ContentslistsavailableatScienceDirect
Journal of Hazardous Materials
j ou rn a l h om epa ge :w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t
Morphology controlled bulk synthesis of disc-shaped WO 3 powder and evaluation of its photocatalytic activity for the degradation of phenols
M. Aslam
a, Iqbal M.I. Ismail
a,b, S. Chandrasekaran
a, A. Hameed
a,c,∗aCentreofExcellenceinEnvironmentalStudies(CEES),KingAbdulazizUniversity,Jeddah21589,SaudiArabia
bChemistryDepartment,FacultyofScience,KingAbdulazizUniversity,POBox80203,Jeddah21589,SaudiArabia
cNationalCentreforPhysics,Quaid-e-AzamUniversity,Islamabad44000,Pakistan
h i g h l i g h t s
•Userfriendlyprocedureforthesyn- thesisofdisc-shapedWO3.
•Superoxide anion radicals are the majorcontributorsinphotocatalytic degradationprocess.
•Electron withdrawing substituents facilitatesthedegradationprocess.
•NitriteionsareconvertedtoNO2gas in2-nitophenoldegradation.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o
Articlehistory:
Received22February2014 Receivedinrevisedform8May2014 Accepted10May2014
Availableonline16May2014
Keywords:
Disc-shapedWO3
Sunlightphotocatalysis Phenoldegradation
a b s t r a c t
Thesurfactantassistedsynthesisofdisc-shapedWO3powderanditsphotocatalyticperformancein sunlightexposureisreported.UV–visDRS,XRDandFESEMcharacterizedthesynthesizedWO3.The synthesizedpowderexhibitedabandgapof∼2.55eVwithcubiclatticeandhighcrystallinity.Thepho- tocatalyticactivityofthesynthesizedWO3 wasexaminedforthedegradationofphenol,resorcinol, 2-chlorophenoland2-nitrophenolincompletespectrumandvisiblesegmentofsunlight.Thehighly efficientdegradation/mineralizationof2-chloroand2-nitrophenolcomparedtothatofphenolandresor- cinol,underidenticalexperimentalconditions,suggestedtheregulatoryroleofsubstituentsattachedto thearomaticringindegradation/mineralizationprocess.Thetime-scaleHPLCdegradationprofiles,iden- tificationofintermediatesbyGC-MSandremovaloforganiccarbonduringthecourseofreactionwere utilizedtoapproximatethepossiblerouteofdegradation/mineralizationofphenolicsubstrates.Themea- surementoftheanionsreleasedduringthephotocatalyticprocesswasusedtoidentifythenatureofthe majoroxidants(O2•−,OH•)andthepossibleinteractionsites.Asignificantdecreaseinthephotocatalytic activityofsynthesizedWO3,∼50%,wasobservedinvisibleportionofsunlighthowever,asustained activitywasobservedintherepeatedexposures.
©2014ElsevierB.V.Allrightsreserved.
∗ Correspondingauthorat:KingAbdulazizUniversity,CenterofExcellencein EnvironmentalStudies,POBox80216,Jeddah21589,SaudiArabia.
Tel.:+966506406684.
E-mailaddresses:[email protected],[email protected] (A.Hameed).
1. Introduction
Among the advanced oxidation technologies, heterogeneous photocatalysis,basedontheilluminationofsemiconductorpow- ders for the removal of organic contaminantsfrom water, has gained particular interest [1–6]. TiO2 is the most extensively http://dx.doi.org/10.1016/j.jhazmat.2014.05.022
0304-3894/©2014ElsevierB.V.Allrightsreserved.
studiedphotocatalystforthedecontaminationofwater,however owingtoitsabsorptioncrosssectionintheUVregion;itisunableto harvestthemajorportionofsunlightandcanutilizeonly≤5%ofthe totalincidentlightradiation[7–23].As∼46%ofthesolarspectrum fallsinthevisibleregion,thewidespreadeconomicalapplicationof thistechnologyrequiresthedevelopmentofphotocatalystscapa- bleofutilizingmaximumportionofthesunlightwithoptimum activity.Amongtheexistingphotocatalysts,ZnO,havingactivity comparabletoTiO2,isthesecondmoststudiedphotocatalystfor waterdecontamination.Althoughbetterabsorptioncross-section inthesunlight;thewidebandgap,anodicdissolutionandinstability inhighlyacidicmediums,imposerestrictiononitsuse[24–27].
WO3,withabandgapbetween2.4and2.8eV,isavisiblelight responsivecatalystwithstabilityinacidicconditions,whichmakes itasuitablechoiceforthephotocatalyticdegradationoforganic pollutantsunder solarirradiation[28–30].It hasbeenreported thattheparticlemorphology,thatincludestheshapeandsize,of aparticularphotocatalyst,significantly affectsitsphotocatalytic activity[31].Flower-like WO3 assemblies, due to theirspecific hierarchical pores that served as the transport paths for light andreactants,exhibitedhighervisible-lightphotocatalyticactivity thantheparticles.Nosignificantdecreaseintheactivityofthese assemblieswasobservedaftersubsequentreuseconfirmingtheir stabilityandresistancetowardsphotocorrosion[32].Theforma- tionofdisc-shapedWO3intheformofthinfilmatFTOsubstrate, usingpoly(ethyleneglycol),isreportedintheliterature[33]how- ever,noreportregardingthebulksynthesisofdisc-shapedWO3 powderanditsphotocatalyticactivityisavailable.
Phenol andits derivatives,becauseof theirextensiveusein chemical, petrochemical and pharmaceutical industries, is the majorareamongthemostpotentialpollutants inthedischarge fromtheseindustries.Owingtotheirchemicalstabilityimpartedby resonance,phenoliccompoundsaredifficulttodegradebyconven- tionalwatertreatmenttechnologies[34].Anotherimportantaspect istheirconversionintomoretoxicchlorinatedcompoundsduring thetreatmentforbiologicaldecontaminationbychlorination.
Amongthephenolderivatives,chloroandnitrophenols,being toxicandcarcinogenic,arethemostimportantpollutants[35–38].
Owingtotheirhighsolubilityand chemical stability, nitro and chlorophenols derivatives are difficult to degrade [39,40]. The majorityofthestudiesavailableonthedegradationofphenoland itsderivativesarecarriedoutinthepresenceofTiO2.Amongthe purephotocatalystsstudied,WO3istheleaststudiedforthedegra- dationofphenolanditsderivatives.
The current study comprises of morphology-controlled bulk synthesis,characterizationandphotocatalyticactivityofthesyn- thesizeddisc-shapedWO3.Theprocedureadoptedforthesynthesis of bulkdisc-shapedWO3 is userfriendlyand entirelydifferent fromtheonementionedintheliterature[33].Thephotocatalytic performance of the synthesized powder was evaluated for the degradation of phenol, resorcinol, 2-chlorophenol (2-CP) and 2-nitrophenol(2-NP).Incomparisontopurephenol,thepossible roleofthesubstituent(electrondonatingorelectronwithdrawing) attachedtophenolderivatives onthedegradationis discussed.
Theresultsobtainedbyvariousanalyticaltools(HPLC,TOC,ICand GCMS)arecorrelatedtoestablishthemechanismofdegradation.
2. Experimentaldetails
Thedisc-shapedWO3powderwassynthesizedbychemicalpre- cipitationmethod[33]usingsodiummeta-tungstate(Analytical Grade,Sigma-Aldrich,USA)andTritonX-100(Scintillationgrade, purity>99%,BDHChemicalsLtd.,UK)asprecursorforW6+ionsand surfaceactivemediatorrespectively.Priortouseinthesynthesis, thehydratedsodiummetatungstatewasdriedatatemperature
of120◦Cinthevacuumoven(JSR,JSOF100H)overnight.Inatypi- calsynthesis,25gofanhydroussodiummeta-tungstate(moisture content≤0.01%),containing∼18.6gW6+ions,wasdissolvedinion freeMilli-Qwaterunderstirring.TritonX-100,0.01%withrespect totheweightofW6+ ions,wasaddedtotheprecursor solution undervigorousstirringforoptimummixing.Themetal/surfactant solutionwasacidifiedwiththeslowaddition(7–10drops/min)of 0.25MHNO3understirringat2000rpm(IKAEurostar20,Germany) untilpH2.Thesuspensionwasinitiallyheatedat100◦C for2h andatanelevatedtemperature(250◦C)for3h. Thesuspension wasagedovernight.Theclearandcolorlesssupernatantsolution indicatedthecompleteprecipitation.Thebulkoftheprecipitates wereremovedbyfiltrationwhiletheremainingprecipitateswere recoveredbycentrifugation.Theprecipitateswerewashedseveral timeswithhotwatertilltheneutralpHofthefiltrate.Theresid- ualsurfactantwasremovedbysuccessivewashingswithethanol andacetone(50:50)mixture.Thefinedrypowderwithshinylus- terwasinitiallydriedintheovenat120◦Candfinallycalcinedat 450◦C.
APerkinElmerUV–visdiffusereflectancespectrophotometer (DRS)equippedwithintegratingspherewasusedtorecordthe solid-stateabsorptionanddiffusereflectancespectraofthesynthe- sizedWO3discsin200–900nmwavelengthrange.Afterapplying Kubelka–Munk(K–M)transformationon%Rvalues,thebandgap ofthesynthesizedWO3 wasevaluatedbyplotting(F(R)×h)1/2 versush(photonenergy,eV).ThepowderXRDpatternsofsynthe- sizeddisc-shapedWO3discswererecordedbyXpertX-raypowder diffractometer(PhilipsPW1398)withCuK˛radiationsourcefrom 20◦to80◦(2)withasteptimeof3sandstepsizeof0.05◦.Scherer’s equationwasappliedonmainreflectionstoevaluatethecrystallite sizeofvariousphases.ThemorphologyofthesynthesizedWO3was examinedbyfieldemissionscanningelectronmicroscope(FESEM) (JEOLJSM6490-A).
The photocatalytic activity of disc-shaped WO3 was evalu- ated by exposing the catalyst-phenolic solution suspension to sunlight.Theoptimizedconcentrationoftheindividualphenolic substrate(phenol,resorcinol,2-chlorophenoland2-nitrophenol) was30ppm.Alltheexperimentswereperformedwiththecata- lystloadingof300mgbyexposing150cm3ofrespectivephenolic substrate(30ppm).Theoptimizationofcatalystloadingwasper- formed by exposing thecatalyst-phenol suspensions (150cm3) havingdifferentcatalystloadingsrangingfrom50to500mgfor afixedperiodof30min.Beyond300mg/150cm3catalystsload- ing,thedegradationcurvelostlinearitywithoutsignificantchange inthedegradationtherefore;alltheexperimentswereperformed with300mgcatalystloading.Alltheexperimentswereperformed inthesunlightilluminationof1000±100×102lxandfixedperiod ofthedaylight.The progressofdegradationprocess wasmoni- toredbydrawingthesamplesafterevery30mininthefirst2h andafter60mininthenextonehour.Thecatalystwasremoved byusing0.20mWhatmansyringefilters.Thecollectedsamples wereanalyzedbyhighperformanceliquidchromatography(HPLC), (SPD-20A,ShimadzuCorporation,Japan) using60:40Methanol- water mixtureas solvent,c18 columnand 284nmwavelength.
Thermoscientific,USA,ionchromatograph,Dionex(ICS-5000+EG EluentGenerator),wasusedtomeasurethereleasedionsduring photocatalyticprocess.TOC-VCPHtotalcarbonanalyzersupplied byShimadzuCorporation,Japan,measuredtotalOrganicCarbon (TOC)ofthesamples.SelectedsampleswereanalyzedbyGC-MS (ShimadzuCorporation,Japan,Shimadzu-QP2010Plus)equipped withRtX1capillarycolumn,fortheidentificationofunknowncom- poundsformedasintermediateduringthemineralizationprocess.
Helium(He)wasusedascarriergas.Theexperimentswereper- formed in the dark to evaluate theinteraction of catalyst and substrate.Thedirectinteractionofphotons,photolysis,withthe phenolicsubstrateswasalsoevaluated.
Fig. 1.(a) The comparison of solid state absorption spectra of synthesized disc-shapedstoichiometricWO3andnon-stoichiometricWO3:(b)thegraphical evaluationofthebandgapobtainedbyextrapolatingtheplotbetween(F(R)×h)1/2 versusphotonenergyhfordisc-shapedandnon-stoichiometricWO3.
3. Resultsanddiscussion
3.1. Characterizationofdisc-shapedWO3
Thesolid-stateabsorptionanddiffusereflectancespectraofthe discshapedWO3 incomparisonwiththatofnon-stoichiometric WO3 are presented in Fig. 1a, where a strong absorption in 300–500nm region wasobserved. The major electronic transi- tionsinWO3appearduethetransferofelectronsfromthevalance band(O2p)totheconductionband(W,4f).Thesharpabsorption edgein the absorptionspectraindicatesthewell definedcrys- tallinestructurewithhighcrystallinity.Alsothesmoothpattern oftheabsorptionandDRScurvesindicatethestochiometricWO3 withfewerdefects.Innon-stoichiometryWO3thepresenceofW5+
statesalongwithW6+states,arethesourceofdistortionandshif- tingofabsorptionbands(Fig.1).AspresentedinFig.1b,theband edgeofdisc-shapedWO3 wasidentifiedbyplottingF(R)×h)1/2 versush.F(R)wasobtainedbyapplyingKubelka–Munktransfor- mationonreflectancedata.ThebandedgeofthediscshapedWO3 appearedat∼2.55eVwhichwasinaccordancewiththeliterature values[28–30].
TheFESEMimagesofdiscshapedWO3 powderat7500×and 15,000×resolutionsarepresentedinFig.2aandb,respectively, wherethediscsofvariousdimensionsrangingfrom200to800nm (L×W)canbeobserved.Interestinglythethicknessofallthediscs wasuniformandrangedbetween35and40nm.Themeasurements ofthediscdimensionandthicknessarepresentedinFig.2candd.
TheXRDpatternsofdisc-shapedWO3 ispresentedinFig.3, whereitcanbeobservedthatallthemajorreflectionsappearin theformofsharppeaksattributedtothehighcrystallinityofsyn- thesizedWO3.Theintensereflectionsat2valuesof23.14,23.66, 24.45,33.35,41.70and44.9correspondingto(002),(020),(200), (022),(202)and(123)hklindiceswerematchedwithmonoclinic WO3(JCPDS-43-1035)thatrepresenthighlycrystallinedefectfree WO3.ThefullscaleXRDpatternshowingallthemajorandminor reflectionsandtheircorrespondinghklindicesarementionedin Fig.3.Theaveragecrystalsize evaluatedbyapplyingScherrer’s equationonthemostintensereflectionswas∼45.2nm.
3.2. Photocatalyticdegradationofphenolanditsderivatives Theinitiationofthephotocatalyticdegradationprocessrequires theenergyofincidentphotonsequaltoorhigherthanthebandgap ofthephotocatalyst.Thebandgapexcitationwiththeabsorption ofphotonsleadstothegenerationofhighlyoxidizingspeciesin theaqueousmediumthatresultsinthephotocatalyticdegrada- tionoforganiccontaminants.TheoxidationofH2Omoleculesby photogeneratedholes(h+)andreductionofdissolvedoxygenby theconduction bandelectrons(e−)resultsin thegenerationof hydroxyl(OH•)andsuperoxideanionradicals(O2•−).Aspresented inthesetofequationsbelow,theaqueousphasephotocatalytic processesarenotlimitedtotheformationoftheabovementioned oxidizingspeciesratherachainofreactionsisinitiatedgenerating avarietyofchargedneutralandionicspecies[40].
WO3+h
E≥Eg
→e−+h+ (1)H2O+h+→H2O+→HO•+H+ (2)
(O2)ads+e−→O•−2 (3)
H2O→HO−+H+ (4)
HO−+h+→HO• (5)
O•−2 +H+→HOO• (6)
O•−2 +H+→HO•2 (7)
HO•2+HO•2→H2O2+1/2O2 (8)
H2O2+H++e−→OH•+H2O (9)
For WO3, the Evb (+3.44V) supports the oxidation of water (+1.23V) by the photogenerated h+ entities and the formation of hydroxyl radicals (HO•) (Eq.(2)), however, the Ecb (+0.74V) completely negates the reduction of dissolved or adsorbed O2 tosuperoxideanions(O2•−)thatrequiresthepotentialtobeat
−0.28V (Eq.(3)).Regarding therole of photogenerated oxidiz- ingspeciesinthephotocatalyticdecontaminationprocess,until recently,thehydroxylradicalswereregardedastheprincipaloxi- dantsinphotocatalyticdegradationprocesses[18]however,lately [41]alimitedroleofhydroxylradicals(HO•)indegradationpro- cesseshasbeenreportedandapHdependentcomplexroutefor theirformationhasbeenproposed.Thesuggestedroute,involving H2O2,isasunder.
HO•2+HO•2→H2O2+1/2O2 (10) H2O2+H++e−→OH•+H2O (11) Ithasalsobeenreportedthattheformationandexistenceof particularoxidizingspeciesdependsonvariousfactorsthatinclude thepotentialofconductionbandedge,pHZPCofthephotocatalyst andpHofthemediumitself.Ingeneral,thesuitabilityofconduc- tionbandedgei.e.negativethan−0.28eV(thereductionpotential ofO2/O2•− couple)and neutralorbasic pH(≥7.0)supportsthe formationofthesuperoxideanionradicalswhereasatlowerpHval- uesfacilitatestheformationofhydroxylradicals(HO•)andH2O2
Fig.2. TheSEMprofilesofsynthesizedWO3atvariousresolutions:(a)7500×(b)15,000×(c)measureddimensionsofthediscsat30,000×and(d)measuredthicknessof thediscsat30,000×.
[41].BasedontheoxidationofadsorbedsurfaceOH−entitiesby photogeneratedholes(h+),atpHhigherthanthepHZPCofthepho- tocatalyst,analternativeroutefortheformationofOH• radicals isalsosuggestedintheliterature[42].Theproposedformationof hydroxylisscarcelypossibleintheacidicmedium.
OH−+h+→OH• (12)
The HPLC profiles for thedegradation of phenol, resorcinol, 2-chlorophenol (2-CP) and 2-nitrophenol (2-NP) are shown in Fig.4a–d,whereasignificantvariationinthetime-scaledegrada- tionofeachsubstrateaccountingtoanegligibledecreaseinthe
Fig.3. TheXRDprofilesofsynthesizedWO3discs.
concentrationofphenolandresorcinolandarapiddegradationof 2-CPand2-NPwasnoticed.Forphenolandresorcinol,owingtolow degradation,fewerintermediateswereformedwhereasthedegra- dationof2-CPledtotheaccumulationofintermediateswhilefor 2-NP,boththesubstrateandintermediateswereremovedsimul- taneously.Consideringthepeakheightsascontemporarytothe concentrationofthesubstrates,thepercentagedegradationofphe- nolanditsderivatives(resorcinol,2-CPand2-NP)wascalculated onthebasisofthedecreaseinpeakheights.
Nosignificantdecreaseintheconcentrationofphenolicsub- strates in thedark due toadsorption andin sunlight exposure withoutcatalystbecauseofdirectphotolysiswasobserved.Com- paredto∼1.85%forphenoland∼2.79%forresorcinol(Fig.5a),in theinitial30minofsunexposure,∼44%and∼62%degradationwas observedfor2-CPand2-NP,respectively.Both2-CPand2-NPwas degradedalmostcompletely(>98%)in180minofsunlightexpo- surewhereasadecreaseof∼8.4%and∼11.3%intheconcentration ofphenolandresorcinolwasobservedinthesameperiod.Therates ofdegradationofthephenolanditsderivativeswereevaluatedby usingthekineticmodelforpseudofirstorderreactionasdetailed below.
C=Coe−kt ln
Co
C
=kt
Thevaluesofrateconstant(k),0.0205min−1and0.0270min−1, for2-CPand2-NPrespectively,weresignificantlyhigherthanthat of 0.0007min−1, for phenol and resorcinol. The comparison of graphicalevaluationofrateconstantsobtainedbyplottingln(Co/C) versusthesunlightexposuretime(t)ispresentedinFig.5b.
Atrendsimilartothatofdegradationprocesswasobservedin theremovalof totalorganiccarboni.e. mineralization(Fig.6a).
0 1 2 3 4 5 6 7 8 9 10 11 12 -5
0 5 10 15 20 25 30
120 min 150 min
90 min 30 min
Peak intensity (mV)
Retention time (min)
0 min
0 1 2 3 4 5 6 7 8 9 10 11 12
-5 0 5 10 15 20 25 30
120 min 150 min
90 min 30 min
Peak intensity (mV)
Retention time (min)
0 min
0 1 2 3 4 5 6 7 8 9 10 11 12
-3 0 3 6 9 12 15
120 min 150 min
90 min 30 min
Peak intensity (mV)
Retention time (min) 0 min
0 1 2 3 4 5 6 7 8 9 10 11 12
-20 0 20 40 60 80 100
120 min 150 min
90 min 30 min
Peak intensity (mV)
Retention time (min) 0 min
a b
c d
Fig.4. TheHPLCprofilesforthedegradation(a)phenol(b)resorcinol(c)2-chlorophenoland(d)2-nitrophenolinsunlightexposureatthecatalystloadingof300mg suspendedin150mloftherespectivephenolsolution.
Nevertheless, compared to percentage degradation, a low TOC removalwasobservedforallsubstrates.Comparedtothepercent- agedegradationof∼1.85%,∼2.79%,∼44%and∼62%,aTOCremoval of∼0.5%,∼1.58%,∼34%and∼47%wereobservedforphenol,resor- cinol,2-CPand2-NPrespectively.Similarly,alowTOCremovalrate (Fig.6b),comparedtothatofdegradation,wasobservedforallthe substrates.
Theoretically,owingtotheelectrochemicalpotentialofband edgesespecially theconduction band edge,WO3 is completely unableto reduce the adsorbed/dissolvedoxygen tosuperoxide anionradicals.However,theobservedhighdegradationandminer- alizationof2-CPand2-NPsuggestedtheinvolvementofsuperoxide anionsinboththeprocesses.Additionally,thesluggishdegradation andmineralizationofphenolandresorcinolalsodepictsthatthe majorityoxidizingspeciesthatareproducedunderillumination arechargedinnatureandunabletoattackelectronrichresonance stabilizedphenolandresorcinol.Alsotherapiddegradationof2-CP
and2-NPwhereas,thelowdegradationofresorcinolproposedthat thepresenceofchloroandnitrogroupsfacilitateswhilehydroxyl groupretardthedegradationprocess.
The observations discussed above suggest that besides the suitability of conduction band edge for the reduction of O2
(dissolved or adsorbed), some alternative mechanism for the delivery of photogenerated ecb− to adsorbed/dissolved O2 also prevails. During the photocatalytic degradation experiments, it was noticeable that the color of WO3 powder changes from yellowto greenish withthe absorptionof photons. The obser- vation was similar to that observed in our previous studies [43–46]. WO3 is well known for its photo-chromic properties andmostlyexistsinslightlydistortedmonoclinicstructurecom- posedofWO6 octahedraarrangedinedgesharingconfiguration [47]. The stochiometric arrangement in which all the tungsten atomspossess6+oxidationstatesimpartsyellowcolortoWO3. In thesunlight exposure, theelectronic transitions initiated by
0 1 2 3 4 5
0 20 40 60 80 100 120 140 160 180 200
ln (Co/C)
Sunlight exposure me (min)
Phenol Resorcinol 2-CP 2-NP 0 20 40 60 80 100 120
30 60 90 120 150 180
Degradaon (%)
Sunlight exposure me (min)
Phenol Resorcinol 2-CP 2-NP
a
b
Fig.5.Thecomparisonof(a)time-scalepercentagedegradationofphenoland itsderivativesevaluatedfromHPLCprofiles(b)thegraphicalevaluationofrate constantsforthedegradationphenolanditsderivativesinsunlightexposureatthe catalystloadingof300mgsuspendedin150ml(30ppm)oftherespectivephenol solution.
theabsorptionofphotonshavingenergyhigherthanthebandgap ofWO3, weakensthetungsten-oxygen bondthat resultsinthe creation of defect sites as presented in the equation below.
The formation of defects composedof W5+ states not only impartsthegreenishappearance,butalsoservesaselectrontrap centers.Amongtheoxidationstatesoftungsten,4+and6+oxida- tionstatesareregardedasmorestable.The4+and6+oxidation statesarestabilizedbytheunpairedelectronsin 5dorbitaland thehybridizationof5dand6sorbits.Therefore,Itisproposedthat thesephotogenerateddefectscomposedofW5+statesareresponsi- bleforthegenerationofO2•−anionsevenintheabsenceofsuitable conductionbandedge.TheW5+states,beingshortlivesduetoelec- tronicconsiderations,facilitatethedisbursementofelectronstoO2 toformsuperoxideanionradicalsfollowingapathwaysimilarto
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0 20 40 60 80 100 120 140 160 180 200 ln (Co/C)
Sunlight exposure me (min)
Phenol Resorcinol 2-CP 2-NP 0
20 40 60 80 100 120
30 60 90 120 150 180
TOC removal (%)
Sunlight exposure me (min)
Phenol Resorcinol 2-CP 2-NP
b a
Fig.6.Thecomparisonof(a)time-scalepercentageTOCremovalofphenolandits derivatives(s)(b)thegraphicalevaluationofrateconstantsfortheTOCremovalof variousphenolicsubstratesinsunlightexposureatthecatalystloadingof300mg suspendedin150ml(30ppm)ofrespectivephenolsolution.
thatproposedforTiO2 [48].Theplausiblemechanismisdetailed below.
Thiseffectwasmorepronouncedinthecompletespectrumof thesunlightasasignificantdecreaseinthedegradationandminer- alizationof2-NPwasobservedinthevisibleportionofthesunlight.
ThisobservationledtotheconclusionthatthepopulationofW5+
baseddefectsisstronglydependant onphotonenergyand pro- nouncedwiththeabsorptionofUVphotonsofsunlight.
Asthemobilityofsuperoxideanionradicalsiswellreported [49],itcanbespeculatedthatO2•−radicals,immediatelyafterfor- mation,leavethesurfaceofWO3 anddiffusedintothebulk.To verifythedependenceofsuperoxideformationonthepHduring photocatalyticdegradation processes,thechanges inpHduring thecourseofthereactionweremeasuredandpresentedinFig.7.
For all thesubstrates,thevariation of pHfrom 5.5 to7.5 sup- portstheformationand existenceof superoxideanionradicals.
Thecomparisonofthedegradationbehaviorofphenolicsubstrates
4.5 5 5.5 6 6.5 7 7.5 8
0 30 60 90 120 150 180
pH
Sunlight exposure me (min)
Phenol Resorcinol 2-CP 2-NP
Fig.7. ThecomparisonofpHchangesduringthedegradationofvariouspheno- licsubstratesinsunlightexposureatthecatalystloadingof300mgsuspendedin 150ml(30ppm)oftherespectivephenolsolution.
(HPLCdegradationand TOC removalprofiles) alsosuggeststhe involvementofchargedreactivespecieslikeO2•−inthedegrada- tionandremovalprocessratherthanhydroxylradicals.
AsevidentfromHPLCdegradationprofilesofallthesubstrates, the interaction of superoxide anion radicals, being charged in nature,is selectivetowardsphenolanditsderivatives.Possibly, thenatureofthesubstituentattachedtothearomaticsystemplay avitalrolein thedegradationprocess.In theaqueousmedium, phenolanditsderivativesdissociatetoH+alongandphenoxide anions.Thedelocalizationofexcessivenegativegenerateddueto thereleaseofH+ionsonthearomaticringisthedominantsource ofstabilizationforphenoxideanions.
Asdemonstratedintheresonancestructuresabove,thedelocal- izationimpartsexcessiveelectronstothearomaticring,generating thenegativelycharged activesitesthat canfacilitatestheelec- trophilicattackonly[50]while,inaqueousphasephotocatalytic processeseithernegativelychargedorneutralradicalspeciesare generated.AsperexperimentalevidencesbasedonHPLC/TOCpro- filesandtheidentificationoftheintermediatesbyGC–MS,itcan beapproximatedthatnegativelychargedO2•−arethemajorcon- tributor both in degradation and mineralization process which signifiesthenucleophilicinteractionsratherthanelectrophilic.This factemphasizesthevitalroleofthesubstituentsattachedtothe phenolicstructureinitiallyinthedegradationprocess(lossofaro- maticity)and finally in themineralizationprocess. Thisis well establishedthatthepresence ofsubstituents ontheringeither enhancesorreducesthemagnitudeofnegativechargeonthering byinductiveeffect.Theextentoftheinductiveeffectdependson thenatureandarrangementoftheconstituentatomsthatimparts
“electron-withdrawing”and“electron-donating”propertytothe substituents.Electron-donatinggroupsenhancethemagnitudeof negativechargeonthearomaticringbycontributingtheelectrons (+I)whileelectron-withdrawinggroupsreduceitby−Ieffect.How- everinboththecasesanoverallnegativechargesustainonthering.
Anotherinterestingfeatureoftheelectron-withdrawing groups, beingcomposedofelectronegativeatoms,istheinductionoflocal- izedpartialpositivechargeontheattachedcarbonatom.Thiseffect isobservabledue tothedistortionof theelectroniccloudfrom
Fig.8. ThecomparisonofICprofilesforthereleaseofCl−,ClO2−andClO3−ions inthesolution,atregularintervals,duringthedegradationof2-chlorophenolin sunlightexposureatthecatalystloadingof300mgofsynthesizeddiscshapedWO3
suspendedin150ml(30ppm)of2-chlorophenolsolution.
theattachingcarbonatomtowardstheelectronegativeatoms.The presenceofthepartialpositivechargeontheelectron-withdrawing groupbearingcarbonatomprovidestheinteractionpointtothe attackingO2•−radicalscausingthedisplacementoftheelectron- withdrawinggroups that resultsin thelossof aromaticitythus degradingthephenolsubstrate.UnlikeSN2mechanism,theinter- actionofO2•−radicalsnotonlydisplacetheelectron-withdrawing groupsasnegativelychargedanionsbutalsocleavethearomatic systemleadingtooxygenatedintermediates.Ontheotherhand, theelectrondonatinggroupsbeingcomposedoflesselectronega- tivegroupsfailtoinducesuchtypeofchargeseparationthatresults intheaccumulationofexcessnegativechargeonthering.Phenol andresorcinollackthepropertyofinducingchargeseparationthus alowdegradationwasobservedduethenon-availabilityofactive sitesforO2•−attack.Ontheotherhand,thechargeseparationin 2-CPand2-NPfacilitatesthedegradationprocess.Thehighdegra- dationrateof2-NPcomparedto2-CPalsoconfirmshigherliability ofNO2thanClgroup.
Thetime-scalerelease ofCl− ions,asmeasuredbyionchro- matography,inthesolutionduringthephotocatalyticdegradation of2-CP(Fig.8)furtherstrengthentheviewthatthedegradation of phenolderivatives, withelectron-withdrawing ability,is ini- tiatedby thedisplacementoftherespectivegroupbytheO2•−
radicals.BecauseofO2•−interactiontheringopeningoccurswith theformationofaliphaticoxygenates.TheformationofClO2−and ClO3−wasalsoobservedwhichdepictsthefurtherinteractionof Cl−witheitherdissolvedoxygenO2•− radicalsorotherreactive specieshowever,inthepresenceofavarietyofchargedandrad- icalspeciesgenerateditishardtoestimatetheexactmechanism fortheirformation.Thecomparisonofthereleaseofchlorideand chloratewiththeincreasingsunlightexposuretimeispresentedin Fig.9.Thedegradationof2-NPwasinterestingasalowconcentra- tionofbothNO2andNO3anionswasobserved(Fig.10)whileHPLC andTOCconfirmedthedegradationandmineralizationrateeven higherthan2-CP.Thisobservationpointedtowardstheconversion ofNO2−ionstoNO3−andNH4+ions.ThepresenceofNH4+ionsin ICanalysisindicatedtheconversionofNO2−toNH4+ionsthatcan beapossiblecauseforthelowconcentrationofNO2−ionsinthe
0 0.5 1 1.5 2 2.5 3
0 20 40 60 80 100 120 140 160 180 200
Peak intensity
Sunlight exposure me (min)
Chloride
Chlorate
Fig.9.Thecomparisonoftime-scalechangesintheconcentrationofCl−andClO3−
duringthedegradationof2-chlorophenolinsunlightexposureatthecatalystload- ingof300mgofsynthesizeddiscshapedWO3suspendedin150ml(30ppm)of 2-chlorophenolsolution.
solution.Anotherpossibility,aspresentedinEq.(13),istherelease ofNO2−intheformofNO2gasafterdonatingtheexcessnegative chargetophotogeneratedholes.
NO−2+h+→NO2↑ (13)
It hasalso been reportedthat once formed, in theaqueous medium,NO2gascanundergoavarietyofreactions[51].Thepos- siblereactionsaredetailedbelow.
NO2+NO2→N2O4 (14)
NO2+NO−2 →NO−3 +NO (15)
N2O4+H2O→NO−3+H++HNO2 (16)
0 2 4 6 8 10 12 14 16 18 20
Retention time (min)
30 min 60 min
Peak intensity
NO3 NO2
180 min
120 min
90 min
Fig.10.ThecomparisonofICprofilesforthereleaseofNO2−andNO3−ionsin thesolution,atregularintervals,duringthedegradationof2-nitrophenolinsun- lightexposureatthecatalystloadingof300mgofsynthesizeddiscshapedWO3
suspendedin150ml(30ppm)of2-nitrophenolsolution.
Theoccurringofabovementionedreactions(Eqs.(14)–(16))val- idatestheformationofNO2 gasthroughtheoxidationofnitrite ionsbythephotogeneratedholes(Eq.(13))thatresultsinthelow concentrationofnitriteionsinthesolution.Althoughinverylow concentration,theidentificationofresorcinol and poly-hydroxy phenolsinthedegradationofphenolandresorcinolrespectively, alsoconfirmedbyHPLC, indicatedtheinvolvement ofhydroxyl radicalsinthedegradationprocess.Aspresentedinthereaction below,theonlypossibleroutefortheformationofresorcinolfrom phenolandpoly-hydroxyphenolistheinteractionofhydroxylradi- calswithphenolandresorcinol.
Asimilarsituationwasobservedforthedegradationofresor- cinol. Based on this observation, it can be assumed that the hydroxylated intermediates arealso formedin thedegradation of2-CPand2-NP,butdegraded/mineralizedinstantaneouslyafter formation. Therefore, the formation ofhydroxyl radicals in the aqueousphotocatalyticprocessescannotbecompletelyignored.
Nonetheless,thelowdegradationofphenolandtheformationof resorcinol in significantly lowerconcentration, asintermediate, clearlyquestiontheirroleasthemajoroxidizingspecies.Although in very low concentration,the otherproducts identified in the degradationofphenolandresorcinolarelistedbelow.
IntheGC–MSidentificationofintermediatesforthedegradation of 2-CP and 2-NP, no aromaticcompound otherthan thesub- strates wasidentified.Almostsimilarproducts,mostly aliphatic oxygenates,wereidentifiedinthedegradationofboth2-CPand 2-NP.However,ahigherconcentrationofintermediatesfor2-CP comparedto2-NPwasobserved.Theidentifiedmajorintermedi- atesfor2-CPand2-NPdegradationaredetailedbelow.
The non-existence of any aromatic intermediate and the identification of oxygenated intermediates postulate that the degradationof2-CPand2NPisinitiatedbythedisplacementof ClandNO2groupsandringopeningsimultaneously.Theoxygen afterdisplacingtherespectiveanionsisincorporatedinthechain.
Thepresenceofelectronegativeoxygenatomsinduceschargesep- aration,hencegeneratingadditionaltargetsforO2•− attack.The interactionofO2•−radicalswiththeoxygenatedintermediatesini- tiatesboththemineralizationandfragmentationsimultaneously.
TheidentificationofthevarietyofC1-C5productssupportsthat thefragmentationandmineralizationproceedsimultaneously.
Amarkeddecrease(∼50%)intheactivityoftheWO3discswas observedinthevisibleregion(400–800nm)ofsunlightwhichledto theconclusionthattheincreasingenergyoftheincidentphotons facilitatesthegenerationofW5+statesthatinturnenhancesthe productionof superoxide(O2•−)anions.TheWO3 discs showed excellentactivityinrepeatedusewithoutsignificantdecreasein degradationability.
4. Conclusions
The study proved that by controlling the morphology of thephotocatalysts thephotocatalytic activitycan beenhanced.
Although,basedonthepotentialofconductionbandedge,WO3 is unableto producesuperoxideanions however,O2•− radicals areproducedbyalternativemechanismandcontributeasmajor oxidizingspeciesintheoxidationofphenolsanditsderivatives.
Thepresenceofelectronwithdrawingsubstituentsfacilitatesthe degradation and mineralization of aromatic structure, whereas electron donating groups retard the same. The generation of hydroxylgroups inphotocatalyticprocesses andtheircontribu- tion in the degradation process cannot benegated completely however theoverall contributionisminor ascompared tothat ofsuperoxideanions.Thedegradationofphenolderivativeswith electron-withdrawinggroupsproceedthroughringopeningand