• Tidak ada hasil yang ditemukan

Among the saline soil microbial community analysis, phyla Firmicutes showed a higher abundance.

The current study extends knowledge about the microbial communities present in the rhizosphere of the date palms cultivated in saline and non-saline irrigated farms.

It indicates the possible roles of the identified microbial communities to the adaptations of the date palm to salinity stress. They identified microbes that can be used as genes to increase nutrient uptake under saline environments through a genetic transformation in different crop species. The current findings from the date palm saline and non-saline soil microbiomes expand the inventory of soil bacteria for saline environments that can help discover potential inoculants for crops growing on salt- affected land. The potential inoculant from such microbial communities and the desert farming practices can be promising perspectives for sustainable agriculture in arid ecosystems. The identified microbial could be used as inoculants to enhance soil fertility in organic farming practices under saline environments.

However, to exploit the potential applications of saline soil date palm microbial communities, the future perspectives of the current study will be on certain aspects:

The present study will be further developed with a focus on a complete description of the metagenome of the date palm saline environments that will report the metabolic pathways of the identified microbial communities with an understanding of how these microbial communities remain active and recover during the salinity stress.

The taxonomic and functional microbial community profiling will continue the current investigation to elucidate functional traits enabling the proliferation of the identified microbial communities under salt stress.

The study will elaborate on analyzing the potential of PGPR or ACC gene activity of the phyla Micromonospora, Pseudomonas, and Mycobacterium found in the saline soils of date palms.

Another future perspective will be the investigation of the identified rhizosphere microbial community's incorporation as a factor in determining desirable traits in date palms, such as yield or salt tolerance.

Future studies will focus on assessing the interaction of date palm genotype with the rhizosphere microbiome and its effect in shaping host phenotype, specifically the roots.

The research perspectives on the rhizosphere of the date palm indicate the achievement of the vast potential of rhizosphere microbial communities for remediating salinity-stressed agro-ecosystems, and the utilization of this green biotechnology will have multiple positive effects on the expected climatic changes.

References

Abarenkov, K., Henrik Nilsson, R., Larsson, K.-H., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U., & Kõljalg, U. (2010). The UNITE database for molecular identification of fungi Recent updates and future perspectives. The New Phytologist, 186(2), 281 285. https://doi.org/10.1111/j.1469-

8137.2009.03160.x

Abbasi, G. H., Akhtar, J., Ahmad, R., Jamil, M., Anwar-ul-Haq, M., Ali, S., & Ijaz, M. (2015). Potassium application mitigates salt stress differentially at

different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regulation, 76(1), 111 125. https://doi.org/10.1007/s10725-015-0050-1 Ahanger, M. A., & Agarwal, R. M. (2017). Salinity stress induced alterations in

antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry: PPB, 115, 449 460.

https://doi.org/10.1016/j.plaphy.2017.04.017

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud

University - Science, 26(1), 1 20. https://doi.org/10.1016/j.jksus.2013.05.001 Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key

steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution, 9(1), 134 147. https://doi.org/10.1111/2041- 210X.12849

Alikhani, H. A., Saleh-Rastin, N., & Antoun, H. (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil, 287(1 2), 35 41.

https://doi.org/10.1007/s11104-006-9059-6

An, S.-Q., & Berg, G. (2018). Stenotrophomonas maltophilia. Trends in

Microbiology, 26(7), 637 638. https://doi.org/10.1016/j.tim.2018.04.006 Bach, E. M., Baer, S. G., Meyer, C. K., & Six, J. (2010). Soil texture affects soil

microbial and structural recovery during grassland restoration. Soil Biology and Biochemistry, 42(12), 2182 2191.

https://doi.org/10.1016/j.soilbio.2010.08.014

Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K.-H., Schäfer, P., Schwarczinger, I., Zuccaro, A., &

Skoczowski, A. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. The New Phytologist, 180(2), 501 510.

https://doi.org/10.1111/j.1469-8137.2008.02583.x

Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L). Following

inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45(4), 405 413. https://doi.org/10.1007/s00374-008-0344-9

Ben Mefteh, F., Daoud, A., Chenari Bouket, A., Thissera, B., Kadri, Y., Cherif- Silini, H., Eshelli, M., Alenezi, F. N., Vallat, A., Oszako, T., Kadri, A., Ros- García, J. M., Rateb, M. E., Gharsallah, N., & Belbahri, L. (2018). Date Palm Trees Root-Derived Endophytes as Fungal Cell Factories for Diverse

Bioactive Metabolites. International Journal of Molecular Sciences, 19(7), 1986. https://doi.org/10.3390/ijms19071986

Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478 486.

https://doi.org/10.1016/j.tplants.2012.04.001

Berg, G., Zachow, C., Müller, H., Philipps, J., & Tilcher, R. (2013). Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture.

Agronomy, 3(4), 648 656. https://doi.org/10.3390/agronomy3040648 Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A., & Daniel, R. (2020).

Soil bacterial community structures in relation to different oil palm management practices. Scientific Data, 7(1), 421.

https://doi.org/10.1038/s41597-020-00752-3

Brandt, M. I., Trouche, B., Henry, N., Liautard-Haag, C., Maignien, L., de Vargas, C., Wincker, P., Poulain, J., Zeppilli, D., & Arnaud-Haond, S. (2020). An Assessment of Environmental Metabarcoding Protocols Aiming at Favoring Contemporary Biodiversity in Inventories of Deep-Sea Communities.

Frontiers in Marine Science, 7, 234.

https://doi.org/10.3389/fmars.2020.00234

Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., &

Zemskaya, T. I. (2019). The effect of 16S rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6(1), 190007.

https://doi.org/10.1038/sdata.2019.7

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., &

Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581 583.

https://doi.org/10.1038/nmeth.3869

Canfora, L., Salvati, L., Benedetti, A., & Francaviglia, R. (2017). Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy. Environmental Monitoring and Assessment, 189(7), 319. https://doi.org/10.1007/s10661-017-6040-1

Chao, C. T., & Krueger, R. R. (2007). The Date Palm (Phoenix dactylifera L.):

Overview of Biology, Uses, and Cultivation. HortScience, 42(5), 1077 1082.

https://doi.org/10.21273/HORTSCI.42.5.1077

Chen, L. J., Li, C. S., Feng, Q., Wei, Y. P., Zhao, Y., Zhu, M., & Deo, R. C. (2019).

An integrative influence of saline water irrigation and fertilization on the structure of soil bacterial communities. The Journal of Agricultural Science, 157(9 10), 693 700. https://doi.org/10.1017/S002185962000012X

Cherif, H., Marasco, R., Rolli, E., Ferjani, R., Fusi, M., Soussi, A., Mapelli, F., Blilou, I., Borin, S., Boudabous, A., Cherif, A., Daffonchio, D., & Ouzari, H.

(2015). Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environmental Microbiology Reports, 7(4), 668 678.

https://doi.org/10.1111/1758-2229.12304 -

(2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7 14.

https://doi.org/10.1016/j.apsoil.2012.11.004

-Diniz, R., Cole, J. R., Ross, R. P., -generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research, 38(22), e200. https://doi.org/10.1093/nar/gkq873

Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity. Trends in Ecology & Evolution, 29(10), 566 571.

https://doi.org/10.1016/j.tree.2014.08.001

de Zelicourt, A., Al-Yousif, M., & Hirt, H. (2013). Rhizosphere microbes as essential partners for plant stress tolerance. Molecular Plant, 6(2), 242 245.

https://doi.org/10.1093/mp/sst028

Deiner, K., Bik, H., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D., Vere, N. de, Pfrender, M., & Bernatchez, L.

(2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology.

https://doi.org/10.1111/mec.14350

Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., & Belimov, A. A. (2010).

Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 157(3), 361 379. https://doi.org/10.1111/j.1744-7348.2010.00439.x

Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologiae Plantarum, 34(2), 751 756. https://doi.org/10.1007/s11738- 011-0875-9

Egamberdieva, D., Jabborova, D., & Hashem, A. (2015). Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences, 22(6), 773 779. PubMed.

https://doi.org/10.1016/j.sjbs.2015.04.019

Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K.

(2019). Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Frontiers in Microbiology, 10, 2791.

https://doi.org/10.3389/fmicb.2019.02791

Elmahdi, Dr. A. (2020). IWMI in the Middle East and North Africa: IWMI.

International Water Management Institute.

https://www.iwmi.cgiar.org/about/where-we-work/iwmi-in-the-middle-east- and-north-africa/

El-Tarabily, K. A., AlKhajeh, A. S., Ayyash, M. M., Alnuaimi, L. H., Sham, A., ElBaghdady, K. Z., Tariq, S., & AbuQamar, S. F. (2019). Growth Promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an Endophytic 1- Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing

Actinobacterial Isolate. Frontiers in Microbiology, 10, 1694.

https://doi.org/10.3389/fmicb.2019.01694

FAO, 2021. (2021a). Soil salinization as a global major challenge | | | (ITPS soil letter #3; Global Soil Partnership). Food and Agriculture Organization of the

United Nations. http://www.fao.org/global-soil- partnership/resources/highlights/detail/en/c/1412475/

FAO, 2021. (2021b). Standard operating procedure for soil electrical conductivity, soil/water, 1:5. FAO, Rome, pg.17.

Feng, Z. T., Deng, Y. Q., Fan, H., Sun, Q. J., Sui, N., & Wang, B. S. (2014). Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture. Photosynthetica, 52(2), 313 320.

https://doi.org/10.1007/s11099-014-0032-y

Ferjani, R., Marasco, R., Rolli, E., Cherif, H., Cherif, A., Gtari, M., Boudabous, A., Daffonchio, D., & Ouzari, H.-I. (2015). The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem. BioMed Research International, 2015, 1 10. https://doi.org/10.1155/2015/153851 Fouda, A., Eid, A. M., Salim, S. S., Hassan, S. E.-D., & Ismail, M. A. (2019). The

Interaction Between Plants and Bacterial Endophytes Under Salinity Stress.

In Microbiome in Plant Health and Disease (pp. 119 144). Springer Singapore. https://doi.org/10.1007/978-981-13-8495-0_6

Fricke, W., Akhiyarova, G., Wei, W., Alexandersson, E., Miller, A., Kjellbom, P. O., Richardson, A., Wojciechowski, T., Schreiber, L., Veselov, D., Kudoyarova, G., & Volkov, V. (2006). The short-term growth response to salt of the developing barley leaf. Journal of Experimental Botany, 57(5), 1079 1095.

https://doi.org/10.1093/jxb/erj095

Gladkov, G., Kimeklis, A., Zverev, A., Pershina, E., Ivanova, E., Kichko, A., Andronov, E., & Abakumov, E. (2019). Soil microbiome of the postmining areas in polar ecosystems in surroundings of Nadym, Western Siberia, Russia. Open Agriculture, 4(1), 684 696. https://doi.org/10.1515/opag-2019- 0070

Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., & McConkey, B. (2007).

Promotion of Plant Growth by Bacterial ACC Deaminase. Critical Reviews in Plant Sciences, 26(5 6), 227 242.

https://doi.org/10.1080/07352680701572966

Goh, Y. K., Zoqratt, M. Z. H. M., Goh, Y. K., Ayub, Q., & Ting, A. S. Y. (2020).

Determining soil microbial communities and their influence on ganoderma disease incidences in oil palm (Elaeis guineensis) via high-throughput sequencing. Biology, 9(12), 424. https://doi.org/10.3390/biology9120424

-Sikora, E., Cichosz, M., Tretyn, A., & Wróbel, B. (2014).

16S rDNA Pyrosequencing Analysis of Bacterial Community in Heavy

Metals Polluted Soils. Microbial Ecology, 67(3), 635 647.

https://doi.org/10.1007/s00248-013-0344-7

Gros, R., Poly, F., Monrozier, L. J., & Faivre, P. (2003). Plant and soil microbial community responses to solid waste leachates diffusion on grassland. 11.

Guazzaroni, M.-E., Platero, R. A., & Silva-Rocha, R. (2018). Genomic and Postgenomic Approaches to Understand Environmental Microorganisms.

International Journal of Genomics, 2018, 4915348.

https://doi.org/10.1155/2018/4915348

Gull, A., Lone, A. A., & Wani, N. U. I. (2019). Biotic and Abiotic Stresses in Plants.

In Abiotic and Biotic Stress in Plants. IntechOpen.

https://doi.org/10.5772/intechopen.85832

Guo, J., Li, Y., Han, G., Song, J., & Wang, B. (2018). NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa. Functional Plant Biology: FPB, 45(3), 350 361. https://doi.org/10.1071/FP17181

Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants:

Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1 18. https://doi.org/10.1155/2014/701596 Hacquard, S., Spaepen, S., Garrido-Oter, R., & Schulze-Lefert, P. (2017). Interplay

Between Innate Immunity and the Plant Microbiota. Annual Review of Phytopathology, 55(1), 565 589. https://doi.org/10.1146/annurev-phyto- 080516-035623

Hamady, M., & Knight, R. (2009). Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 19(7), 1141 1152. https://doi.org/10.1101/gr.085464.108

Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., Chen, W., & Li, X. (2020).

Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. The ISME Journal, 14(8), 1915 1928. https://doi.org/10.1038/s41396-020-0648-9

Hazzouri, K. M., Flowers, J. M., Nelson, D., Lemansour, A., Masmoudi, K., &

Amiri, K. M. A. (2020). Prospects for the Study and Improvement of Abiotic Stress Tolerance in Date Palms in the Post-genomics Era. Frontiers in Plant Science, 11, 293. https://doi.org/10.3389/fpls.2020.00293

He, M., He, C.-Q., & Ding, N.-Z. (2018). Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 9, 1771. https://doi.org/10.3389/fpls.2018.01771

Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B:

Biological Sciences, 270(1512), 313 321.

https://doi.org/10.1098/rspb.2002.2218

Hering, D., Borja, A., Jones, J. I., Pont, D., Boets, P., Bouchez, A., Bruce, K., Drakare, S., Hänfling, B., Kahlert, M., Leese, F., Meissner, K., Mergen, P., Reyjol, Y., Segurado, P., Vogler, A., & Kelly, M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research, 138, 192 205.

https://doi.org/10.1016/j.watres.2018.03.003

Hollister, E. B., Engledow, A. S., Hammett, A. J. M., Provin, T. L., Wilkinson, H.

H., & Gentry, T. J. (2010). Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. The ISME Journal, 4(6), 829 838. https://doi.org/10.1038/ismej.2010.3

Hou, Y., Zeng, W., Hou, M., Wang, Z., Luo, Y., Lei, G., Zhou, B., & Huang, J.

(2021). Responses of the Soil Microbial Community to Salinity Stress in Maize Fields. Biology, 10(11). https://doi.org/10.3390/biology10111114 Hussain, N., Al-Rasbi, S., Al-Wahaibi, N., AL-Ghanum, G., & El-Sharief Abdalla,

O. (2012). Salinity problems and their management in date palm production.

In Dates: Production, Processing, Food, and Medicinal Values (pp. 87 111).

CRC Press.

Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A.

T., Creasy, H. H., Earl, A. M., FitzGerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergr

Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207 214.

https://doi.org/10.1038/nature11234

James, G. (2010). Universal Bacterial Identification by PCR and DNA Sequencing of 16S rRNA Gene. In M. Schuller, T. P. Sloots, G. S. James, C. L. Halliday, &

I. W. J. Carter (Eds.), PCR for Clinical Microbiology: An Australian and International Perspective (pp. 209 214). Springer Netherlands.

https://doi.org/10.1007/978-90-481-9039-3_28

Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene Expression Profiling of Plants under Salt Stress. Critical Reviews in Plant Sciences, 30(5), 435 458. https://doi.org/10.1080/07352689.2011.605739

Jiang, C., Zheng, Q., Liu, Z., Xu, W., Liu, L., Zhao, G., & Long, X. (2012).

Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus × Trees, 26(3), 685 694. https://doi.org/10.1007/s00468-011-0635-x

Johnson, J. S., Spakowicz, D. J., Hong, B.-Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature

Communications, 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1 Jones, P., Garcia, B. J., Furches, A., Tuskan, G. A., & Jacobson, D. (2019). Plant

Host-Associated Mechanisms for Microbial Selection. Frontiers in Plant Science, 10, 862. https://doi.org/10.3389/fpls.2019.00862

Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J.-T. (2020). An Overview of

Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. International Journal of Molecular Sciences, 21(1), 148. https://doi.org/10.3390/ijms21010148 Kebede, E., Amsalu, B., Argaw, A., & Tamiru, S. (2021). Abundance of native

rhizobia nodulating cowpea in major production areas of Ethiopia as

influenced by cropping history and soil properties. Sustainable Environment, 7(1), 1889084. https://doi.org/10.1080/27658511.2021.1889084

Kim, M., Lee, K.-H., Yoon, S.-W., Kim, B.-S., Chun, J., & Yi, H. (2013). Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era. Genomics & Informatics, 11(3), 102 113.

https://doi.org/10.5808/GI.2013.11.3.102

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., &

Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.

Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808 Knuth, L., Thomas B., R., & Schipperijn, J. (2006). Urban and peri-urban forestry

and greening in West and Central Asia. In: Contribution to the Forestry Outlook Study for West and Central Asia (FOWECA) Workshop. FAO, Rome, 5 7, 122.

Kohler, J., Caravaca, F., Carrasco, L., & Roldán, A. (2006). Contribution of

Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under

field conditions. Soil Use and Management, 22(3), 298 304.

https://doi.org/10.1111/j.1475-2743.2006.00041.x

Lee, P. Y., Costumbrado, J., Hsu, C.-Y., & Kim, Y. H. (2012). Agarose Gel Electrophoresis for the Separation of DNA Fragments. JoVE (Journal of Visualized Experiments), 62, e3923. https://doi.org/10.3791/3923

Lee, S.-H., Ka, J.-O., & Cho, J.-C. (2008). Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiology Letters, 285(2), 263 269. https://doi.org/10.1111/j.1574-6968.2008.01232.x Li, H., Wang, H., Jia, B., Li, D., Fang, Q., & Li, R. (2021). Irrigation has a higher

impact on soil bacterial abundance, diversity and composition than nitrogen fertilization. Scientific Reports, 11(1), 16901. https://doi.org/10.1038/s41598- 021-96234-6

Lima Guimarães, S., Bonfim-Silva, E. M., Fornazier Moreira, J. C., Kamila Bosa, C., Soares da Silva, S. L., & Araújo da Silva, T. J. (2015). Effects of Inoculation of Rhizobium on Nodulation and Nitrogen Accumulation in Cowpea

Subjected to Water Availabilities. American Journal of Plant Sciences, 06(09), 1378 1384. https://doi.org/10.4236/ajps.2015.69137

López-López, A., Yarza, P., Richter, M., Suárez-Suárez, A., Antón, J., Niemann, H.,

& Rosselló-Móra, R. (2010). Extremely halophilic microbial communities in anaerobic sediments from a solar saltern. Environmental Microbiology Reports, 2(2), 258 271. https://doi.org/10.1111/j.1758-2229.2009.00108.x Lyu, D., Zajonc, J., Pagé, A., Tanney, C. A. S., Shah, A., Monjezi, N., Msimbira, L.

A., Antar, M., Nazari, M., Backer, R., & Smith, D. L. (2021). Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and

Success. Microorganisms, 9(4), 675.

https://doi.org/10.3390/microorganisms9040675

Ma, B., & Gong, J. (2013). A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World Journal of Microbiology and Biotechnology, 29(12), 2325 2334. https://doi.org/10.1007/s11274-013- 1399-9

Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Frontiers in Plant Science, 11, 1750. https://doi.org/10.3389/fpls.2020.591911

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview.

Archives of Biochemistry and Biophysics, 444(2), 139 158.

https://doi.org/10.1016/j.abb.2005.10.018

Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchio, D., & Borin, S. (2013). Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils. BioMed Research International, 2013, 1 13.

https://doi.org/10.1155/2013/248078

Martínez-Hidalgo, P., Galindo-Villardón, P., Trujillo, M. E., Igual, J. M., &

Martínez-Molina, E. (2014). Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria.

Scientific Reports, 4(1), 6389. https://doi.org/10.1038/srep06389

Masmoudi, K., Aziz, M. A., Shamim, A., Sabeem, M., Hazzouri, K. M., & Amiri, K.

M. A. (2021). Metagenomics of Beneficial Microbes in Abiotic Stress Tolerance of Date Palm. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), The Date Palm Genome, Vol. 2: Omics and Molecular Breeding (pp.

203 214). Springer International Publishing. https://doi.org/10.1007/978-3- 030-73750-4_10

McCaig, A. E., Glover, L. A., & Prosser, J. I. (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 65(4), 1721 1730.

https://doi.org/10.1128/AEM.65.4.1721-1730.1999

Mehnaz, D. S., Mukhtar, S., Ishaq, A., Hassan, S., Malik, D. K. A., & Mirza, M. S.

(2017). Comparison of Microbial Communities Associated with Halophyte (Salsola stocksii) and Non-Halophyte (Triticum aestivum) Using Culture- Independent Approaches. http://localhost:8080/xmlui/handle/123456789/491 Mittal, S., Kumari, N., & Sharma, V. (2012). Differential response of salt stress on

Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry: PPB, 54, 17 26.

https://doi.org/10.1016/j.plaphy.2012.02.003

MOCCAE, 2020. (2020). Agriculture Development & Health | Knowledge | UAE Ministry of Climate Change and Environment.

https://www.moccae.gov.ae/en/knowledge-and-statistics/agricultural- development.aspx

Mokrani, S., Nabti, E., & Cruz, C. (2020). Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture.

Applied Sciences, 10(20), 7025. https://doi.org/10.3390/app10207025 Mosqueira, M. J., Marasco, R., Fusi, M., Michoud, G., Merlino, G., Cherif, A., &

Daffonchio, D. (2019). Consistent bacterial selection by date palm root

system across heterogeneous desert oasis agroecosystems. Scientific Reports, 9(1), 4033. https://doi.org/10.1038/s41598-019-40551-4

Mukhtar, S., Mehnaz, S., Mirza, M. S., Mirza, B. S., & Malik, K. A. (2018).

Diversity of Bacillus-like bacterial community in the rhizospheric and non- rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Canadian Journal of Microbiology, 64(8), 567 579. https://doi.org/10.1139/cjm-2017- 0544

Mukhtar, S., Mirza, B. S., Mehnaz, S., Mirza, M. S., Mclean, J., & Malik, K. A.

(2018). Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World Journal of Microbiology & Biotechnology, 34(9), 136. https://doi.org/10.1007/s11274-018-2509-5

Müller, H. M., Schäfer, N., Bauer, H., Geiger, D., Lautner, S., Fromm, J., Riederer, M., Bueno, A., Nussbaumer, T., Mayer, K., Alquraishi, S. A., Alfarhan, A.

H., Neher, E., Al-Rasheid, K. A. S., Ache, P., & Hedrich, R. (2017). The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. The New Phytologist, 216(1), 150 162.

https://doi.org/10.1111/nph.14672

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651 681.

https://doi.org/10.1146/annurev.arplant.59.032607.092911

Murad, A. A., Al Nuaimi, H., & Al Hammadi, M. (2007). Comprehensive

Assessment of Water Resources in the United Arab Emirates (UAE). Water Resources Management, 21(9), 1449 1463. https://doi.org/10.1007/s11269- 006-9093-4

Nabati, J., Kafi, M., Nezami, A., Rezvani Moghaddam, P., Ali, M., & Mehrjerdi, M.

Z. (2011). Effect of salinity on biomass production and activities of some key enzymatic antioxidants in Kochia (Kochia scoparia). Pakistan Journal of Botany, 43, 539 548.

Nelson, D. W., & Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis (pp. 961 1010). John Wiley &

Sons, Ltd. https://doi.org/10.2136/sssabookser5.3.c34

Ngatia, L. W., Moriasi, D., Grace III, J. M., Fu, R., Gardner, C. S., & Robert W., T.

(2020). Land Use Change Affects Soil Organic Carbon: An Indicator of Soil Health | IntechOpen. https://doi.org/10.5772/intechopen.95764

Niu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-Tolerant Plant Growth- Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress. Frontiers in Microbiology, 8, 2580. https://doi.org/10.3389/fmicb.2017.02580

Noctor, G., & Foyer, C. H. (1998). ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 249 279.

https://doi.org/10.1146/annurev.arplant.49.1.249 Ocho

Valencia, E., Arredondo, T., Beinticinco, L., Bran, D., Cea, A., Coaguila, D., Dougill, A. J., Espinosa,

(2018). Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology, 106(1), 242 253.

https://doi.org/10.1111/1365-2745.12871

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., H., Szoecs, E., & Wagner, H. (2020). vegan: Community Ecology Package (2.5-7) [Computer software]. https://CRAN.R-project.org/package=vegan Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and Molecular

Biology Reviews: MMBR, 63(2), 334 348.

https://doi.org/10.1128/MMBR.63.2.334-348.1999

Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A., & Versalovic, J. (2009).

Metagenomic Pyrosequencing and Microbial Identification. Clinical Chemistry, 55(5), 856 866. https://doi.org/10.1373/clinchem.2008.107565 Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013).

Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews. Microbiology, 11(11), 789 799.

https://doi.org/10.1038/nrmicro3109

Pitzschke, A., Forzani, C., & Hirt, H. (2006). Reactive Oxygen Species Signaling in Plants. Antioxidants & Redox Signaling, 8(9 10), 1757 1764.

https://doi.org/10.1089/ars.2006.8.1757

Dokumen terkait