• Tidak ada hasil yang ditemukan

integral-table.pdf

N/A
N/A
Protected

Academic year: 2024

Membagikan "integral-table.pdf"

Copied!
14
0
0

Teks penuh

(1)

Table of Basic Integrals Basic Forms

(1)

Z

xndx= 1

n+ 1xn+1, n6=−1

(2)

Z 1

xdx= ln|x|

(3)

Z

udv=uv − Z

vdu

(4)

Z 1

ax+bdx= 1

aln|ax+b|

Integrals of Rational Functions

(5)

Z 1

(x+a)2dx=− 1 x+a

(6)

Z

(x+a)ndx= (x+a)n+1

n+ 1 , n6=−1

(7)

Z

x(x+a)ndx= (x+a)n+1((n+ 1)x−a) (n+ 1)(n+ 2)

(8)

Z 1

1 +x2dx= tan−1x

(9)

Z 1

a2+x2dx= 1

atan−1 x a

(2)

(10)

Z x

a2+x2dx= 1

2ln|a2+x2|

(11)

Z x2

a2 +x2dx=x−atan−1 x a

(12)

Z x3

a2+x2dx= 1

2x2− 1

2a2ln|a2+x2|

(13)

Z 1

ax2 +bx+cdx= 2

√4ac−b2 tan−1 2ax+b

√4ac−b2

(14)

Z 1

(x+a)(x+b)dx= 1

b−alna+x

b+x, a6=b

(15)

Z x

(x+a)2dx= a

a+x + ln|a+x|

(16)

Z x

ax2+bx+cdx= 1

2aln|ax2+bx+c|− b a√

4ac−b2 tan−1 2ax+b

√4ac−b2

Integrals with Roots

(17)

Z √

x−a dx= 2

3(x−a)3/2

(18)

Z 1

√x±a dx= 2√ x±a

(19)

Z 1

√a−x dx=−2√ a−x

(3)

(20)

Z x√

x−a dx=

2a

3 (x−a)3/2+25 (x−a)5/2, or

2

3x(x−a)3/2154(x−a)5/2, or

2

15(2a+ 3x)(x−a)3/2 (21)

Z √

ax+b dx = 2b

3a + 2x 3

√ ax+b

(22)

Z

(ax+b)3/2 dx= 2

5a(ax+b)5/2

(23)

Z x

√x±a dx= 2

3(x∓2a)√ x±a

(24)

Z r x

a−x dx=−p

x(a−x)−atan−1

px(a−x) x−a

(25)

Z r x

a+x dx=p

x(a+x)−aln√ x+√

x+a

(26)

Z x√

ax+b dx= 2

15a2(−2b2+abx+ 3a2x2)√ ax+b

(27) Z

px(ax+b)dx= 1 4a3/2

h

(2ax+b)p

ax(ax+b)−b2ln a√

x+p

a(ax+b) i

(28) Z

px3(ax+b)dx= b

12a − b2 8a2x + x

3

px3(ax+b)+ b3 8a5/2 ln

a√

x+p

a(ax+b)

(29)

Z √

x2±a2 dx= 1 2x√

x2±a2± 1 2a2ln

x+√

x2±a2

(4)

(30)

Z √

a2−x2 dx= 1 2x√

a2−x2+ 1

2a2tan−1 x

√a2−x2

(31)

Z x√

x2±a2 dx= 1

3 x2±a23/2

(32)

Z 1

√x2 ±a2 dx= ln x+√

x2±a2

(33)

Z 1

√a2−x2 dx= sin−1 x a

(34)

Z x

√x2±a2 dx=√

x2±a2

(35)

Z x

√a2−x2 dx=−√

a2−x2

(36)

Z x2

√x2±a2 dx= 1 2x√

x2±a2∓1 2a2ln

x+√

x2±a2

(37) Z √

ax2+bx+c dx= b+ 2ax 4a

ax2+bx+c+4ac−b2 8a3/2 ln

2ax+b+ 2p

a(ax2+bx+c)

Z x√

ax2+bx+c dx= 1 48a5/2

2√

a√

ax2+bx+c −3b2+ 2abx+ 8a(c+ax2)

+3(b3−4abc) ln

b+ 2ax+ 2√ a√

ax2+bx+c (38)

(5)

(39)

Z 1

√ax2+bx+c dx= 1

√aln

2ax+b+ 2p

a(ax2 +bx+c)

(40)

Z x

√ax2+bx+cdx= 1 a

ax2+bx+c− b 2a3/2 ln

2ax+b+ 2p

a(ax2+bx+c)

(41)

Z dx

(a2+x2)3/2 = x a2

a2+x2

Integrals with Logarithms

(42)

Z

lnax dx=xlnax−x

(43)

Z

xlnx dx= 1

2x2lnx− x2 4

(44)

Z

x2lnx dx= 1

3x3lnx− x3 9

(45)

Z

xnlnx dx=xn+1

lnx

n+ 1 − 1 (n+ 1)2

, n6=−1

(46)

Z lnax

x dx= 1

2(lnax)2

(47)

Z lnx

x2 dx =−1

x −lnx x

(6)

(48)

Z

ln(ax+b) dx=

x+ b a

ln(ax+b)−x, a6= 0

(49)

Z

ln(x2+a2)dx=xln(x2+a2) + 2atan−1 x a −2x

(50)

Z

ln(x2−a2)dx=xln(x2 −a2) +alnx+a x−a −2x

(51) Z

ln ax2+bx+c

dx= 1 a

4ac−b2tan−1 2ax+b

√4ac−b2−2x+

b 2a +x

ln ax2+bx+c

(52)

Z

xln(ax+b) dx= bx 2a − 1

4x2+ 1 2

x2− b2 a2

ln(ax+b)

(53)

Z

xln a2−b2x2

dx =−1

2x2 +1 2

x2− a2 b2

ln a2−b2x2

(54)

Z

(lnx)2 dx= 2x−2xlnx+x(lnx)2

(55)

Z

(lnx)3 dx=−6x+x(lnx)3−3x(lnx)2+ 6xlnx

(56)

Z

x(lnx)2 dx= x2 4 +1

2x2(lnx)2− 1 2x2lnx

(57)

Z

x2(lnx)2 dx= 2x3 27 +1

3x3(lnx)2− 2 9x3lnx

(7)

Integrals with Exponentials

(58)

Z

eax dx= 1 aeax

(59) Z √

xeax dx= 1 a

√xeax+ i√ π

2a3/2erf i√ ax

, where erf(x) = 2

√π Z x

0

e−t2dt

(60)

Z

xex dx= (x−1)ex

(61)

Z

xeax dx= x

a − 1 a2

eax

(62)

Z

x2ex dx= x2−2x+ 2 ex

(63)

Z

x2eax dx= x2

a − 2x a2 + 2

a3

eax

(64)

Z

x3ex dx= x3−3x2+ 6x−6 ex

(65)

Z

xneax dx= xneax a −n

a Z

xn−1eaxdx

(66) Z

xneax dx= (−1)n

an+1 Γ[1 +n,−ax], where Γ(a, x) = Z

x

ta−1e−tdt

(67)

Z

eax2 dx=−i√ π 2√

aerf ix√ a

(8)

(68)

Z

e−ax2 dx=

√π 2√

aerf x√ a

(69)

Z

xe−ax2 dx =− 1 2ae−ax2

(70)

Z

x2e−ax2 dx= 1 4

a3erf(x√

a)− x 2ae−ax2

Integrals with Trigonometric Functions

(71)

Z

sinax dx=−1 acosax

(72)

Z

sin2ax dx= x

2 − sin 2ax 4a

(73)

Z

sin3ax dx=−3 cosax

4a +cos 3ax 12a

(74)

Z

sinnax dx=−1

acosax 2F1 1

2,1−n 2 ,3

2,cos2ax

(75)

Z

cosax dx= 1 asinax

(76)

Z

cos2ax dx= x

2 + sin 2ax 4a

(77)

Z

cos3axdx= 3 sinax

4a + sin 3ax 12a

(9)

(78) Z

cospaxdx=− 1

a(1 +p)cos1+pax×2F1

1 +p 2 ,1

2,3 +p

2 ,cos2ax

(79) Z

cosxsinx dx= 1

2sin2x+c1 =−1

2cos2x+c2 =−1

4cos 2x+c3

(80)

Z

cosaxsinbx dx = cos[(a−b)x]

2(a−b) − cos[(a+b)x]

2(a+b) , a6=b

(81) Z

sin2axcosbx dx=−sin[(2a−b)x]

4(2a−b) +sinbx

2b − sin[(2a+b)x]

4(2a+b)

(82)

Z

sin2xcosx dx= 1 3sin3x

(83)

Z

cos2axsinbx dx= cos[(2a−b)x]

4(2a−b) − cosbx

2b − cos[(2a+b)x]

4(2a+b)

(84)

Z

cos2axsinax dx=− 1

3acos3ax

(85) Z

sin2axcos2bxdx= x

4−sin 2ax

8a −sin[2(a−b)x]

16(a−b) +sin 2bx

8b −sin[2(a+b)x]

16(a+b)

(86)

Z

sin2axcos2ax dx= x

8 − sin 4ax 32a

(87)

Z

tanax dx =−1

aln cosax

(10)

(88)

Z

tan2ax dx=−x+1

atanax

(89)

Z

tannax dx= tann+1ax a(1 +n) ×2F1

n+ 1

2 ,1,n+ 3

2 ,−tan2ax

(90)

Z

tan3axdx= 1

aln cosax+ 1

2asec2ax

(91)

Z

secx dx= ln|secx+ tanx|= 2 tanh−1 tanx

2

(92)

Z

sec2ax dx = 1

atanax

(93)

Z

sec3x dx= 1

2secxtanx+1

2ln|secx+ tanx|

(94)

Z

secxtanx dx= secx

(95)

Z

sec2xtanx dx= 1 2sec2x

(96)

Z

secnxtanx dx= 1

n secnx, n6= 0

(97)

Z

cscx dx= ln tanx

2

= ln|cscx−cotx|+C

(11)

(98)

Z

csc2ax dx =−1 acotax

(99)

Z

csc3x dx=−1

2cotxcscx+1

2ln|cscx−cotx|

(100)

Z

cscnxcotx dx=−1

n cscnx, n6= 0

(101)

Z

secxcscx dx= ln|tanx|

Products of Trigonometric Functions and Mono- mials

(102)

Z

xcosx dx= cosx+xsinx

(103)

Z

xcosax dx= 1

a2 cosax+x a sinax

(104)

Z

x2cosx dx= 2xcosx+ x2 −2 sinx

(105)

Z

x2cosax dx= 2xcosax

a2 + a2x2−2 a3 sinax

(106)

Z

xncosxdx=−1

2(i)n+1[Γ(n+ 1,−ix) + (−1)nΓ(n+ 1, ix)]

(12)

(107) Z

xncosax dx = 1

2(ia)1−n[(−1)nΓ(n+ 1,−iax)−Γ(n+ 1, ixa)]

(108)

Z

xsinx dx=−xcosx+ sinx

(109)

Z

xsinax dx=−xcosax

a +sinax a2

(110)

Z

x2sinx dx= 2−x2

cosx+ 2xsinx

(111)

Z

x2sinax dx= 2−a2x2

a3 cosax+2xsinax a2

(112) Z

xnsinx dx=−1

2(i)n[Γ(n+ 1,−ix)−(−1)nΓ(n+ 1,−ix)]

(113)

Z

xcos2x dx= x2 4 + 1

8cos 2x+1

4xsin 2x

(114)

Z

xsin2x dx= x2 4 − 1

8cos 2x−1

4xsin 2x

(115)

Z

xtan2x dx=−x2

2 + ln cosx+xtanx

(116)

Z

xsec2x dx= ln cosx+xtanx

(13)

Products of Trigonometric Functions and Ex- ponentials

(117)

Z

exsinx dx= 1

2ex(sinx−cosx)

(118)

Z

ebxsinax dx= 1

a2 +b2ebx(bsinax−acosax)

(119)

Z

excosx dx= 1

2ex(sinx+ cosx)

(120)

Z

ebxcosax dx= 1

a2+b2ebx(asinax+bcosax)

(121)

Z

xexsinx dx= 1

2ex(cosx−xcosx+xsinx)

(122)

Z

xexcosx dx= 1

2ex(xcosx−sinx+xsinx)

Integrals of Hyperbolic Functions

(123)

Z

coshax dx= 1

asinhax

(124)

Z

eaxcoshbx dx=



 eax

a2−b2[acoshbx−bsinhbx] a 6=b e2ax

4a + x

2 a =b

(125)

Z

sinhax dx= 1

acoshax

(14)

(126)

Z

eaxsinhbx dx=



 eax

a2−b2[−bcoshbx+asinhbx] a6=b e2ax

4a −x

2 a=b

(127)

Z

tanhax dx= 1

aln coshax

(128) Z

eaxtanhbx dx=













e(a+2b)x (a+ 2b)2F1h

1 + a

2b,1,2 + a

2b,−e2bxi

−1 aeax2F1

h 1, a

2b,1 + a

2b,−e2bxi

a6=b eax−2 tan−1[eax]

a a=b

(129) Z

cosaxcoshbx dx= 1

a2+b2 [asinaxcoshbx+bcosaxsinhbx]

(130) Z

cosaxsinhbx dx = 1

a2+b2 [bcosaxcoshbx+asinaxsinhbx]

(131) Z

sinaxcoshbx dx = 1

a2+b2 [−acosaxcoshbx+bsinaxsinhbx]

(132) Z

sinaxsinhbx dx= 1

a2+b2 [bcoshbxsinax−acosaxsinhbx]

(133)

Z

sinhaxcoshaxdx= 1

4a[−2ax+ sinh 2ax]

(134) Z

sinhaxcoshbx dx= 1

b2−a2 [bcoshbxsinhax−acoshaxsinhbx]

c 2014. Fromhttp://integral-table.com, last revised June 14, 2014. This mate- rial is provided as is without warranty or representation about the accuracy, correctness or suitability of this material for any purpose. This work is licensed under the Creative Com- mons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Referensi

Dokumen terkait

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by-nc-nd/4.0/, which permits others to

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by-nc-nd/4.0/, which permits others to

Open Access This book is distributed under the terms of the Creative Commons Attribution- Noncommercial 2.5 License http://creativecommons.org/licenses/by-nc/2.5/ which permits any

Open access This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution CC BY-NC license ﻞﻋﺎﻔﺘﻟا ةدﻮﺟ ��ﻋ ﻩﺮﺛأو ﺎ��وﺆﺷ

Under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International CC BY-NC-SA 4.0 License Chomariyah 1 Universitas Hang Tuah, Surabaya, Indonesia Copyright © 2020

This is an open access article under the CC BY-NC-ND license https://creativecommons.org/licenses/by-nc-nd/4.0 Peer-review under responsibility of the scientific committee of the 4th

This is an Open Access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License https://creativecommons.org/licenses/by-sa/4.0/ As

This is an open access article licensed under the Creative Commons Attribution-NonCommercial 4.0 International License https://creativecommons.org/licenses/by-nc/4.0/ Some Issues on