• Tidak ada hasil yang ditemukan

Research Implications

Chapter 4: Conclusion

4.2 Research Implications

59

60

a better option for bioimplants. The absence of grain boundaries enhances the corrosion resistance (Nair et al., 2019).

The results of the investigation of the novel material could suggest expanding the range of materials used in bio-implants, to replace the materials being used today with new enhanced materials in terms of their biocompatibility and corrosion resistance.

61

References

Nair, A., Prabhu, Y., Mendonca, J., Ryu, W. H., Park, E. S., Bhatt, J., & Vincent, S.

(2019). An experimental case study on corrosion characterization of

Cu46Zr40Ti8.5Al5.5 metallic glass. Journal of Non-Crystalline Solids, 524, 119654. https://doi.org/10.1016/j.jnoncrysol.2019.119654

Amin, M. A., Khaled, K. F., & Fadl-Allah, S. A. (2010). Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl

solutions – Experimental and theoretical studies. Corrosion Science, 52(1), 140–

151. https://doi.org/10.1016/j.corsci.2009.08.055

Ashby, M., & Greer, A. (2006). Metallic glasses as structural materials. Scripta Materialia, 54(3), 321–326. https://doi.org/10.1016/j.scriptamat.2005.09.051 G01 Committee. (n.d.). Practice for Calculation of Corrosion Rates and Related

Information from Electrochemical Measurements. ASTM International.

https://doi.org/10.1520/G0102-89R15E01

Babilas, R., Cesarz-Andraczke, K., Nowosielski, R., & Burian, A. (2014). Structure, Properties, and Crystallization of Mg-Cu-Y-Zn Bulk Metallic Glasses. Journal of Materials Engineering and Performance, 23(6), 2241–2246.

https://doi.org/10.1007/s11665-014-0972-1

Babilas, R., Cesarz-Andraczke, K., Babilas, D., & Simka, W. (2015). Structure and Corrosion Resistance of Ca50Mg20Cu30 Bulk Metallic Glasses. Journal of Materials Engineering and Performance, 24(1), 167–174.

https://doi.org/10.1007/s11665-014-1308-x

Basics of EIS: Electrochemical Research-Impedance Gamry Instruments. (n.d.).

Retrieved June 18, 2023, from https://www.gamry.com/application- notes/EIS/basics-of-electrochemical-impedance-spectroscopy/

Blair, Jenny. (2019, August 7). Scratching the surface: Metallic glass implants. retrieved 9 January 2023 from https://phys.org/news/2019-08-surface-metallic-glass-

implants.html

Buzzi, S., Jin, K., Uggowitzer, P. J., Tosatti, S., Gerber, I., & Löffler, J. F. (2006).

Cytotoxicity of Zr-based bulk metallic glasses. Intermetallics, 14(7), 729–734.

https://doi.org/10.1016/j.intermet.2005.11.003

Chang, Z., Wang, W., & Ge, Y. (2016). Preparing Zr_65Al_75Ni_10Cu_175 bulk metallic glasses based on point-line-face-body theory. Applied Optics, 55(14), 3787. https://doi.org/10.1364/AO.55.003787

62

Chen, H. S. (1980). Glassy metals. Reports on Progress in Physics, 43(4), 353–432.

https://doi.org/10.1088/0034-4885/43/4/001

Chen, M. (2011). A brief overview of bulk metallic glasses. NPG Asia Materials, 3(9), 82–90. https://doi.org/10.1038/asiamat.2011.30

Electrochemistry. (2023, March 15). Metrohm-autolab.com. https://www.metrohm- autolab.com/download/Applicationnotes/Autolab_Application_Note_COR04 Courtney, T. H. (2000). Mechanical Behavior of Materials, 2nd edn. McGraw-Hill.

Das, J., Tang, M. B., Kim, K. B., Theissmann, R., Baier, F., Wang, W. H., & Eckert, J.

(2005). “Work-Hardenable” ductile bulk metallic glass. Physical Review Letters, 94(20), 205501. https://doi.org/10.1103/PhysRevLett.94.205501

P. Duwez, Structure and Properties of Alloys Rapidly Quenched from the Liquid State, Trans. Am. Soc. Metals, 60, 1967, pp. 607-633. - references - scientific research publishing. (n.d.). Scirp.org. Retrieved June 18, 2023, from

https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=504546 Environmental Scanning Electron Microscope | Prisma E SEM - AE. (n.d.). Retrieved

June 19, 2023, from https://www.thermofisher.com/sa/en/home/electron- microscopy/products/scanning-electron-microscopes/prisma-esem.html

Finšgar, M., & Milošev, I. (2010). Inhibition of copper corrosion by 1,2,3-benzotriazole:

A review. Corrosion Science, 52(9), 2737–2749.

https://doi.org/10.1016/j.corsci.2010.05.002

Gleiter, H. (1989). Nanocrystalline materials. Progress in Materials Science, 33(4), 223–315. https://doi.org/10.1016/0079-6425(89)90001-7

Gong, P., Wang, D., Zhang, C., Wang, Y., Jamili-Shirvan, Z., Yao, K., & Wang, X.

(2022). Corrosion behavior of TiZrHfBeCu(Ni) high-entropy bulk metallic glasses in 3.5 wt. % NaCl. Npj Materials Degradation, 6(1), 77.

https://doi.org/10.1038/s41529-022-00287-5

Hasannaeimi, V., Sadeghilaridjani, M., & Mukherjee, S. (2021). Electrochemical and corrosion behavior of metallic glasses. Mdpi AG.

Khan, H., Yerramilli, A. S., D’Oliveira, A., Alford, T. L., Boffito, D. C., & Patience, G.

S. (2020). Experimental methods in chemical engineering: X‐ray diffraction spectroscopy— XRD. The Canadian Journal of Chemical Engineering, 98(6), 1255–1266. https://doi.org/10.1002/cjce.23747

63 Klement, W., Willens, R. H., & Duwez, P. (1960). Non-crystalline Structure in

Solidified Gold–Silicon Alloys. Nature, 187(4740), 869–870.

https://doi.org/10.1038/187869b0

Kumar Patel, S., Kumar Swain, B., Behera, A., & Sanjeeb Mohapatra, S. (2020).

Metallic glasses: A revolution in material science. In Metallic Glasses.

IntechOpen.

Electrochemical Impedance Spectroscopy. (2016, July 28). Engineering LibreTexts.

https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules _(Materials_Science)/Insulators/Electrochemical_Impedance_Spectroscopy Luo, Y., Jiang, Y., Zhang, P., Wang, X., Ke, H., & Zhang, P. (2020). A Novel Ni-Free

Zr-Based Bulk Metallic Glass with High Glass Forming Ability, Corrosion Resistance and Thermal Stability. Chinese Journal of Mechanical Engineering, 33(1), 65. https://doi.org/10.1186/s10033-020-00482-y

Luo, Y., Xing, L., Jiang, Y., Li, R., Lu, C., Zeng, R., Luo, J., Zhang, P., & Liu, W.

(2020). Additive Manufactured Large Zr-Based Bulk Metallic Glass Composites with Desired Deformation Ability and Corrosion Resistance. Materials, 13(3), 597. https://doi.org/10.3390/ma13030597

Telford, M. (2004). The case for bulk metallic glass. Materials Today, 7(3), 36–43.

https://doi.org/10.1016/S1369-7021(04)00124-5

Haeverbeke, M. V., Stock, M., & De Baets, B. (2022). Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application

Domains. IEEE Access, 10, 51363–51379.

https://doi.org/10.1109/ACCESS.2022.3174067

Pang, S. J., Zhang, T., Asami, K., & Inoue, A. (2002). Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Materialia, 50(3), 489–

497. https://doi.org/10.1016/S1359-6454(01)00366-4

Peter, W. H., Buchanan, R. A., Liu, C. T., Liaw, P. K., Morrison, M. L., Horton, J. A., Carmichael, C. A., & Wright, J. L. (2002). Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics, 10(11–12), 1157–1162. https://doi.org/10.1016/S0966-9795(02)00130-9

Pond, R. B. (1958). Metallic filaments and method of making same (Patent No.

2825108). In US Patent (No. 2825108).

Santos, G. A. D. (2017). The Importance of Metallic Materials as Biomaterials.

Advances in Tissue Engineering & Regenerative Medicine: Open Access, 3(1).

https://doi.org/10.15406/atroa.2017.03.00054

64

Schroers, J. (2010). Processing of Bulk Metallic Glass. Advanced Materials, 22(14), 1566–1597. https://doi.org/10.1002/adma.200902776

Schroers, J., Kumar, G., Hodges, T. M., Chan, S., & Kyriakides, T. R. (2009). Bulk metallic glasses for biomedical applications. JOM, 61(9), 21–29.

https://doi.org/10.1007/s11837-009-0128-1

Scully, J. R., Gebert, A., & Payer, J. H. (2007). Corrosion and related mechanical properties of bulk metallic glasses. Journal of Materials Research, 22(2), 302–

313. https://doi.org/10.1557/jmr.2007.0051

Shechtman, D., Blech, I., Gratias, D., & Cahn, J. W. (1984). Metallic Phase with Long- Range Orientational Order and No Translational Symmetry. Physical Review Letters, 53(20), 1951–1953. https://doi.org/10.1103/PhysRevLett.53.1951

Strange, E. H., & Pim, C. A. (1908). Process of manufacturing thin sheets, foil, strips, or ribbons of zinc, lead, or other metal or alloy (Patent No. 905758). In US

Patent (No. 905758).

Sudha, P., Tun, K. S., Nahata, A., Gupta, M., & Vincent, S. (2021). Electrochemical Characterization of a Novel Mg70Al18Zn6Ca4Y2 Low Entropy Alloy in Different Aqueous Environments. Metallurgical and Materials Transactions A, 52(6), 2549–2563. https://doi.org/10.1007/s11661-021-06247-z

Suresh, S. (1991). Cambridge solid state science series: Fatigue of materials. Cambridge University Press.

Suryanarayana, C., & Inoue, A. (2011). Bulk Metallic Glasses. CRC Press.

Suryanarayana, C. (1984). Metallic glasses. Bulletin of Materials Science, 6(3), 579–594.

https://doi.org/10.1007/BF02744086

Suryanarayana, C. (1999). Non-equilibrium processing of materials: Volume 2.

Pergamon Press.

The Circuit Description Code explained. (2016, September 30). Studylib.net.

https://studylib.net/doc/18248392/the-circuit-description-code-explained Trexler, M. M., & Thadhani, N. N. (2010). Mechanical properties of bulk metallic

glasses. Progress in Materials Science, 55(8), 759–839.

https://doi.org/10.1016/j.pmatsci.2010.04.002

Xie, C., Milošev, I., Renner, F. U., Kokalj, A., Bruna, P., & Crespo, D. (2021).

Corrosion resistance of crystalline and amorphous CuZr alloys in NaCl aqueous environment and effect of corrosion inhibitors. Journal of Alloys and Compounds, 879, 160464. https://doi.org/10.1016/j.jallcom.2021.160464

65 Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., & Qin, G. (2021). Antibacterial metals and

alloys for potential biomedical implants. Bioactive Materials, 6(8), 2569–2612.

https://doi.org/10.1016/j.bioactmat.2021.01.030

Zhang, J., Shan, G., Li, J., Wang, Y., & Shek, C. H. (2018). Structures and physical properties of two magnetic Fe-based metallic glasses. Journal of Alloys and Compounds, 747, 636–639. https://doi.org/10.1016/j.jallcom.2018.03.085

Zhang, W., Zhang, Q., Qin, C., & Inoue, A. (2008). Synthesis and properties of Cu–Zr–

Ag–Al glassy alloys with high glass-forming ability. Materials Science and Engineering: B, 148(1–3), 92–96. https://doi.org/10.1016/j.mseb.2007.09.064 Zhou, W., Zhang, C., Sheng, M., & Hou, J. (2016). Glass Forming Ability and Corrosion

Resistance of Zr-Cu-Ni-Al-Ag Bulk Metallic Glass. Metals, 6(10), 230.

https://doi.org/10.3390/met6100230

Dokumen terkait