] ‘Comparison of Different MPPT Control Strategies for Solar Charge Controller | IEEE Conference Publication | IEEE Xplore’. https://0o10aa1hm-y-https-ieeexplore-ieee-
org.kau.proxy.deepknowledge.io/document/9087178/ (accessed Dec. 11, 2021).
[47] G. Zhou, Q. Tian, and L. Wang, ‘Soft-Switching High Gain Three-Port Converter Based on Coupled Inductor for Renewable Energy System Applications’, IEEE Transactions on Industrial Electronics, pp.
1–1, 2021, doi: 10.1109/TIE.2021.3060614.
[48] S. Rostami, V. Abbasi, N. Talebi, and T. Kerekes, ‘Three-port DC–DC converter based on quadratic boost converter for stand-alone PV/battery systems’, IET Power Electronics, vol. 13, no. 10, pp. 2106–
2118, 2020, doi: 10.1049/iet-pel.2019.1025.
[49] P. Xu and H. Wen, ‘Topology Review of Three-Port DC-DC Converters for Photovoltaic
Applications’, in 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia), Jul. 2020, pp. 1216–1221. doi: 10.1109/ICPSAsia48933.2020.9208398.
[50] ‘Topology Analysis and Review of Three-Port DC–DC Converters | IEEE Journals & Magazine | IEEE Xplore’. https://ieeexplore.ieee.org/abstract/document/9057408 (accessed Dec. 01, 2021).
[51] ‘A Sustainable Saudi Vision’, Vision 2030. https://www.vision2030.gov.sa/v2030/a-sustainable- saudi-vision/ (accessed Nov. 11, 2021).
[52] ‘Solar PV – Analysis - IEA’. https://www.iea.org/reports/solar-pv (accessed Nov. 28, 2020).
[53] ‘The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm - ScienceDirect’. https://www.sciencedirect.com/science/article/abs/pii/S0959652619338533 (accessed Dec. 12, 2021).
[54] ‘Energies | Free Full-Text | Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications’. https://www.mdpi.com/1996-1073/14/22/7806 (accessed Dec.
12, 2021).
[55] A. Nadeem, H. A. Sher, and A. F. Murtaza, ‘Online fractional open-circuit voltage maximum output power algorithm for photovoltaic modules’, IET Renewable Power Generation, vol. 14, no. 2, pp. 188–
198, 2020, doi: 10.1049/iet-rpg.2019.0171.
[56] C. H. Basha and C. Rani, ‘Different Conventional and Soft Computing MPPT Techniques for Solar PV Systems with High Step-Up Boost Converters: A Comprehensive Analysis’, Energies, vol. 13, no. 2, Art. no. 2, Jan. 2020, doi: 10.3390/en13020371.
[57] D. Wang, D. Tan, and L. Liu, ‘Particle swarm optimization algorithm: an overview’, Soft Comput, vol. 22, no. 2, pp. 387–408, Jan. 2018, doi: 10.1007/s00500-016-2474-6.
[58] ‘(PDF) Particle Swarm Optimization from Theory to Applications’.
https://www.researchgate.net/publication/322529809_Particle_Swarm_Optimization_from_Theory_to_
Applications?enrichId=rgreq-05f30eb829771bfac36d480aae1a90df-
XXX&enrichSource=Y292ZXJQYWdlOzMyMjUyOTgwOTtBUzo3MDI4ODMyODA0NzAwMTlAM TU0NDU5MTg0MTc2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf (accessed Oct. 27, 2021).
[59] J. F. Schutte, ‘The Particle Swarm Optimization Algorithm’, p. 33.
[60] M. Aria and C. Cuccurullo, ‘bibliometrix: An R-tool for comprehensive science mapping analysis’, Journal of Informetrics, vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
[61] L. El Mentaly, A. Amghar, and H. Sahsah, ‘Comparison between HC, FOCV and TG MPPT algorithms for PV solar systems using buck converter’, in 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Apr. 2017, pp. 1–5. doi:
10.1109/WITS.2017.7934609.
[62] K. Saidi, M. Maamoun, and M. Bounekhla, ‘Simulation and implementation of incremental conductance MPPT algorithm with indirect control method using buck converter’, in 2017 6th International Conference on Systems and Control (ICSC), May 2017, pp. 199–204. doi:
10.1109/ICoSC.2017.7958657.
[63] R. Sen, A. Garg, and A. Singh, ‘Modeling of PV array using P amp;O algorithm in boost converter’, in 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Oct. 2017, pp. 231–236. doi: 10.1109/IC3TSN.2017.8284482.
[64] J. López Seguel, S. I. Jr, and L. M. F. Morais, ‘Comparison of the performance of MPPT methods applied in converters Buck and Buck-Boost for autonomous photovoltaic systems’, Ingeniare. Revista chilena de ingeniería, vol. 29, pp. 229–244, Jun. 2021, doi: 10.4067/S0718-33052021000200229.
[65] R. Blange, C. Mahanta, and A. K. Gogoi, ‘MPPT of solar photovoltaic cell using perturb amp;
observe and fuzzy logic controller algorithm for buck-boost DC-DC converter’, in 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Jun. 2015, pp.
1–5. doi: 10.1109/EPETSG.2015.7510125.
[66] S. Necaibia, M. S. Kelaiaia, H. Labar, A. Necaibia, and E. D. Castronuovo, ‘Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC
converter’, Solar Energy, vol. 180, pp. 152–168, Mar. 2019, doi: 10.1016/j.solener.2019.01.028.
[67] ‘MPPT Based SEPIC Converter With Voltage Doubler Cell For PV Systems | IEEE Conference Publication | IEEE Xplore’. https://0o10aa5yk-y-https-ieeexplore-ieee-
org.kau.proxy.deepknowledge.io/document/8574269/ (accessed Dec. 12, 2021).
[68] A. L. Saleh, A. A. Obed, Z. A. Hassoun, and S. J. Yaqoob, ‘Modeling and Simulation of A Low Cost Perturb& Observe and Incremental Conductance MPPT Techniques In Proteus Software Based on Flyback Converter’, IOP Conf. Ser.: Mater. Sci. Eng., vol. 881, no. 1, p. 012152, Jul. 2020, doi:
10.1088/1757-899X/881/1/012152.
[69] L. A. M. Barros, V. Monteiro, B. Exposto, A. A. N. Melendez, J. L. Afonso, and J. G. Pinto, ‘New multifunctional push-pull converter operating with MPPT and integrated energy storage system for PV micro-inverter applications’, in IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society, Beijing, Oct. 2017, pp. 7807–7812. doi: 10.1109/IECON.2017.8217368.
[70] B. A. Begum and J. A. Vasanth, ‘MPPT based photovoltaic boost half bridge converter for grid connected system’, in 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Mar. 2014, pp. 1–6. doi: 10.1109/ICGCCEE.2014.6922394.
[71] ‘<b>Impact of modified perturb and observe control on MPPT of PV/battery fed three - port DC‐DC converter | Acta Scientiarum. Technology’.
https://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/29502 (accessed Nov. 06, 2021).
[72] J. V. Lagudu, G. Vulasala, and S. Sathy Narayana, ‘Maximum energy harvesting in solar
photovoltaic system using fuzzy logic technique’, International Journal of Ambient Energy, vol. 42, no.
2, pp. 131–139, Jan. 2021, doi: 10.1080/01430750.2018.1525589.
[73] ‘An isolated three-port bidirectional DC-DC converter for photovoltaic systems with energy storage | IEEE Conference Publication | IEEE Xplore’. https://ieeexplore.ieee.org/abstract/document/6682520 (accessed Dec. 01, 2021).
[74] H. Aljarajreh, D. D.-C. Lu, Y. P. Siwakoti, C. K. Tse, and K. W. See, ‘Synthesis and Analysis of Three-Port DC/DC Converters with Two Bidirectional Ports Based on Power Flow Graph Technique’, Energies, vol. 14, no. 18, Art. no. 18, Jan. 2021, doi: 10.3390/en14185751.
[75] S. J. AL-Chlaihawi, A. Craciunescu, and A. G. Al-Gizi, ‘Power flow management in three port converter using PV panel with maximum power point tracker’, in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Mar. 2017, pp. 585–590. doi:
10.1109/ATEE.2017.7905136.
[76] ‘Modeling and Simulation of A Low Cost Perturb& Observe and Incremental Conductance MPPT Techniques In Proteus Software Based on Flyback Converter - IOPscience’.
https://iopscience.iop.org/article/10.1088/1757-899X/881/1/012152 (accessed Mar. 08, 2022).
[77] ‘Performance of closed loop SEPIC converter with DC-DC converter for solar energy system | IEEE Conference Publication | IEEE Xplore’. https://ieeexplore.ieee.org/document/8117668 (accessed Apr.
14, 2022).
[78] ‘HE educators | Pearson UK’. https://www.pearson.com/uk/educators/higher-education- educators.html (accessed Jun. 12, 2022).
[79] ‘MATLAB - MathWorks - MATLAB & Simulink’.
https://www.mathworks.com/products/matlab.html (accessed Apr. 13, 2021).
[80] ‘Methods, Algorithms and Circuits for Photovoltaic Systems Diagnosis and Control - Google Books’.
https://books.google.com.sa/books/about/Methods_Algorithms_and_Circuits_for_Phot.html?id=6torEA AAQBAJ&redir_esc=y (accessed Dec. 13, 2021).
[81] A. C. Subrata, T. Sutikno, S. Padmanaban, and H. S. Purnama, ‘Maximum Power Point Tracking in PV Arrays with High Gain DC-DC Boost Converter’, in 2019 6th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI), Sep. 2019, pp. 358–362. doi:
10.23919/EECSI48112.2019.8977072.
[82] ‘Maximum Power Point Tracking for Photovoltaic Using Incremental Conductance Method - ScienceDirect’. https://www.sciencedirect.com/science/article/pii/S1876610215005342 (accessed Apr.
16, 2022).
[83] ‘(PDF) New Structure for Photovoltaic Systems with Maximum Power Point Tracking Ability’.
https://www.researchgate.net/publication/268800021_New_Structure_for_Photovoltaic_Systems_with_
Maximum_Power_Point_Tracking_Ability (accessed Apr. 16, 2022).
[84] N. Selman, ‘Comparison Between Perturb & Observe, Incremental Conductance and Fuzzy Logic MPPT Techniques at Different Weather Conditions’, International Journal of Innovative Research in Science, Engineering and Technology, vol. 5, pp. 12556–12569, Jul. 2016, doi:
[85] ‘(PDF) Energy comparison of MPPT techniques for PV Systems’.
https://www.researchgate.net/publication/228961032_Energy_comparison_of_MPPT_techniques_for_P V_Systems (accessed Apr. 16, 2022).
[86] ‘(PDF) Comparative analysis of the perturb-and-observe and incremental conductance MPPT methods’. https://www.researchgate.net/publication/261280450_Comparative_analysis_of_the_perturb- and-observe_and_incremental_conductance_MPPT_methods (accessed Apr. 16, 2022).
[87] M. H. Uddin, M. A. Baig, and M. Ali, ‘Comparision of “perturb amp; observe” and “incremental conductance”, maximum power point tracking algorithms on real environmental conditions’, in 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Apr. 2016, pp. 313–317. doi: 10.1109/ICECUBE.2016.7495244.
A
PPENDIXA
Publications Paper 1
Part of this thesis was accepted by the 3rd International Conference on Clean and Green Energy Engineering (CGEE 2022), which will be sent to EI Compendex, Scopus, and some major databases for indexing.