Table of Basic Integrals Basic Forms
(1)
Z
xndx= 1
n+ 1xn+1, n6=−1
(2)
Z 1
xdx= ln|x|
(3)
Z
udv=uv − Z
vdu
(4)
Z 1
ax+bdx= 1
aln|ax+b|
Integrals of Rational Functions
(5)
Z 1
(x+a)2dx=− 1 x+a
(6)
Z
(x+a)ndx= (x+a)n+1
n+ 1 , n6=−1
(7)
Z
x(x+a)ndx= (x+a)n+1((n+ 1)x−a) (n+ 1)(n+ 2)
(8)
Z 1
1 +x2dx= tan−1x
(9)
Z 1
a2+x2dx= 1
atan−1 x a
(10)
Z x
a2+x2dx= 1
2ln|a2+x2|
(11)
Z x2
a2 +x2dx=x−atan−1 x a
(12)
Z x3
a2+x2dx= 1
2x2− 1
2a2ln|a2+x2|
(13)
Z 1
ax2 +bx+cdx= 2
√4ac−b2 tan−1 2ax+b
√4ac−b2
(14)
Z 1
(x+a)(x+b)dx= 1
b−alna+x
b+x, a6=b
(15)
Z x
(x+a)2dx= a
a+x + ln|a+x|
(16)
Z x
ax2+bx+cdx= 1
2aln|ax2+bx+c|− b a√
4ac−b2 tan−1 2ax+b
√4ac−b2
Integrals with Roots
(17)
Z √
x−a dx= 2
3(x−a)3/2
(18)
Z 1
√x±a dx= 2√ x±a
(19)
Z 1
√a−x dx=−2√ a−x
(20)
Z x√
x−a dx=
2a
3 (x−a)3/2+25 (x−a)5/2, or
2
3x(x−a)3/2− 154(x−a)5/2, or
2
15(2a+ 3x)(x−a)3/2 (21)
Z √
ax+b dx = 2b
3a + 2x 3
√ ax+b
(22)
Z
(ax+b)3/2 dx= 2
5a(ax+b)5/2
(23)
Z x
√x±a dx= 2
3(x∓2a)√ x±a
(24)
Z r x
a−x dx=−p
x(a−x)−atan−1
px(a−x) x−a
(25)
Z r x
a+x dx=p
x(a+x)−aln√ x+√
x+a
(26)
Z x√
ax+b dx= 2
15a2(−2b2+abx+ 3a2x2)√ ax+b
(27) Z
px(ax+b)dx= 1 4a3/2
h
(2ax+b)p
ax(ax+b)−b2ln a√
x+p
a(ax+b) i
(28) Z
px3(ax+b)dx= b
12a − b2 8a2x + x
3
px3(ax+b)+ b3 8a5/2 ln
a√
x+p
a(ax+b)
(29)
Z √
x2±a2 dx= 1 2x√
x2±a2± 1 2a2ln
x+√
x2±a2
(30)
Z √
a2−x2 dx= 1 2x√
a2−x2+ 1
2a2tan−1 x
√a2−x2
(31)
Z x√
x2±a2 dx= 1
3 x2±a23/2
(32)
Z 1
√x2 ±a2 dx= ln x+√
x2±a2
(33)
Z 1
√a2−x2 dx= sin−1 x a
(34)
Z x
√x2±a2 dx=√
x2±a2
(35)
Z x
√a2−x2 dx=−√
a2−x2
(36)
Z x2
√x2±a2 dx= 1 2x√
x2±a2∓1 2a2ln
x+√
x2±a2
(37) Z √
ax2+bx+c dx= b+ 2ax 4a
√
ax2+bx+c+4ac−b2 8a3/2 ln
2ax+b+ 2p
a(ax2+bx+c)
Z x√
ax2+bx+c dx= 1 48a5/2
2√
a√
ax2+bx+c −3b2+ 2abx+ 8a(c+ax2)
+3(b3−4abc) ln
b+ 2ax+ 2√ a√
ax2+bx+c (38)
(39)
Z 1
√ax2+bx+c dx= 1
√aln
2ax+b+ 2p
a(ax2 +bx+c)
(40)
Z x
√ax2+bx+cdx= 1 a
√
ax2+bx+c− b 2a3/2 ln
2ax+b+ 2p
a(ax2+bx+c)
(41)
Z dx
(a2+x2)3/2 = x a2√
a2+x2
Integrals with Logarithms
(42)
Z
lnax dx=xlnax−x
(43)
Z
xlnx dx= 1
2x2lnx− x2 4
(44)
Z
x2lnx dx= 1
3x3lnx− x3 9
(45)
Z
xnlnx dx=xn+1
lnx
n+ 1 − 1 (n+ 1)2
, n6=−1
(46)
Z lnax
x dx= 1
2(lnax)2
(47)
Z lnx
x2 dx =−1
x −lnx x
(48)
Z
ln(ax+b) dx=
x+ b a
ln(ax+b)−x, a6= 0
(49)
Z
ln(x2+a2)dx=xln(x2+a2) + 2atan−1 x a −2x
(50)
Z
ln(x2−a2)dx=xln(x2 −a2) +alnx+a x−a −2x
(51) Z
ln ax2+bx+c
dx= 1 a
√
4ac−b2tan−1 2ax+b
√4ac−b2−2x+
b 2a +x
ln ax2+bx+c
(52)
Z
xln(ax+b) dx= bx 2a − 1
4x2+ 1 2
x2− b2 a2
ln(ax+b)
(53)
Z
xln a2−b2x2
dx =−1
2x2 +1 2
x2− a2 b2
ln a2−b2x2
(54)
Z
(lnx)2 dx= 2x−2xlnx+x(lnx)2
(55)
Z
(lnx)3 dx=−6x+x(lnx)3−3x(lnx)2+ 6xlnx
(56)
Z
x(lnx)2 dx= x2 4 +1
2x2(lnx)2− 1 2x2lnx
(57)
Z
x2(lnx)2 dx= 2x3 27 +1
3x3(lnx)2− 2 9x3lnx
Integrals with Exponentials
(58)
Z
eax dx= 1 aeax
(59) Z √
xeax dx= 1 a
√xeax+ i√ π
2a3/2erf i√ ax
, where erf(x) = 2
√π Z x
0
e−t2dt
(60)
Z
xex dx= (x−1)ex
(61)
Z
xeax dx= x
a − 1 a2
eax
(62)
Z
x2ex dx= x2−2x+ 2 ex
(63)
Z
x2eax dx= x2
a − 2x a2 + 2
a3
eax
(64)
Z
x3ex dx= x3−3x2+ 6x−6 ex
(65)
Z
xneax dx= xneax a −n
a Z
xn−1eaxdx
(66) Z
xneax dx= (−1)n
an+1 Γ[1 +n,−ax], where Γ(a, x) = Z ∞
x
ta−1e−tdt
(67)
Z
eax2 dx=−i√ π 2√
aerf ix√ a
(68)
Z
e−ax2 dx=
√π 2√
aerf x√ a
(69)
Z
xe−ax2 dx =− 1 2ae−ax2
(70)
Z
x2e−ax2 dx= 1 4
rπ
a3erf(x√
a)− x 2ae−ax2
Integrals with Trigonometric Functions
(71)
Z
sinax dx=−1 acosax
(72)
Z
sin2ax dx= x
2 − sin 2ax 4a
(73)
Z
sin3ax dx=−3 cosax
4a +cos 3ax 12a
(74)
Z
sinnax dx=−1
acosax 2F1 1
2,1−n 2 ,3
2,cos2ax
(75)
Z
cosax dx= 1 asinax
(76)
Z
cos2ax dx= x
2 + sin 2ax 4a
(77)
Z
cos3axdx= 3 sinax
4a + sin 3ax 12a
(78) Z
cospaxdx=− 1
a(1 +p)cos1+pax×2F1
1 +p 2 ,1
2,3 +p
2 ,cos2ax
(79) Z
cosxsinx dx= 1
2sin2x+c1 =−1
2cos2x+c2 =−1
4cos 2x+c3
(80)
Z
cosaxsinbx dx = cos[(a−b)x]
2(a−b) − cos[(a+b)x]
2(a+b) , a6=b
(81) Z
sin2axcosbx dx=−sin[(2a−b)x]
4(2a−b) +sinbx
2b − sin[(2a+b)x]
4(2a+b)
(82)
Z
sin2xcosx dx= 1 3sin3x
(83)
Z
cos2axsinbx dx= cos[(2a−b)x]
4(2a−b) − cosbx
2b − cos[(2a+b)x]
4(2a+b)
(84)
Z
cos2axsinax dx=− 1
3acos3ax
(85) Z
sin2axcos2bxdx= x
4−sin 2ax
8a −sin[2(a−b)x]
16(a−b) +sin 2bx
8b −sin[2(a+b)x]
16(a+b)
(86)
Z
sin2axcos2ax dx= x
8 − sin 4ax 32a
(87)
Z
tanax dx =−1
aln cosax
(88)
Z
tan2ax dx=−x+1
atanax
(89)
Z
tannax dx= tann+1ax a(1 +n) ×2F1
n+ 1
2 ,1,n+ 3
2 ,−tan2ax
(90)
Z
tan3axdx= 1
aln cosax+ 1
2asec2ax
(91)
Z
secx dx= ln|secx+ tanx|= 2 tanh−1 tanx
2
(92)
Z
sec2ax dx = 1
atanax
(93)
Z
sec3x dx= 1
2secxtanx+1
2ln|secx+ tanx|
(94)
Z
secxtanx dx= secx
(95)
Z
sec2xtanx dx= 1 2sec2x
(96)
Z
secnxtanx dx= 1
n secnx, n6= 0
(97)
Z
cscx dx= ln tanx
2
= ln|cscx−cotx|+C
(98)
Z
csc2ax dx =−1 acotax
(99)
Z
csc3x dx=−1
2cotxcscx+1
2ln|cscx−cotx|
(100)
Z
cscnxcotx dx=−1
n cscnx, n6= 0
(101)
Z
secxcscx dx= ln|tanx|
Products of Trigonometric Functions and Mono- mials
(102)
Z
xcosx dx= cosx+xsinx
(103)
Z
xcosax dx= 1
a2 cosax+x a sinax
(104)
Z
x2cosx dx= 2xcosx+ x2 −2 sinx
(105)
Z
x2cosax dx= 2xcosax
a2 + a2x2−2 a3 sinax
(106)
Z
xncosxdx=−1
2(i)n+1[Γ(n+ 1,−ix) + (−1)nΓ(n+ 1, ix)]
(107) Z
xncosax dx = 1
2(ia)1−n[(−1)nΓ(n+ 1,−iax)−Γ(n+ 1, ixa)]
(108)
Z
xsinx dx=−xcosx+ sinx
(109)
Z
xsinax dx=−xcosax
a +sinax a2
(110)
Z
x2sinx dx= 2−x2
cosx+ 2xsinx
(111)
Z
x2sinax dx= 2−a2x2
a3 cosax+2xsinax a2
(112) Z
xnsinx dx=−1
2(i)n[Γ(n+ 1,−ix)−(−1)nΓ(n+ 1,−ix)]
(113)
Z
xcos2x dx= x2 4 + 1
8cos 2x+1
4xsin 2x
(114)
Z
xsin2x dx= x2 4 − 1
8cos 2x−1
4xsin 2x
(115)
Z
xtan2x dx=−x2
2 + ln cosx+xtanx
(116)
Z
xsec2x dx= ln cosx+xtanx
Products of Trigonometric Functions and Ex- ponentials
(117)
Z
exsinx dx= 1
2ex(sinx−cosx)
(118)
Z
ebxsinax dx= 1
a2 +b2ebx(bsinax−acosax)
(119)
Z
excosx dx= 1
2ex(sinx+ cosx)
(120)
Z
ebxcosax dx= 1
a2+b2ebx(asinax+bcosax)
(121)
Z
xexsinx dx= 1
2ex(cosx−xcosx+xsinx)
(122)
Z
xexcosx dx= 1
2ex(xcosx−sinx+xsinx)
Integrals of Hyperbolic Functions
(123)
Z
coshax dx= 1
asinhax
(124)
Z
eaxcoshbx dx=
eax
a2−b2[acoshbx−bsinhbx] a 6=b e2ax
4a + x
2 a =b
(125)
Z
sinhax dx= 1
acoshax
(126)
Z
eaxsinhbx dx=
eax
a2−b2[−bcoshbx+asinhbx] a6=b e2ax
4a −x
2 a=b
(127)
Z
tanhax dx= 1
aln coshax
(128) Z
eaxtanhbx dx=
e(a+2b)x (a+ 2b)2F1h
1 + a
2b,1,2 + a
2b,−e2bxi
−1 aeax2F1
h 1, a
2b,1 + a
2b,−e2bxi
a6=b eax−2 tan−1[eax]
a a=b
(129) Z
cosaxcoshbx dx= 1
a2+b2 [asinaxcoshbx+bcosaxsinhbx]
(130) Z
cosaxsinhbx dx = 1
a2+b2 [bcosaxcoshbx+asinaxsinhbx]
(131) Z
sinaxcoshbx dx = 1
a2+b2 [−acosaxcoshbx+bsinaxsinhbx]
(132) Z
sinaxsinhbx dx= 1
a2+b2 [bcoshbxsinax−acosaxsinhbx]
(133)
Z
sinhaxcoshaxdx= 1
4a[−2ax+ sinh 2ax]
(134) Z
sinhaxcoshbx dx= 1
b2−a2 [bcoshbxsinhax−acoshaxsinhbx]
c 2014. Fromhttp://integral-table.com, last revised June 14, 2014. This mate- rial is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose. This work is licensed under the Creative Com- mons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.