15.4 Double Integrals in Polar Coordinates
I- Change to Polar Coordinates in a Double Integral
If
f
is continuous on a polar rectangleR
given bya ≤ ≤ r b , α θ β ≤ ≤
, where0 ≤ − ≤ β α 2 π
then
( )
b( )
R
a
f x , y dA f r cos , r sin rdrd
β
α
θ θ θ
∫∫ = ∫∫
Notice that
The polar coordinates
( r , θ )
of a point are related to the rectangular coordinates( x , y )
by the equations2 2
x = r cos , θ y = r sin , θ r = x
2+ y
Ex: Evaluate
∫∫
R( 3 x + 4 y
2) dA
, where is the region in the upper half-plane bounded by the circles2
1
x
2+ y =
andx
2+ y
2= 4
. Solution( )
{ 0 1
2 24 }
R = x , y ≤ y , ≤ x + y ≤
It is the half-ring shown in Figure.
In polar coordinates
( )
{ 0 1 2 }
R = r , θ ≤ ≤ θ π , ≤ ≤ r
( ) ( )
( )
( )
2
2 2 2
0 1 2 2
2 3 2 3 4 2
0 1 0 1
2
0 0
0
3 4 3 4
3 4
7 15 7 15 1 2
2
15 15 15
7 2
2 4 2
R
r
r
x y dA r cos r sin rdrd
r cos r sin drd r cos r sin d
cos sin d cos cos d
sin sin
π
π π
π π
π
θ θ θ
θ θ θ θ θ θ
θ θ θ θ θ θ
θ θ θ π
=
=
+ = +
= + = +
= + = + −
= + − =
∫∫ ∫ ∫
∫ ∫ ∫
∫ ∫
Ex: Find the volume of the solid bounded by the plane
z = 0
and the paraboloidz = − 1 x
2− y
2. SolutionThe plane
z = 0
intersects the paraboloid in the circlex
2+ y
2= 1
,so the solid lies under the paraboloid and above the circular disk
D
given by2 2
1
x + y ≤
. The volume given by( )
V = ∫∫
Dz x , y dA
In polar coordinates is given by
R = { ( r , θ ) 0 ≤ ≤ r 1 0 , ≤ ≤ θ 2 π }
,z = − 1 x
2− y
2= − 1 r
2dA = rdrd θ
, the volume is given by( ) ( )
( ) ( )
2 1 1 2
2 3
0 0 0 0
2 4 1
1 1 1 1
2 4 0 2 4 2
1
2 2 0
r r
r r
r r
V r rdr d r r dr d
r r
θ π θ π
θ θ
π
θ θ
π π
= = = =
= = = =
=
=
= − = −
= − = − − =
∫ ∫ ∫ ∫
Notice that:
If we had used rectangular coordinates instead of polar coordinates, then we would have obtained
( )
2
2
1 1
2 2
1 1
1
x y x
x y x
V
= = −x y dy dx
=− =− −
= ∫ ∫ − −
, which is not easy to evaluate.Change to Polar Coordinates in a Double Integral (general region) If
f
is continuous on a polar region of the form( ) ( ) ( )
{
1 2}
D = r , θ α θ β ≤ ≤ , h θ ≤ ≤ r h θ
then( )
2( )( )( )
1
r h
D
f x , y dA
θ β r h θf r cos , r sin rdr d
θ α==
== θθ θ θ
=
∫∫ ∫ ∫
Rule: The area of the region
D
bounded byθ α =
,θ β =
,r = h
1( ) θ
andr = h
2( ) θ
is givenby
( )
( )( )( )
( )
( ) ( )
2 2
1
1
2 2 2
2 1
1
2 2
h h
D h
h
A D dA rdrd r d h h d
β θ β θ β
α θ α α
θ
θ θ θ θ θ
= ∫∫ = ∫ ∫ = ∫ = ∫ −
Ex: Use a double integral to find the area enclosed by one loop of the four leaved rose
r = cos ( ) 2 θ
.Solution: we see that a loop is given by the region
( ) 0 2
4 4
D = r , θ − ≤ ≤ π θ π , ≤ ≤ r cos θ
.( )
( )
2 2
4 2 4
4 0 4 0
2 4
4 4
0 0
0
2
1 1 1
2 1 4 4
2 2 4 8
cos cos
D
A D dA rdrd r d
cos d cos d sin
π θ π θ
π π
π π π
θ θ
θ θ θ θ θ θ π
− −
= = =
= = + = + =
∫∫ ∫ ∫ ∫
∫ ∫
Ex: Find the volume of the solid that lies under the paraboloid z = x
2+ y
2,above the xy -plane, and inside the cylinder x
2+ y
2= 2 x .
Solution: The volume is given by V = ∫∫
Dz x , y dA ( ) = ∫∫
D( x 2 + y 2) dA ,
where D is the disk whose boundary circle has equation x
2+ y
2= 2 x ⇒ ( x − 1 )
2+ y
2= 1 .
In polar coordinates we have ( ) 0 2
2 2
D = r , θ − ≤ ≤ π θ π , ≤ ≤ r cos θ
( )
( )
2 2
2 2 2 2 2 3
0 0
2 2
2 2
4
2 2 4 2
0 0
2 0
2 2 2
0 0
1 2
8 8
4 2
1 4
2 1 2 2 2 2 1 2 2
2
3 1
2 2 2
2 2
cos cos
D
cos
V x y dA r rdr d r dr d
r cos
d cos d d
cos cos d cos cos d
cos c
π θ π θ
π π
π θ π π
π
π π
θ θ
θ θ θ θ θ
θ θ θ θ θ θ
θ
− −
−
= + = =
+
= = =
+
= + + = + +
= + +
∫∫ ∫ ∫ ∫ ∫
∫ ∫ ∫
∫ ∫
2 2
0 0
3 1 3
4 2 2 4
2 8 2
os d sin sin
π
θ θ = θ + θ + θ
π= π
∫