Chapter 4: Conclusion
4.2 Future Research
Fluorescence microscopy study is recommended to be carried out, in order to explore the application by looking at how this non-missive drug ‘Carnosol’ interact with a breast cancer cell or better still with living cell or Hela cell.
References
[1] B. T. Nguyen and E. V. Anslyn, “Indicator–displacement assays,” Coordination Chemistry Reviews, vol. 250, no. 23, pp. 3118–3127, Dec. 2006, doi:
10.1016/j.ccr.2006.04.009.
[2] S. Sinn and F. Biedermann, “Chemical Sensors Based on Cucurbit[n]uril Macrocycles,” Israel Journal of Chemistry, vol. 58, no. 3–4, pp. 357–412, 2018, doi: 10.1002/ijch.201700118.
[3] G. Ghale and W. M. Nau, “Dynamically Analyte-Responsive Macrocyclic Host–Fluorophore Systems,” Acc. Chem. Res., vol. 47, no. 7, pp. 2150–2159, Jul. 2014, doi: 10.1021/ar500116d.
[4] T. L. Mako, J. M. Racicot, and M. Levine, “Supramolecular Luminescent Sensors,” Chem. Rev., vol. 119, no. 1, pp. 322–477, Jan. 2019, doi:
10.1021/acs.chemrev.8b00260.
[5] S. Sinn, J. Krämer, and F. Biedermann, “Teaching old indicators even more tricks: binding affinity measurements with the guest-displacement assay (GDA),” Chem. Commun., vol. 56, no. 49, pp. 6620–6623, 2020, doi:
10.1039/D0CC01841D.
[6] S. Sinn, E. Spuling, S. Bräse, and F. Biedermann, “Rational design and implementation of a cucurbit[8]uril-based indicator-displacement assay for application in blood serum,” Chemical Science, vol. 10, no. 27, pp. 6584–6593, 2019, doi: 10.1039/C9SC00705A.
[7] J. Lagona, J. C. Fettinger, and L. Isaacs, “Cucurbit[n]uril Analogues,” Org.
Lett., vol. 5, no. 20, pp. 3745–3747, Oct. 2003, doi: 10.1021/ol035468w.
[8] S. Funk and J. Schatz, “Cucurbiturils in supramolecular catalysis,” J Incl Phenom Macrocycl Chem, Nov. 2019, doi: 10.1007/s10847-019-00956-0.
[9] N. Saleh, M. B. Al-Handawi, M. S. Bufaroosha, K. I. Assaf, and W. M. Nau,
“Tuning protonation states of tripelennamine antihistamines by cucurbit[7]uril:
Tuning Protonation States of Tripelennamine,” J. Phys. Org. Chem., vol. 29, no. 2, pp. 101–106, Feb. 2016, doi: 10.1002/poc.3504.
[10] Yin H., Wang Z., Wang R. (2019) Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts. In: Liu Y., Chen Y., Zhang HY. (eds) Handbook of Macrocyclic Supramolecular Assembly. Springer, Singapore. https://doi.org/10.1007/978- 981-13-1744-6_28-1
[11] N. Saleh, Y. A. Al-Soud, L. Al-Kaabi, I. Ghosh, and W. M. Nau, “A coumarin- based fluorescent PET sensor utilizing supramolecular pKa shifts,” Tetrahedron Letters, vol. 52, no. 41, pp. 5249–5254, Oct. 2011, doi:
10.1016/j.tetlet.2011.07.138.
[12] G. Hettiarachchi et al., “Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers,” PLoS ONE, vol. 5, no. 5, p. e10514, May 2010, doi:
10.1371/journal.pone.0010514.
[13] D. Sigwalt, S. Ahlbrand, M. Zhang, B. Vinciguerra, V. Briken, and L. Isaacs,
“Acyclic Cucurbit[ n ]uril Dendrimers,” Org. Lett., vol. 17, no. 23, pp. 5914–
5917, Dec. 2015, doi: 10.1021/acs.orglett.5b03145.
[14] S. Y. Tan, C. Y. Ang, and Y. Zhao, “Smart Therapeutics Achieved via Host–
Guest Assemblies,” in Comprehensive Supramolecular Chemistry II, Elsevier, 2017, pp. 391–420.
[15] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self- Assembly of Nanoparticles,” ACS Nano, vol. 4, no. 7, pp. 3591–3605, Jul.
2010, doi: 10.1021/nn100869j.
[16] T. Minami, N. A. Esipenko, A. Akdeniz, B. Zhang, L. Isaacs, and P.
Anzenbacher, “Multianalyte Sensing of Addictive Over-the-Counter (OTC) Drugs,” J. Am. Chem. Soc., vol. 135, no. 40, pp. 15238–15243, Oct. 2013, doi:
10.1021/ja407722a.
[17] T. Minami, N. A. Esipenko, B. Zhang, L. Isaacs, and P. Anzenbacher, “‘Turn- on’ fluorescent sensor array for basic amino acids in water,” Chem. Commun., vol. 50, no. 1, pp. 61–63, 2014, doi: 10.1039/C3CC47416J.
[18] L. Isaacs, “Stimuli Responsive Systems Constructed Using Cucurbit[ n ]uril- Type Molecular Containers,” Acc. Chem. Res., vol. 47, no. 7, pp. 2052–2062, Jul. 2014, doi: 10.1021/ar500075g.
[19] P.-H. Shan et al., “Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine,” Analytica Chimica Acta, vol. 1104, pp. 164–171, Apr. 2020, doi: 10.1016/j.aca.2020.01.007.
[20] Y.-X. Chang, X.-M. Zhang, X.-C. Duan, F. Liu, and L.-M. Du,
“Supramolecular interaction of methotrexate with cucurbit[7]uril and analytical application,” Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, vol. 183, pp. 131–137, Aug. 2017, doi:
10.1016/j.saa.2017.04.060.
[21] L. Zhu, Z. Zhao, X. Zhang, H. Zhang, F. Liang, and S. Liu, “A Highly Selective and Strong Anti-Interference Host-Guest Complex as Fluorescent Probe for Detection of Amantadine by Indicator Displacement Assay,” Molecules, vol.
23, no. 4, p. 947, Apr. 2018, doi: 10.3390/molecules23040947.
[22] X. Du, H. Hao, A. Qin, and B. Z. Tang, “Highly sensitive chemosensor for detection of methamphetamine by the combination of AIE luminogen and cucurbit[7]uril,” Dyes and Pigments, vol. 180, p. 108413, Sep. 2020, doi:
10.1016/j.dyepig.2020.108413.
[23] I. Ghosh and W. M. Nau, “The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs,” Advanced Drug Delivery Reviews, vol.
64, no. 9, pp. 764–783, Jun. 2012, doi: 10.1016/j.addr.2012.01.015.
[24] T. Yin, S. Zhang, M. Li, C. Redshaw, and X.-L. Ni, “Macrocycle encapsulation triggered supramolecular pKa shift: A fluorescence indicator for detecting octreotide in aqueous solution,” Sensors and Actuators B: Chemical, vol. 281, pp. 568–573, Feb. 2019, doi: 10.1016/j.snb.2018.10.136.
[25] H. Yin et al., “A Cucurbit[8]uril 2:2 Complex with a Negative p K a Shift,”
Chem. Eur. J., vol. 25, no. 54, pp. 12552–12559, Sep. 2019, doi:
10.1002/chem.201902057.
[26] N. Barooah, J. Mohanty, H. Pal, and A. C. Bhasikuttan, “Stimulus-Responsive Supramolecular p K a Tuning of Cucurbit[7]uril Encapsulated Coumarin 6 Dye,” J. Phys. Chem. B, vol. 116, no. 12, pp. 3683–3689, Mar. 2012, doi:
10.1021/jp212459r.
[27] A. Praetorius, D. M. Bailey, T. Schwarzlose, and W. M. Nau, “Design of a Fluorescent Dye for Indicator Displacement from Cucurbiturils: A Macrocycle- Responsive Fluorescent Switch Operating through a p K a Shift,” Org. Lett., vol.
10, no. 18, pp. 4089–4092, Sep. 2008, doi: 10.1021/ol8016275.
[28] G. Fukuhara, “Analytical supramolecular chemistry: Colorimetric and
fluorimetric chemosensors,” Journal of Photochemistry and Photobiology C:
Photochemistry Reviews, vol. 42, p. 100340, Mar. 2020, doi:
10.1016/j.jphotochemrev.2020.100340.
[29] A. P. de Silva, T. S. Moody, and G. D. Wright, “Fluorescent PET
(Photoinduced Electron Transfer) sensors as potent analytical tools,” Analyst, vol. 134, no. 12, p. 2385, 2009, doi: 10.1039/b912527m.
[30] P. M. Nowak, M. Woźniakiewicz, M. P. Mitoraj, M. Garnysz, and P.
Kościelniak, “Modulation of pK a by cyclodextrins; subtle structural changes induce spectacularly different behaviors,” RSC Adv., vol. 5, no. 95, pp. 77545–
77552, 2015, doi: 10.1039/C5RA14032C.
[31] T. van Mourik, M. Bühl, and M.-P. Gaigeot, “Density functional theory across chemistry, physics and biology,” Phil. Trans. R. Soc. A., vol. 372, no. 2011, p.
20120488, Mar. 2014, doi: 10.1098/rsta.2012.0488.
[32] E. Horak, P. Kassal, and I. Murković Steinberg, “Benzimidazole as a structural unit in fluorescent chemical sensors: the hidden properties of a multifunctional heterocyclic scaffold,” Supramolecular Chemistry, vol. 30, no. 10, pp. 838–857, Oct. 2018, doi: 10.1080/10610278.2017.1403607.
[33] K. S. Alongi and G. C. Shields, “Chapter 8 - Theoretical Calculations of Acid Dissociation Constants: A Review Article,” in Annual Reports in
Computational Chemistry, vol. 6, R. A. Wheeler, Ed. Elsevier, 2010, pp. 113–
138, doi.org/10.1016/S1574-1400(10)06008-1
[34] B. Valeur, “Molecular Fluorescence Principles and Applications,” Molecular Fluorescence, p. 399, 2001. ISBNs: 3-527-60024-8, Weinheim – New York
[35] S. Birtić, P. Dussort, F.-X. Pierre, A. C. Bily, and M. Roller, “Carnosic acid,”
Phytochemistry, vol. 115, pp. 9–19, Jul. 2015, doi:
10.1016/j.phytochem.2014.12.026.
[36] Y. Al Dhaheri et al., “Carnosol Induces ROS-Mediated Beclin1-Independent Autophagy and Apoptosis in Triple Negative Breast Cancer,” PLoS ONE, vol.
9, no. 10, p. e109630, Oct. 2014, doi: 10.1371/journal.pone.0109630.
[37] J. P. Cerón-Carrasco, H. den-Haan, J. Peña-García, J. Contreras-García, and H.
Pérez-Sánchez, “Exploiting the cyclodextrins ability for antioxidants encapsulation: A computational approach to carnosol and carnosic acid
embedding,” Computational and Theoretical Chemistry, vol. 1077, pp. 65–73, Feb. 2016, doi: 10.1016/j.comptc.2015.10.028.
[38] J. Park, S.-J. Rho, and Y.-R. Kim, “Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis L.) extract by complexation with cyclic glucans,” Food Chemistry, vol. 299, p. 125119, Nov.
2019, doi: 10.1016/j.foodchem.2019.125119.
[39] M. Sun, L. Du, H. Yu, K. Zhang, Y. Liu, and S. Wang, “An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells,” Talanta, vol. 162, pp. 180–186, Jan. 2017, doi:
10.1016/j.talanta.2016.10.012.
[40] X. Jiang et al., “A mitochondria-targeted two-photon fluorescent probe for sensing and imaging pH changes in living cells,” Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, vol. 224, p. 117435, Jan. 2020, doi:
10.1016/j.saa.2019.117435.
[41] Y. Yue, F. Huo, S. Lee, C. Yin, and J. Yoon, “A review: the trend of progress about pH probes in cell application in recent years,” Analyst, vol. 142, no. 1, pp.
30–41, 2017, doi: 10.1039/C6AN01942K.
[42] E. Masson, “Biomedical Applications of Cucurbiturils and Derivatives,” in Comprehensive Supramolecular Chemistry II, Elsevier, 2017, pp. 21–45, doi.org/10.1016/B978-0-12-409547-2.12560-0
[43] A. J. Selinger and D. H. Macartney, “Cucurbit[7]uril complexations of Good’s buffers,” RSC Adv., vol. 7, no. 67, pp. 42513–42518, 2017, doi:
10.1039/C7RA08865E.
[44] R. Wang et al., “Inclusion complexes of coumarin in cucurbiturils,” Org.
Biomol. Chem., vol. 7, no. 11, p. 2435, 2009, doi: 10.1039/b903057c.
[45] S.-H. Chen, K. Jiang, Y. Xiao, X.-Y. Cao, M. Arulkumar, and Z.-Y. Wang,
“Recent endeavors on design, synthesis, fluorescence mechanisms and applications of benzazole-based molecular probes toward miscellaneous species,” Dyes and Pigments, vol. 175, p. 108157, Apr. 2020, doi:
10.1016/j.dyepig.2019.108157.
[46] N. Saleh, M. B. Al-handawi, M. S. Bufaroosha, K. I. Assaf, and W. M. Nau,
“Tuning protonation states of tripelennamine antihistamines by cucurbit [ 7 ] uril,” no. April, pp. 1–6, 2015, doi: 10.1002/poc.3504.
[47] F. Lv, Z. Li, W. Hu, and X. Wu, “Small molecules enhance functional O - mannosylation of Alpha-dystroglycan,” Bioorganic & Medicinal Chemistry, vol. 23, no. 24, pp. 7661–7670, 2015, doi: 10.1016/j.bmc.2015.11.011.
[48] L. Wang, M. Kofler, G. Brosch, J. Melesina, and W. Sippl, “2-Benzazolyl-4- Piperazin-1YlsulfonylbenzenecarbohydroxamicAcidsas
NovelSelectiveHistoneDeacetylase-6 InhibitorswithAntiproliferativeActivity,”
PLoS ONE, pp. 1–22, 2015, doi: 10.1371/journal.pone.0134556.
[49] A. I. Lazar, J. Rohacova, and W. M. Nau, “Comparison of Complexation- Induced pKa Shifts in the Ground and Excited States of Dyes as Well as
Different Macrocyclic Hosts and Their Manifestation in Host-Retarded Excited- Dye Deprotonation,” J. Phys. Chem. B, vol. 121, no. 50, pp. 11390–11398, Dec.
2017, doi: 10.1021/acs.jpcb.7b10651.
[50] H. Alsamri, H. El Hasasna, Y. Al Dhaheri, A. H. Eid, S. Attoub, and R. Iratni,
“Carnosol, a Natural Polyphenol, Inhibits Migration, Metastasis, and Tumor Growth of Breast Cancer via a ROS-Dependent Proteasome Degradation of STAT3,” Front. Oncol., vol. 9, 2019, doi: 10.3389/fonc.2019.00743.
[51] Y. Li, C.-F. Li, L.-M. Du, J.-X. Feng, H.-L. Liu, and Y.-L. Fu, “A competitive strategy based on cucurbit[7]uril supramolecular interaction for simple and sensitive detection of dibucaine,” Talanta, vol. 132, pp. 653–657, Jan. 2015, doi: 10.1016/j.talanta.2014.09.005.
[52] H. Liu, G. Fang, Q. Deng, and S. Wang, “A triple-dimensional sensing chip for discrimination of eight antioxidants based on quantum dots and graphene,”
Biosensors and Bioelectronics, vol. 74, pp. 313–317, Dec. 2015, doi:
10.1016/j.bios.2015.04.096.
List of Publications
N. Saleh, M. Bufaroosha, Z. Moussa, R. Bojesomo, H. Al-Amodi, and A. Al-Ahdal.
“Encapsulation of Cinnamic Acid by Cucurbit[7]uril for Enhancing Photoisomerization.” Molecules vol. 25, no. 16, pp. 3702, January 2020, doi.org/10.3390/molecules25163702.
Appendix
Figure 34: Variations in the fluorescence spectra (a) and UV-Visible spectral (b) of 15 μM of with the addition of up to 300 μM of CB7 indicating the encapsulation of carnosol into the cavity of CB7.
Figure 35: 1H NMR spectra of 4PBZC with CB7 (0−3.6 molar equivalents) in D2O pD 3.3 (400 MHz) with peaks indicated.
Figure 36: 1H NMR spectra of 4PBZC with CB7 (0−1 molar equivalents) and 1 Equivalent of carnosol in 50% DMSO-dand 50% D2O (400 MHz) with peaks indicated.
Figure 37: 1H NMR spectra of 4PBZC with CB7 (0−1 molar equivalents) and 1 Equivalent of carnosol in D2O pD 2.5 (400 MHz) with peaks indicated.