Chapter 5: Conclusion and Recommendations
5.2 Recommendations
Based on the findings of this study, it is recommended that:
• Future studies investigate a wider range of SBAC production variables (i.e., activation temperatures, activation time, and impregnation ratio) for optimization purposes.
• Check the effects of changing adsorption pH and temperature on adsorptivity.
• Removal of other water pollutants (heavy metals, pharmaceutically active compounds and other emerging contaminants) by carbide lime-based SBAC material should be explored.
• Recovery of SBAC after its applications in dye removal should be explored.
• Future studies should investigate the economic dimension in terms of SBAC production cost at different conditions.
• A study on the carbon footprint of SBAC production should be done to predict its potential in combating climate change and global warming.
• No effort was done in this study to assess possible leaching of chemicals from the produced SBAC material. This is an important aspect that should be considered before utilizing the material for practical applications.
• One of the limitations of the study is in the use of different amounts of sorbent (0.1 g for SBAC and 0.04 g for CAC and CS). The amounts were decided based on their equilibrium behavior but might have affected the results due to difference in sorbent/dye ratio. More studies should be conducted to display normalized behavior of all sorbents at same sorbent/dye ratio.
References
2540 solids, 2017. , in: Standard Methods For the Examination of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, 2–59. https://doi.org/10.2105/SMWW.2882.030
Abbasi, F. (2021). An overview of global water resources from a geopolitical perspective.
Geography and Human Relationships, 3(4), 424–438.
Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–
78. https://doi.org/10.1016/j.jaap.2013.02.010
Agrafioti, E., Kalderis, D., & Diamadopoulos, E. (2014). Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management, 133, 309–314.
https://doi.org/10.1016/j.jenvman.2013.12.007
Ahmad, A. A., & Alraggad, M. (2021). Preparation and Characterization of Activated Carbon Derived from Sewage Sludge for Pollutant Removal from Wastewater. In A. Al-Maktoumi, O. Abdalla, A. Kacimov, S. Zekri, M. Chen, T. Al-Hosni, & K.
Madani (Eds.), Advances in Science, Technology & Innovation. Water Resources in Arid Lands: Management and Sustainability , Springer International Publishing.
289–294. https://doi.org/10.1007/978-3-030-67028-3_24
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.
https://doi.org/10.1016/j.chemosphere.2013.10.071
Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34(4), 471–479.
https://doi.org/10.1016/0008-6223(95)00204-9
Al-Khaja, W. A., Madany, I. M., Al-Sayed, M. H., & Darwish, A. A. (1992). The mechanical and drying shrinkage properties of cement mortars containing carbide lime waste. Resources, Conservation and Recycling, 6(3), 179–190.
https://doi.org/10.1016/0921-3449(92)90029-2
Almahbashi, N., Kutty, S., Ayoub, M., Noor, A., Salihi, I., Al-Nini, A., Jagaba, A. H., Aldhawi, B., & Ghaleb, A. (2021). Optimization of Preparation Conditions of Sewage sludge based Activated Carbon. Ain Shams Engineering Journal, 12(2), 1175–1182. https://doi.org/10.1016/j.asej.2020.07.026
Al-Maktoumi, A., Abdalla, O., Kacimov, A., Zekri, S., Chen, M [Mingjie], Al-Hosni, T.,
& Madani, K. (Eds.). (2021). Advances in Science, Technology & Innovation.
Water Resources in Arid Lands: Management and Sustainability. Springer International Publishing. https://doi.org/10.1007/978-3-030-67028-3
Alothman, Z. A., Habila, M. A., & Ali, R. (Eds.) (2012). Improvement of Methylene blue removal using mixed solid waste activated carbon. Retrieved from http://www.i- asem.org/publication_conf/acem12/t5f-6.pdf. Accessed on 10/04/2022
Athalathil, S., Stüber, F., Bengoa, C., Font, J., Fortuny, A., & Fabregat, A. (2014).
Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II. Journal of Hazardous Materials, 267, 21–30.
Auta, M., & Hameed, B. H. (2014). Optimized and functionalized paper sludge activated with potassium fluoride for single and binary adsorption of reactive dyes. Journal of Industrial and Engineering Chemistry, 20(3), 830–840.
Ayeche, R., & Hamdaoui, O. (2012). Valorization of carbide lime waste, a by-product of acetylene manufacture, in wastewater treatment. Desalination and Water Treatment, 50(1-3), 87–94. https://doi.org/10.1080/19443994.2012.708547
Barry, D., Barbiero, C., Briens, C., & Berruti, F. (2019). Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass and Bioenergy, 122, 472–480. https://doi.org/10.1016/j.biombioe.2019.01.041
Beeckmans, J. M., & Ng, P. C. (1971). Pyrolyzed sewage sludge: its production and possible utility. Environmental Science & Technology, 5(1), 69–71.
https://doi.org/10.1021/es60048a004
Bhattacharjee, S., Dersel, G., Shanableh, A., Darwish, N., & Al-Samarai, M. (2020).
Challenges & opportunities of wastewater reuse privatization: a case study from Sharjah, UAE. In 2020 Advances in Science and Engineering Technology International Conferences (ASET), 1–5. IEEE.
Björklund, K., & Li, L. Y. (2017). Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge. Journal of environmental management, 197, 490-497.
Cazetta, A. L., Vargas, A. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., ... & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174(1), 117-125.
Cardoso, F. A., Fernandes, H. C., Pileggi, R. G., Cincotto, M. A., & John, V. M. (2009).
Carbide lime and industrial hydrated lime characterization. Powder Technology, 195(2), 143–149. https://doi.org/10.1016/j.powtec.2009.05.017
Chahwan, M. (2019). Water resource challenges in the United Arab Emirates. Innovation Arabia 12, 27.
Chen, H [Hui], Chen, D., & Hong, L. (2015). Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De- NOx performance of activated char. Applied Energy, 156, 767–775.
https://doi.org/10.1016/j.apenergy.2015.05.098
Deepashree, C. L., kumar j, K., Prasad, A., Zarei, M., & Gopal, S. (2013). FTIR spectroscopic studies on cleome gynandra – Comparative analysis of functional group before and after extraction. Romanian Journal of Biophysics, 22, 137–143.
Deng, W., Hu, M., Ma, J., Su, Y., & Ruan, R. (2020). Structural and functional relationships of activated char briquettes from pyrolysis of sewage sludge for methylene blue removal. Journal of Cleaner Production, 259, 120907.
https://doi.org/10.1016/j.jclepro.2020.120907
Depountis, N., Koukis, G., & Sabatakakis, N. (2009). Environmental problems associated with the development and operation of a lined and unlined landfill site: A case study demonstrating two landfill sites in Patra, Greece. Environmental Geology, 56(7), 1251–1258. https://doi.org/10.1007/s00254-008-1224-1
Devi, P., & Saroha, A. K. (2017). Utilization of sludge-based adsorbents for the removal of various pollutants: A review. The Science of the Total Environment, 578, 16–33.
https://doi.org/10.1016/j.scitotenv.2016.10.220
Djati Utomo, H., Ong, X. C., Lim, S., Ong, G., & Li, P. (2013). Thermally processed sewage sludge for methylene blue uptake. International Biodeterioration &
Biodegradation, 85, 460–465. https://doi.org/10.1016/j.ibiod.2012.12.004
El-Naas, M., El-Amri, F., Maraqa, M. A, & Abu-Jdayil, B. (2008). Management of Calcium Hydroxide Slurry at EIGC: Phase I-Characterization and Environmental Assessment. Dubai. Emirates Industrial Gases Co.
Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5(1), 601–611. https://doi.org/10.1016/j.jece.2016.12.019
Fan, X., & Zhang, X. (2008). Adsorption properties of activated carbon from sewage sludge to alkaline-black. Materials Letters, 62(10-11), 1704–1706.
https://doi.org/10.1016/j.matlet.2007.09.085
FAO. (2018). Progress on level of water stress: Global baseline for SDG 6 Indicator (CC BYNC-SA 3.0 IGO.). Rome. FAO/UN.
Farzadkia, M., & Bazrafshan, E. (2014). Lime stabilization of waste activated sludge.
Health Scope, 3(1). Retrieved from https://www.sid.ir/paper/330398/en. Accessed on 20/02/2022
Ferrentino, R., Ceccato, R., Marchetti, V., Andreottola, G., & Fiori, L. (2020). Sewage sludge hydrochar: An option for removal of methylene blue from wastewater.
Applied Sciences, 10(10), 3445. https://doi.org/10.3390/app10103445
Filho, V. A., Kulman, X. R., Vaz Tholozan, L., Felkl de Almeida, A. R., & Da Silveira Rosa, G. (2020). Preparation and characterization of activated carbon obtained from water treatment plant sludge for removal of cationic dye from wastewater.
Processes, 8(12), 1549. https://doi.org/10.3390/pr8121549
Gao, N., Kamran, K., Quan, C., & Williams, P. T. (2020). Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843. https://doi.org/10.1016/j.pecs.2020.100843
Garg, V. K., Amita, M., Kumar, R., & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust:
a timber industry waste. Dyes and Pigments, 63(3), 243–250.
Gascó, G., Méndez, A., & Gascó, J. M. (2005). Preparation of carbon-based adsorbents from sewage sludge pyrolysis to remove metals from water. Desalination, 180(1- 3), 245–251. https://doi.org/10.1016/j.desal.2005.01.006
Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. In G. Lofrano (Ed.), SpringerBriefs in molecular science, green chemistry for sustainability, 2191-5407. Emerging compounds removal from wastewater: Natural and solar based technologies / Giusy Lofrano, editor, 15–37. Springer.
https://doi.org/10.1007/978-94-007-3916-1_2
Godlewska, P., Siatecka, A., Kończak, M., & Oleszczuk, P. (2019). Adsorption capacity of phenanthrene and pyrene to engineered carbon-based adsorbents produced from sewage sludge or sewage sludge-biomass mixture in various gaseous conditions.
Bioresource Technology, 280, 421–429.
https://doi.org/10.1016/j.biortech.2019.02.021
Gómez-Pacheco, C. V., Rivera-Utrilla, J., Sánchez-Polo, M., & López-Peñalver, J. J.
(2012). Optimization of the preparation process of biological sludge adsorbents for application in water treatment. Journal of Hazardous Materials, 217-218, 76–84.
https://doi.org/10.1016/j.jhazmat.2012.02.067
Gonugunta, P., Vivekanandhan, S., Mohanty, A. K., & Misra, M. (2012). A study on synthesis and characterization of biobased carbon nanoparticles from lignin. World Journal of Nano Science and Engineering, 2(03), 148.
Hadi, P., Barford, J., & McKay, G. (2014). Selective toxic metal uptake using an e-waste- based novel sorbent–Single, binary and ternary systems. Journal of Environmental Chemical Engineering, 2(1), 332–339. https://doi.org/10.1016/j.jece.2014.01.004 Hadi, P., Xu, M., Ning, C., Sze Ki Lin, C., & McKay, G. (2015). A critical review on
preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal, 260, 895–906.
https://doi.org/10.1016/j.cej.2014.08.088
Hameed, B. H., Ahmad, A. L., & Latiff, K. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75(1), 143–149. https://doi.org/10.1016/j.dyepig.2006.05.039
Hojamberdiev, M., Kameshima, Y., Nakajima, A., Okada, K., & Kadirova, Z. (2008).
Preparation and sorption properties of materials from paper sludge. Journal of
Hazardous Materials, 151(2-3), 710–719.
https://doi.org/10.1016/j.jhazmat.2007.06.058
Hsiu-Mei, C., Ting-Chien, C., San-De, P., & Chiang, H.‑L. (2009). Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers. Journal of Hazardous Materials, 161(2-3), 1384–1390.
https://doi.org/10.1016/j.jhazmat.2008.04.102
Hu, M., Deng, W., Hu, M., Chen, G., Zhou, P., Zhou, Y., & Su, Y. (2021). Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid- phase adsorption of methylene blue. Journal of Environmental Management, 299, 113601. https://doi.org/10.1016/j.jenvman.2021.113601
Hunsom, M., & Autthanit, C. (2013). Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH. Chemical Engineering Journal, 229, 334–343.
https://doi.org/10.1016/j.cej.2013.05.120
Hussain, M. I., & Qureshi, A. S. (2020). Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environmental Science and Pollution Research, 27(10), 11213–11226. https://doi.org/10.1007/s11356-019-07522-8
Jawad, A. H., & Abdulhameed, A. S. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip
using KOH-assisted thermal activation. Energy, Ecology and Environment, 5(6), 456-469.
Jindarom, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., & Rangsunvigit, P. (2007).
Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal, 133(1-3), 239–246. https://doi.org/10.1016/j.cej.2007.02.002
Kaçan, E., & Kütahyalı, C. (2012). Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. Journal of Analytical and Applied Pyrolysis, 97, 149–157. https://doi.org/10.1016/j.jaap.2012.06.006
Kannan, N., & Sundaram, M. M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 51(1), 25–40.
Karaer, H., & Kaya, İ. (2016). Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous and Mesoporous Materials, 232, 26–38.
https://doi.org/10.1016/j.micromeso.2016.06.006
Karagöz, S., Tay, T., Ucar, S., & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource technology, 99(14), 6214-6222.
Lam, S.‑M., & Sin, J.‑C. (2019). Investigation of by-products from acetylene manufacturing for acid mine drainage remediation. Mine Water and the Environment, 38(4), 757–766. https://doi.org/10.1007/s10230-019-00640-2
Li, W, Yue, Q., Tu, P., Ma, Z., Gao, B., Li, J., & Xu, X (2011). Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge.
Chemical Engineering Journal, 178, 197–203.
https://doi.org/10.1016/j.cej.2011.10.049
Li, W.H., Yue, Q.‑Y., Gao, B.‑Y., Ma, Z.‑H., Li, Y.‑J., & Zhao, H.‑X. (2011). Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 171(1), 320–327.
https://doi.org/10.1016/j.cej.2011.04.012
Li, W , Han, Z., & Sun, D. (2021). Preparation of sludge-based activated carbon for adsorption of dimethyl sulfide and dimethyl disulfide during sludge aerobic
composting. Chemosphere, 279, 130924.
https://doi.org/10.1016/j.chemosphere.2021.130924
Li, Y., Chang, F., Huang, B., Song, Y., Zhao, H., & Wang, K. (2020). Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance
for organic compounds in sewage. Fuel, 266, 117053.
https://doi.org/10.1016/j.fuel.2020.117053
Lin, Q. H., Cheng, H., & Chen, G. Y. (2012). Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. Journal of Analytical and Applied Pyrolysis, 93, 113–119.
https://doi.org/10.1016/j.jaap.2011.10.006
Liu, C., Tang, Z., Chen, Y., Su, S., & Jiang, W. (2010). Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.
Bioresource Technology, 101(3), 1097–1101.
https://doi.org/10.1016/j.biortech.2009.09.012
Liu, L., Lin, Y., Liu, Y., Zhu, H., & He, Q. (2013). Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics. Journal of Chemical & Engineering Data, 58(8), 2248-2253. https://doi/abs/10.1021/je4003543
Liu, Y., Cheng, H., & He, Y. (2020). Application and mechanism of sludge-based activated carbon for phenol and cyanide removal from bio-treated effluent of coking wastewater. Processes, 8(1), 82. https://doi.org/10.3390/pr8010082
Liu, Y., Chen, J., Chen, M., Zhang, B., Wu, D., & Cheng, Q. (2015). Adsorption characteristics and mechanism of sewage sludge-derived adsorbent for removing sulfonated methyl phenol resin in wastewater. RSC Advances, 5(93), 76160–76169.
https://doi.org/10.1039/C5RA17125C
Lu, J., Zhang, Q., An, Q., Bu, T., Feng, Y., Chen, D., Qian, K., & Chen, H. (2022).
Preparation of activated carbon from sewage sludge using green activator and its performance on dye wastewater treatment. Environmental Technology, 1–14.
https://doi.org/10.1080/09593330.2022.2077130
Luján-Facundo, M. J., Iborra-Clar, M. I., Mendoza-Roca, J. A., Alcaina-Miranda, M. I., Maciá, A. M., Lardín, C., Pastor, L., & Claros, J. (2020). Preparation of sewage sludge–based activated carbon for hydrogen sulphide removal. Water, Air, & Soil Pollution, 231(4), 1–12. https://doi.org/10.1007/s11270-020-04518-w
Maraqa, M. A., Meetani, M., & Alhalabi, A. M. (2020). Effectiveness of conventional wastewater treatment processes in removing pharmaceutically active compounds.
IOP Conference Series: Earth and Environmental Science, 424, 12014.
https://doi.org/10.1088/1755-1315/424/1/012014
Martin, M. J., Artola, A., Balaguer, M., & Rigola, M. (2003). Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous
solutions. Chemical Engineering Journal, 94(3), 231–239.
https://doi.org/10.1016/S1385-8947(03)00054-8
Méndez, A., Barriga, S., Fidalgo, J. M., & Gascó, G. (2009). Adsorbent materials from paper industry waste materials and their use in Cu (II) removal from water. Journal
of Hazardous Materials, 165(1-3), 736–743.
https://doi.org/10.1016/j.jhazmat.2008.10.055
Méndez, A., Gascó, G., Freitas, M., Siebielec, G., Stuczynski, T., & Figueiredo, J. L.
(2005). Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chemical Engineering Journal, 108(1-2), 169–177.
https://doi.org/10.1016/j.cej.2005.01.015
Mohamed, B. A., Li, L. Y., Hamid, H., & Jeronimo, M. (2022). Sludge-based activated carbon and its application in the removal of perfluoroalkyl substances: A feasible approach towards a circular economy. Chemosphere, 294, 133707.
https://doi.org/10.1016/j.chemosphere.2022.133707
Monsalvo, V. M., Mohedano, A. F., & Rodriguez, J. J. (2011). Activated carbons from
sewage sludge. Desalination, 277(1-3), 377–382.
https://doi.org/10.1016/j.desal.2011.04.059
Murad, A. A. (2010). An overview of conventional and non-conventional water resources in arid region: Assessment and constrains of the United Arab Emirates (UAE).
Journal of Water Resource and Protection, 02(02), 181–190.
https://doi.org/10.4236/jwarp.2010.22020
Nafsun, A. I., Nasir, A. J., Mohd Jamal, M. N., Mohamad, S., Abdulrazik, A., Selva Raja, D. D., & Herz, F. (2020). Influence of activation temperature and acid concentration on sludge-based activated carbon. IOP Conference Series: Materials Science and Engineering, 736(2), 22052. https://doi.org/10.1088/1757- 899X/736/2/022052
Nunthaprechachan, T., Pengpanich, S., & Hunsom, M. (2013). Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon. Chemical Engineering Journal, 228, 263–271. https://doi.org/10.1016/j.cej.2013.04.067 Pancevska, V., & Zendelska, A. (2022). Preparation and characterization of sludge-based
activated carbon. Natural Resources and Technology, 16(1), 61–67.
https://doi.org/10.46763/NRT22161061p
Pradhan, S. (2011). Production and characterization of Activated Carbon produced from a suitable Industrial sludge (Doctoral dissertation) ,National Institute of Technology Rourkela .Republic of India.
Raheem, A., Sikarwar, V. S., He, J., Dastyar, W., Dionysiou, D. D., Wang, W., &
Zhao, M. (2018). Opportunities and challenges in sustainable treatment and resource reusing sewage sludge: A review. Chemical Engineering Journal, 337, 616–641. https://doi.org/10.1016/j.cej.2017.12.149
Rio, S., Le Coq, L., Faur, C., & Le Cloirec, P. (2006). Production of porous carbonaceous adsorbent from physical activation of sewage sludge: Application to wastewater treatment. Water Science and Technology, 53(3), 237–244.
https://doi.org/10.2166/wst.2006.102
Rio, S., Faur-Brasquet, C., Le Coq, L., Courcoux, P., & Le Cloirec, P. (2005).
Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation--application to air and water treatments.
Chemosphere, 58(4), 423–437. https://doi.org/10.1016/j.chemosphere.2004.06.003 Ros, A., Lillo-Ródenas, M. A., Fuente, E., Montes-Morán, M. A., Martín, M. J., &
Linares-Solano, A. (2006). High surface area materials prepared from sewage sludge-based precursors. Chemosphere, 65(1), 132–140.
https://doi.org/10.1016/j.chemosphere.2006.02.017
Rozada, F. (2003). Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 87(3), 221–230.
Rozada, F., Otero, M., Morán, A., & García, A. I. (2008). Adsorption of heavy metals onto sewage sludge-derived materials. Bioresource Technology, 99(14), 6332–6338.
https://doi.org/10.1016/j.biortech.2007.12.015
Rozada, F., Otero, M., Parra, J. B., Morán, A., & García, A. I. (2005). Producing adsorbents from sewage sludge and discarded tyres. Chemical Engineering Journal, 114(1-3), 161–169. https://doi.org/10.1016/j.cej.2005.08.019
Sanderson, D. (2019, August 8). UAE water resources under 'extreme stress', new report finds. The National. https://www.thenationalnews.com/uae/environment/uae- water-resources-under-extreme-stress-new-report-finds-1.895660
Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D. O., & Prasetyoko, D.
(2020). Review on recent advances of carbon-based adsorbent for methylene blue removal from waste water. Materials Today Chemistry, 16, 100233.
https://doi.org/10.1016/j.mtchem.2019.100233
Sanz-Santos, E., Álvarez-Torrellas, S., Ceballos, L., Larriba, M., Águeda, V. I., &
García, J. (2021). Application of sludge-based activated carbons for the effective adsorption of neonicotinoid pesticides. Applied Sciences, 11(7), 3087.
https://doi.org/10.3390/app11073087
Sarioglu, M., & Atay, U. A. (2006). Removal of methylene blue by using biosolid. Global Nest J, 8(2), 113–120.
Seredych, M., & Bandosz, T. J. (2007). Tobacco waste/industrial sludge-based desulfurization adsorbents: Effect of phase interactions during pyrolysis on surface activity. Environmental Science & Technology, 41(10), 3715–3721.
https://doi.org/10.1021/es0624624
Shawish, A. A., Nabhan, T., & Almadidy, A. (2019). Potable water in UAE: An overview of water characteristics and sources of contamination. J Environ Toxicol Stud, 3(2).
1–4
Sahbaz, D. A., Dandil, S., & Acikgoz, C. (2019). Removal of crystal violet dye by a novel adsorbent derived from waste active sludge used in wastewater treatment. Water Quality Research Journal, 54(4), 299–308. https://doi.org/10.2166/wqrj.2019.049 Silva, C. P., Jaria, G., Otero, M., Esteves, V. I., & Calisto, V. (2019). Adsorption of
pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon. Environmental Science and Pollution Research, 26(13), 13173–13184. https://doi.org/10.1007/s11356-019-04823-w
Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., Bhatia, D., Dhiman, J., Samuel, J., Prasad, R., & Singh, J. (2020). A sustainable paradigm of sewage sludge biochar:
Valorization, opportunities, challenges and future prospects. Journal of Cleaner Production, 269, 122259. https://doi.org/10.1016/j.jclepro.2020.122259
Smith, K. M., Fowler, G. D., Pullket, S., & Graham, N. J. D. (2009). Sewage sludge- based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43(10), 2569–2594.
https://doi.org/10.1016/j.watres.2009.02.038
Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142–156. https://doi.org/10.1016/j.envint.2008.06.009
Streit, A. F. M., Collazzo, G. C., Druzian, S. P., Verdi, R. S., Foletto, E. L., Oliveira, L. F. S., & Dotto, G. L. (2021). Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of
the beverage industry. Chemosphere, 262, 128322.
https://doi.org/10.1016/j.chemosphere.2020.128322
Takemura, S., Shibayama, A., Sato, K., & Enda, Y. (2006). Effect of calcium hydroxide addition on carbonization and activation behavior of waste phenol resin. Shigen-to- Sozai, 122(6,7), 362–367. https://doi.org/10.2473/shigentosozai.122.362
Tang, S., Tian, S., Zheng, C., & Zhang, Z [Zuotai] (2017). Effect of calcium hydroxide on the pyrolysis behavior of sewage sludge: Reaction characteristics and kinetics.
Energy & Fuels, 31(5), 5079–5087.
https://doi.org/10.1021/acs.energyfuels.6b03256
Tayim, H. A., & Al-Yazouri, A. H. (2005). Industrial wastewater treatment using local natural soil in Abu Dhabi, UAE. American Journal of Environmental Sciences, 1(3), 190–193.
UAE.gov (2021) The UAE Water Security Strategy 2036 - The Official Portal of the UAE Government. Retrieved from: https://u.ae/en/about-the-uae/strategies-initiatives- and-awards/federal-governments-strategies-and-plans/the-uae-water-security- strategy-2036. Accessed on:15/10/2022.
UAE.gov. (2021) Water - The Official Portal of the UAE Government.
https://u.ae/en/information-and-services/environment-and-energy/water-and- energy/water. Accessed on: 15/10/ 2022.
Velghe, I., Carleer, R., Yperman, J., Schreurs, S., & D'Haen, J. (2012). Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix.
Water Research, 46(8), 2783–2794. https://doi.org/10.1016/j.watres.2012.02.034 Vliet, M. T. H., Jones, E. R., Flörke, M., Franssen, W. H. P., Hanasaki, N., Wada, Y., &
Yearsley, J. R. (2021). Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2), 24020. https://doi.org/10.1088/1748-9326/abbfc3
Wang, X., Zhu, N., & Yin, B. (2008). Preparation of sludge-based activated carbon and its application in dye wastewater treatment. Journal of Hazardous Materials, 153(1- 2), 22–27. https://doi.org/10.1016/j.jhazmat.2007.08.011
Wang, X., Liang, X., Wang, Y., Wang, X., Liu, M., Yin, D., Xia, S., Zhao, J., &
Zhang, Y. (2011). Adsorption of copper (II) onto activated carbons from sewage sludge by microwave-induced phosphoric acid and zinc chloride activation.
Desalination, 278(1-3), 231–237. https://doi.org/10.1016/j.desal.2011.05.033 Wen, Q., Li, C., Cai, Z., Zhang, W., Gao, H., Chen, L., Zeng, G., Shu, X., & Zhao, Y.
(2011). Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource Technology, 102(2), 942–947.
https://doi.org/10.1016/j.biortech.2010.09.042
Wu, C., Li, L., Zhou, H., Ai, J., Zhang, H., Tao, J., Wang, D., & Zhang, W. (2021).
Effects of chemical modification on physicochemical properties and adsorption behavior of sludge-based activated carbon. Journal of Environmental Sciences (China), 100, 340–352. https://doi.org/10.1016/j.jes.2020.08.005