• Tidak ada hasil yang ditemukan

Supporting Information

N/A
N/A
Protected

Academic year: 2024

Membagikan "Supporting Information"

Copied!
9
0
0

Teks penuh

(1)

Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer Blend Transistors by Simple

Admixing of the Lewis Acid p-Dopant B(C6F5)3

Item Type Article

Authors Panidi, Julianna;Paterson, Alexandra F.;Khim, Dongyoon;Fei, Zhuping;Han, Yang;Tsetseris, Leonidas;Vourlias, George;Patsalas, Panos A.;Heeney, Martin;Anthopoulos, Thomas D.

Citation Panidi J, Paterson AF, Khim D, Fei Z, Han Y, et al. (2017)

Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer

Blend Transistors by Simple Admixing of the Lewis Acid p-

Dopant B(C6F5)3. Advanced Science 5: 1700290. Available: http://

dx.doi.org/10.1002/advs.201700290.

Eprint version Publisher's Version/PDF

DOI 10.1002/advs.201700290

Publisher Wiley

Journal Advanced Science

Rights This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Download date 2024-01-08 17:26:52

Item License http://creativecommons.org/licenses/by/4.0/

Link to Item http://hdl.handle.net/10754/627015

(2)

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201700290

Remarkable Enhancement of the Hole Mobility in

Several Organic Small-Molecules, Polymers, and Small- Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p-Dopant B(C

6

F

5

)

3

Julianna Panidi, Alexandra F. Paterson, Dongyoon Khim, Zhuping Fei, Yang Han, Leonidas Tsetseris, George

Vourlias, Panos A. Patsalas, Martin Heeney, and Thomas D.

Anthopoulos*

(3)

1

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Remarkable enhancement of the hole mobility in several organic small-molecules,

polymers and small-molecule:polymer blend transistors by simple admixing of the Lewis acid p-dopant B(C6F5)3

Julianna Panidi, Alexandra F. Paterson, Dongyoon Khim, Zhuping Fei, Yang Han, Leonidas Tsetseris, George Vourlias, Panos A. Patsalas, Martin Heeney, and Thomas D. Anthopoulos*

Figure S1. Output characteristics obtained for OTFTs based on, (a) pristine diF- TESADT:PTAA, and (b) diF-TESADT:PTAA:B(C6F5)3(2.4 mol%) (doped) semiconducting layers. The channel length and width of both OTFTs were W = 1 mm and L = 40 μm.

Figure S2. (a) Transfer characteristics and hole mobility (µh) of OTFTs based on pristine and B(C6F5)3-doped PTAA. (b) Photograph of the PTAA solution before and after B(C6F5)3

addition (5% mol). (c) Transfer characteristics and hole mobility (µh) of OTFTs based on pristine and B(C6F5)3-doped diF-TESADT. (d) Photograph of the diF-TESADT solution before and after B(C6F5)3 addition (5% mol).

-100 -75 -50 -25 0 10-10

10-9 10-8 10-7 10-6

Abs [ID] (A)

VG (V) B(C6F5)3 mol%

0%

0.1%

0.5%

1%

2%

4%

5%

VD= - 100 V

A PTAA C

S S

Si

Si

F F N

* *n

R F

F F

F

F B

F F F

F F F F

F F F

doped pristine B

S S

Si

Si

F F N

* *

n

R F

F F

F

F B

F F F

F F F F

F F F

doped pristine D

diF-TESADT

-100 -75 -50 -25 0 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3

Abs [ID] (A)

VG (V) B(C6F5)3 mol%

0%

0.5%

1%

2%

5%

10%

VD= - 100 V

0 1 2 4 5

0.001 0.002 0.003 0.004 0.005

h(LIN)

h (cm2/Vs)

B(C6F5)3 (mol%)

h(SAT)

0 2 4 6 8 10

0.0 0.5 1.0 1.5 2.0 2.5

h(LIN)

h (cm2/Vs)

B(C6F5)3 (mol%)

h(SAT)

(4)

2

Figure S3. Raw XRD data of five reference samples (PTAA, diF-TESADT, diF- TESADT:B(C6F5)3, diF-TESADT:PTAA, and diF-TESADT:PTAA:B(C6F5)3. For all samples, there is a wide peak cantered at 11o, which is due to the glass substrate. The contribution of the glass substrate was subtracted from the XRD scans in order to have a more precise view of the X-ray diffractograms of the measured samples. The quantitative results of the XRD analysis of the three stronger peaks are presented in Tables S1-S4. Note that the signal-to-noise ratio of the (004) peak of the diF-TESADT:B(C6F5)3 sample was not adequate to fit.

Table S1: The Bragg angles of the three stronger peaks of the films.

Sample (001) Bragg angle (o) (003) Bragg angle (o) (004) Bragg angle (o)

diF-TESADT 2.74126 8.14911 10.89099

diF-TESADT:B(C6F5)3 2.73683 8.22051 11.01698

diF-TESADT:PTAA 2.72819 8.19169 10.99867

diF-TESADT:PTAA:B(C6F5)3 2.7183 8.16899 N/A

Table S2: The d-spacing of the three stronger peaks of the films; in parentheses are the equivalent values of the d001.

Sample

(001) d-spacing (nm)

(003) d-spacing (nm)

(004) d-spacing (nm)

diF-TESADT 1.61189 0.54321

(1.62963)

0.40753 (1.63012) diF-TESADT:B(C6F5)3(2.4 mol%) 1.6145 0.53852

(1.61556)

0.40293 (1.61172)

diF-TESADT:PTAA 1.61961 0.54041

(1.62123)

0.40359 (1.61436) diF-TESADT:PTAA:B(C6F5)3(2.4 mol%) 1.6255 0.5419

(1.62570)

N/A

Table S3: The vertical grain size Gz determined from the three stronger peaks of the films.

Note that with increasing order of diffraction the accuracy of the calculation is substantially improved. Gz is an indicator of the vertical crystallinity.

Sample (001) Gz

(nm)

(003) Gz

(nm)

(004) Gz

(nm)

4 6 8 10 12 14 16 18 20

103 104 105

(006) (004)

(003)

(002)

XRD Intensity (counts/s)

Angle (o) PTAA diF-TESADT diF-TESADT:B(C6F5)3 diF-TESADT:PTAA diF-TESADT:PTAA:B(C6F5)3 (001)

(5)

3

diF-TESADT 269.5928 50.04775 57.50282

diF-TESADT:B(C6F5)3 (2.4 mol%) 130.9763 36.40266 54.08023

diF-TESADT:PTAA 84.66673 27.16047 12.48876

diF-TESADT:PTAA:B(C6F5)3 (2.4 mol%) 44.16745 13.96916 N/A

Table S4: The microstrain s determined from the three stronger peaks of the films. Note that with increasing order of diffraction the accuracy of the calculation is substantially improved.

s is an indicator of the lateral crystallinity.

Sample s s s

diF-TESADT 0.00642 0.00481 0.02201

diF-TESADT:B(C6F5)3 (2.4 mol%) 0.01686 0.03805 0.03792

diF-TESADT:PTAA 0.01399 0.05925 6.46x10-8

diF-TESADT:PTAA:B(C6F5)3 (2.4 mol%) 0.00505 1.94x10-16 N/A

Figure S4. The d001 spacing for the four crystalline samples as determined by XRD peak profile analysis of the (001), (003) and (004) XRD peaks.

1.60 1.61 1.62 1.63 1.64

diF-TE SADT:P

TAA:B(C6 F)53

diF-TE SADT:P

TAA

diF-TE SADT:B

(C6 F)53

diF-TE SADT d001 spacing (nm)

Diffraction peak:

(001) (003) (004)

(6)

4

Figure S5. The vertical grain size for the four crystalline samples as determined by XRD peak profile analysis.

Figure S6. Microstrain (s) for the four polycrystalline samples as determined by XRD peak profile analysis.

0 50 100 150 200 250

Gz (nm)

Diffraction peak:

(001) (003) (004)

diF-TE SADT

diF-TE SADT:B

(C6 F5)3

diF-TE SADT:P

TAA

diF-TE SADT:P

TA A:B(C6

F5)3

0.00 0.01 0.02 0.03 0.04 0.05 0.06

s

Diffraction peak:

(001) (003) (004)

diF-TE SADT

diF-TE SADT:B

(C6 F)53

diF-TE SADT:P

TAA

diF-TE SADT:P

TAA:B(C6 F5)3

(7)

5

Figure S7. Transfer characteristics measured for OTFTs based on: (a) C8BTBT:C16IDT-BT (pristine), and (b) C8BTBT:C16IDT-BT:B(C6F5)3(0.05 mol%) (doped). The channel width (W) and length (L) were 1 mm and 0.08 mm, respectively.

Figure S8. Transfer characteristics measured for OTFTs based on a pristine and a B(C6F5)3(2.4 mol%)-doped TIPS-pentacene:PTAA blend layer. The transistor channel width and length were 1 mm and 0.05 mm, respectively.

-80 -60 -40 -20 0 20 10-10

10-9 10-8 10-7 10-6 10-5 10-4

0 4 8 12 16

VT= -28V VD= -20V

VD= - 80V

Abs (ID) (A)

VG(V)

I0.5 (10-3 A)0.5

Doped (0.05 mol%)

-80 -60 -40 -20 0 20 10-10

10-9 10-8 10-7 10-6 10-5 10-4

0 2 4 6 8 10

VT= -17.2V VD= -20V

VD= - 80V

Abs(ID) (A)

VG(V)

I0.5

(-30.5 10A)

A Pristine B

0 4 8 12 16 20 24

-100 -75 -50 -25 0 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3

I0.5

(-30.5 10A)

VG (V) VT= - 25.6V Abs(ID) (A)

VD= -100 V

VD= -20V

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3

-100 -75 -50 -25 0 0 4 8 12 16 20 24

VT= - 17.4V Abs(I D) (A)

VD= - 100V

VD= -25V

VG (V)

I0.5

(-30.5 10A)

A Pristine blend B Doped (2.4 mol%)

(8)

6

Figure S9. Work function () and HOMO energy versus B(C6F5)3 loading (mol%) for C8- BTBT:C16IDT-BT (a), and TIPS-pentacene:PTAA (b).

Figure S10. Transfer characteristics (a) and hole mobility calculated from the linear (µh(LIN)) and saturation (µh(SAT)) regimes (b) for OTFTs based on pristine and B(C6F5)3–doped C8- BTBT. Transfer characteristics (c) and hole mobility calculated from the linear (µh(LIN)) and saturation (µh(SAT)) regimes (d) for OTFTs based on pristine and B(C6F5)3–doped C16IDT-BT.

Transfer characteristics (e) and hole mobility calculated from the linear (µh(LIN)) and saturation (µh(SAT)) regimes (f) for OTFTs based on pristine and B(C6F5)3–doped TIPS-pentacene.

0.0 0.2 0.4 0.6

5.5 5.0 4.5 4.0

Energy (-eV)

B(C6F5)3 (mol%) WF HOMO

C8BTBT:C16IDT-BT

0 1 2 3 4 5

5.5 5.0 4.5 4.0

Energy (-eV)

B(C6F5)3 (mol%) WF HOMO

TIPS-pen:PTAA

A B

-100 -75 -50 -25 0 10-11

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3

Abs [ID] (A)

VG (V) B(C6F5)3 mol%

0%

0.1%

0.5%

1%

2%

VD= - 100 V

C8-BTBT C16IDTBT

-100 -75 -50 -25 0 10-11

10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3

Abs [ID] (A)

VG (V) B(C6F5)3 mol%

0%

0.1%

0.5%

1%

2%

VD= - 100 V

A C

-100 -75 -50 -25 0 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3

Abs [ID] (A)

VG (V) B(C6F5)3 mol%

0%

0.5%

1%

2%

5%

VD= - 100 V

TIPS-pentacene E

0 1 2 4 5

0.0 0.5 1.0 1.5 2.0

h(LIN)

h (cm2/Vs)

B(C6F5)3 (mol%)

h(SAT)

0.0 0.5 1.0 1.5 2.0 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

h(LIN)

h (cm2/Vs)

B(C6F5)3 (mol%)

h(SAT)

0.0 0.5 1.0 1.5 2.0 0.0

0.2 0.4 0.6 0.8 1.0 1.2

h(LIN)

h (cm2/Vs)

B(C6F5)3 (mol%)

h(SAT)

B D F

(9)

7

Figure S11. Adduct complexes between a B(C6F5)3 molecule and (a) a TIPS-pentacene molecule, (b) a diF-TESADT and (c) a C16IDT-BT polymer chain (C: grey, H: white, B: pink, F: green, Si: orange, S: yellow, N: blue spheres). Their energies are, respectively, 0.02 eV, 0.07 eV and 0.06 eV higher than that of corresponding physisorbed configurations. Arrows in (a) and (b) show the B-C bonds while in (c) the B-N bond. Long side chains are approximated with shorter groups, which account properly for steric effects in the cases considered.

A

C

B

Referensi

Dokumen terkait