• Tidak ada hasil yang ditemukan

Research Implications

Dalam dokumen 1 ELUCIDATION OF THE INTERACTION BETWEEN (Halaman 90-99)

Chapter 4: Conclusion

5.1 Research Implications

72

References

Akif, M., Schwager, S. L., Anthony, C. S., Czarny, B., Beau, F., Dive, V., Sturrock, E. D., & Acharya, K. R. (2011). Novel mechanism of inhibition of human angiotensin-I-converting enzyme (ACE) by a highly specific phosphinic tripeptide. Biochemical Journal, 436(1), 53–59.

Ali, A., Alzeyoudi, S. A. R., Almutawa, S. A., Alnajjar, A. N., Al Dhaheri, Y., & Vijayan, R. (2020a). Camel Hemorphins Exhibit a More Potent Angiotensin-I Converting Enzyme Inhibitory Activity than Other Mammalian Hemorphins: An In Silico and In Vitro Study.

Biomolecules, 10(3), 486. https://doi.org/10.3390/biom10030486

Ali, A., Alzeyoudi, S. A. R., Almutawa, S. A., Alnajjar, A. N., & Vijayan, R. (2020b). Molecular basis of the therapeutic properties of hemorphins. Pharmacological Research, 158, 104855.

https://doi.org/10.1016/j.phrs.2020.104855

Ali, A., Baby, B., Soman, S. S., & Vijayan, R. (2019). Molecular insights into the interaction of hemorphin and its targets. Scientific Reports, 9(1), 14747. https://doi.org/10.1038/s41598-019-50619-w

Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2–SARS-CoV- 2/SARS-CoV spike protein interface reveal unique mechanisms.

Scientific Reports, 10(1), 14214. https://doi.org/10.1038/s41598- 020-71188-3

Ayoub, M. A., & Vijayan, R. (2021). Hemorphins Targeting G Protein- Coupled Receptors. Pharmaceuticals, 14(3), 225.

https://doi.org/10.3390/ph14030225

Corradi, H. R., Schwager, S. L. U., Nchinda, A. T., Sturrock, E. D., &

Acharya, K. R. (2006). Crystal Structure of the N Domain of Human Somatic Angiotensin I-converting Enzyme Provides a Structural Basis for Domain-specific Inhibitor Design. Journal of Molecular Biology, 357(3), 964–974.

Cozier, G. E., Arendse, L. B., Schwager, S. L., Sturrock, E. D., & Acharya, K. R. (2018). Molecular Basis for Multiple Omapatrilat Binding Sites within the ACE C-Domain: Implications for Drug Design.

Journal of Medicinal Chemistry, 61(22), 10141–10154.

74

Dales, N. A., Gould, A. E., Brown, J. A., Calderwood, E. F., Guan, B., Minor, C. A., Gavin, J. M., Hales, P., Kaushik, V. K., Stewart, M., Tummino, P. J., Vickers, C. S., Ocain, T. D., & Patane, M. A.

(2002). Substrate-Based Design of the First Class of Angiotensin- Converting Enzyme-Related Carboxypeptidase (ACE2) Inhibitors.

Journal of the American Chemical Society, 124(40), 11852–11853.

Erchegyi, J., Kastin, A. J., Zadina, J. E., & Qiu, X.-D. (2009). Isolation of a heptapeptide Val-Val-Tyr-Pro-Trp-Thr-Gln (valorphin) with some opiate activity. International Journal of Peptide and Protein Research, 39(6), 477–484.

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., &

Pedersen, L. G. (1995). A smooth particle mesh Ewald method.

The Journal of Chemical Physics, 103(19), 8577–8593.

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J.

K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1.

Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749.

Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J.

R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006).

Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic nclosure for Protein− igand Complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196.

Gaglione, R., Cesaro, ., Dell’Olmo, ., Della entura, B., Casillo, ., Di Girolamo, R., Velotta, R., Notomista, E., Veldhuizen, E. J. A., Corsaro, M. M., De Rosa, C., & Arciello, A. (2019). Effects of human antimicrobial cryptides identified in apolipoprotein B depend on specific features of bacterial strains. Scientific Reports, 9(1), 6728. https://doi.org/10.1038/s41598-019-43063-3

Glämsta, E.-L., Meyerson, B., Silberring, J., Terenius, L., & Nyberg, F.

(1992). Isolation of a hemoglobin-derived opioid peptide from cerebrospinal fluid of patients with cerebrovascular bleedings.

Biochemical and Biophysical Research Communications, 184(2), 1060–1066.

Guy, J. L., Jackson, R. M., Jensen, H. A., Hooper, N. M., & Turner, A. J.

(2005). Identification of critical active-site residues in angiotensin- converting enzyme-2 (ACE2) by site-directed mutagenesis. FEBS Journal, 272(14), 3512–3520.

Haines, S. R., McCann, M. J., Grosvenor, A. J., Thomas, A., Noble, A., &

Clerens, S. (2019). ACE inhibitory peptides in standard and fermented deer velvet: An in silico and in vitro investigation. BMC Complementary and Alternative Medicine, 19(1), 350.

https://doi.org/10.1186/s12906-019-2758-3

Humphreys, D. D., Friesner, R. A., & Berne, B. J. (1994). A Multiple- Time-Step Molecular Dynamics Algorithm for Macromolecules.

The Journal of Physical Chemistry, 98(27), 6885–6892.

Karelin, A. A., Philippova, M. M., Karelina, E. V., & Ivanov, V. T. (1994).

Isolation of Endogenous Hemorphin-Related Hemoglobin Fragments from Bovine Brain. Biochemical and Biophysical Research Communications, 202(1), 410–415.

Kohmura, M., Nio, N., Kubo, K., Minoshima, Y., Munekata, E., &

Ariyoshi, Y. (1989). Inhibition of Angiotensin-converting Enzyme by Synthetic Peptides of Human β-Casein. Agricultural and Biological Chemistry, 53(8), 2107–2114.

Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling: The VSGB 2.0 Energy Model. Proteins: Structure, Function, and Bioinformatics, 79(10), 2794–2812.

Liu, R., Zhu, Y., Chen, J., Wu, H., Shi, L., Wang, X., & Wang, L. (2014).

Characterization of ACE Inhibitory Peptides from Mactra veneriformis Hydrolysate by Nano-Liquid Chromatography Electrospray Ionization Mass Spectrometry (Nano-LC-ESI-MS) and Molecular Docking. Marine Drugs, 12(7), 3917–3928.

Lubbe, L., Cozier, G. E., Oosthuizen, D., Acharya, K. R., & Sturrock, E. D.

(2020). ACE2 and ACE: Structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clinical Science, 134(21), 2851–2871.

76

Ma, F.-F., Wang, H., Wei, C.-K., Thakur, K., Wei, Z.-J., & Jiang, L.

(2019). Three Novel ACE Inhibitory Peptides Isolated From Ginkgo biloba Seeds: Purification, Inhibitory Kinetic and Mechanism. Frontiers in Pharmacology, 9, 1579.

https://doi.org/10.3389/fphar.2018.01579

Mark, P., & Nilsson, L. (2001). Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960.

Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643.

Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189.

Moayedi, A., Mora, L., Aristoy, M.-C., Hashemi, M., Safari, M., & Toldrá, F. (2017). ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid

Composition and Peptides Molecular Mass Distribution. Applied Biochemistry and Biotechnology, 181(1), 48–64.

Natesh, R., Schwager, S. L. U., Sturrock, E. D., & Acharya, K. R. (2003).

Crystal structure of the human angiotensin-converting enzyme–

lisinopril complex. Nature, 421(6922), 551–554.

Nishimura, K., & Hazato, T. (1993). Isolation and Identification of an Endogenous Inhibitor of Enkephalin-Degrading Enzymes from Bovine Spinal Cord. Biochemical and Biophysical Research Communications, 194(2), 713–719.

Sastry, G.M, Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W.

(2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer- Aided Molecular Design, 27(3), 221–234.

Schmaier, A. H. (2002). The plasma kallikrein-kinin system

counterbalances the renin-angiotensin system. Journal of Clinical Investigation, 109(8), 1007–1009.

Schrödinger Release 2021-1: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, (2021a).

Schrödinger Release 2021-1: Maestro, Schrödinger, LLC, New York, NY, (2021b).

Schrödinger Release 2021-1: Prime, Schrödinger, LLC, New York, NY, (2021c).

Schrödinger Release 2021-1: Desmond Molecular Dynamics System, D. E.

Shaw Research, New York, NY. Maestro-Desmond

Interoperability Tools, Schrödinger, New York, NY, (2021d).

Schrödinger Release 2021-1: Glide, Schrödinger, LLC, New York, NY, (2021e).

Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Souza, M. W. S. de, Lopes Junior, C. de O., & Afonso, W. de O. (2012). Analysis of whey protein hydrolysates: Peptide profile and ACE inhibitory activity. Brazilian Journal of Pharmaceutical Sciences, 48(4), 747–757.

Sun, L., Wu, S., Zhou, L., Wang, F., Lan, X., Sun, J., Tong, Z., & Liao, D.

(2017). Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni2+. Marine Drugs, 15(2), 29. https://doi.org/10.3390/md15020029

Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular &

Molecular Immunology, 17(6), 613–620.

Towler, P., Staker, B., Prasad, S. G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., Dales, N. A., Patane, M. A., &

Pantoliano, M. W. (2004). ACE2 X-Ray Structures Reveal a Large Hinge-bending Motion Important for Inhibitor Binding and

Catalysis. Journal of Biological Chemistry, 279(17), 17996–18007.

78

Wallis, M. G., Lankford, M. F., & Keller, S. R. (2007). Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. American Journal of Physiology-Endocrinology and Metabolism, 293(4), E1092–E1102.

Watermeyer, J. M., Sewell, B. T., Schwager, S. L., Natesh, R., Corradi, H.

R., Acharya, K. R., & Sturrock, E. D. (2006). Structure of Testis ACE Glycosylation Mutants and Evidence for Conserved Domain Movement ,. Biochemistry, 45(42), 12654–12663.

Watts, K. S., Dalal, P., Murphy, R. B., Sherman, W., Friesner, R. A., &

Shelley, J. C. (2010). ConfGen: A Conformational Search Method for Efficient Generation of Bioactive Conformers. Journal of Chemical Information and Modeling, 50(4), 534–546.

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

Science, 367(6483), 1260–1263.

Zhang, H., Wada, J., Hida, K., Tsuchiyama, Y., Hiragushi, K., Shikata, K., Wang, H., Lin, S., Kanwar, Y. S., & Makino, H. (2001).

Collectrin, a Collecting Duct-specific Transmembrane Glycoprotein, Is a Novel Homolog of ACE2 and Is

Developmentally Regulated in Embryonic Kidneys. Journal of Biological Chemistry, 276(20), 17132–17139.

Zhang, J., Hou, Y., Wang, Y., Wang, C., & Zhang, X. (2012). The LBFGS Quasi-Newtonian Method for Molecular Modeling Prion

AGAAAAGA Amyloid Fibrils.

https://doi.org/10.48550/ARXIV.1206.1755

Zhao, Q. Y., Sannier, F., Garreau, I., Guillochon, D., & Piot, J. M. (1994).

Inhibition and Inhibition Kinetics of Angiotensin Converting Enzyme Activity by Hemorphins, Isolated from a Peptic Bovine Hemoglobin Hydrolysate. Biochemical and Biophysical Research Communications, 204(1),216–223.

List of Publications

Jobe, A., Baby, B., Ali, A., & Vijayan, R. (2021). Identification of potential anti-obesity drug scaffolds using molecular modelling.

International Journal of Computational Biology and Drug Design, 14(2), 103-129.

https://doi.org/10.1504/IJCBDD.2021.115674

Jobe, A., & Vijayan, R. (2021). Neuropilins: C-end rule peptides and their association with nociception and COVID-19. Computational and Structural Biotechnology Journal.

https://doi.org/10.1016/j.csbj.2021.03.025

Jobe, A., & Vijayan, R. (2021). Characterization of peptide binding to the SARS-CoV-2 host factor neuropilin. Heliyon, e08251.

https://doi.org/10.1016/j.heliyon.2021.e08251

80

Appendix

IC50 values of initial peptide screening

All the purchased peptides were screened in an initial run at 0, 10, 50, 100, 200, and 500 µM. Of the eighteen peptides purchased, Hem5, LVVHem4, and camel Hem6 didn’t dissolve during sample preparation.

Table S1: IC50 values of single-run peptide screening S.No IC50 Hemorphin Peptide sequence

1 14.916 LVVHem6 LVVYPWTQR

2 21.197 Camel LVVHem5 LVVYPWTR

3 25.806 Camel LVVHem7 LVVYPWTRRF

4 25.922 Camel LVVHem6 LVVYPWTRR

5 29.264 LVVHem7 LVVYPWTQRF

6 30.333 VVHem6 VVYPWTQR

7 36.736 LVVHem5 LVVYPWTQ

8 44.074 Camel Hem7 YPWTRRF

9 44.135 Camel VVHem6 VVYPWTRR

10 51.371 Camel VVHem7 VVYPWTRRF

11 63.105 VVHem7 VVYPWTQRF

12 78.751 Camel Hem5 YPWTR

13 80.196 Hem6 YPWTQR

14 95.129 Hem7 YPWTQRF

15 No IC50 Hem4 YPWT

16 — Hem5 YPWTQ

17 — LVVHem4 LVVYPWT

18 — Camel Hem6 YPWTRR

Dalam dokumen 1 ELUCIDATION OF THE INTERACTION BETWEEN (Halaman 90-99)

Dokumen terkait