Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction
and Superlattice Metal Oxide Transistors
Item Type Article
Authors Khim, Dongyoon;Lin, Yen-Hung;Anthopoulos, Thomas D.
Citation Khim, D., Lin, Y., & Anthopoulos, T. D. (2019). Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and Superlattice Metal Oxide Transistors.
Advanced Functional Materials, 29(38), 1902591. doi:10.1002/
adfm.201902591 Eprint version Post-print
DOI 10.1002/adfm.201902591
Publisher Wiley
Journal Advanced Functional Materials
Rights Archived with thanks to Advanced Functional Materials Download date 2024-01-08 17:11:03
Link to Item http://hdl.handle.net/10754/656182
Supporting Information
for Adv. Funct. Mater., DOI: 10.1002/adfm.201902591
Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and
Superlattice Metal Oxide Transistors
Dongyoon Khim,* Yen-Hung Lin, and Thomas D.
Anthopoulos*
1
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.
Supporting Information
Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and Superlattice Metal Oxide Transistors
Dongyoon Khim*, Yen-Hung Lin, Thomas D. Anthopoulos*
Figure S1. Transfer characteristics of bottom-gate, top-contact IZO TFTs fabricated by spin- coating of a blend of precursor materials followed by thermal annealing at 200 oC (red) and 400 oC (blue) in ambient air.
2
Figure S2. Evolution of; (a) saturation electron mobility (µSAT), (b) on-set voltages (VON), (c) threshold voltages (VTh) and (d) on-current and on/off current ratio as a function of channel configuration for Type-I TFTs.
Figure S3. Evolution of, (a) saturation electron mobility (µSAT), (b) on-set voltages (VON), (c) threshold voltages (VTh), and (d) on-current and on/off current ratio as a function of channel configuration for Type-II TFTs.
0 2 4 6 8 10 12
SAT (cm2 V-1 s-1 )
a
0 2 4 6
VON (V)
Ideal VON
b
Z I
Z I I I
Z I Z
I Z
I Z I I I
Z I Z
I Z
I Z I I I
Z I Z
I
0.0 0.5 1.0 1.5
On-current (VD=40 V) (mA)
106 107 108
On/Off Ratio
6 8 10 12 14 16
VTH (V)
c d
Z I
Z I I I
Z I Z
I
Z I
Z I I I
Z I Z
I
10 15 20 25 30 35 40
VTH (V)
0 10 20 30 40
VON (V)
10-3 10-2 10-1 100 101
SAT (cm2 /Vs)
0.00 0.05 0.10 0.15 0.20 0.25
On-current (VD= 40 V) (mA)
101 102 103 104 105
On/Off Ratio
Z Z
I I Z I
Z Z
I Z
a b c d
Z Z
I I Z I
Z Z
I Z
Z Z
I I Z I
Z Z
I Z
Z Z
I I Z I
Z Z
I Z
3
Figure S4. Transfer characteristics of TFTs with different channel lengths and the corresponding µSAT values for ZnO [(a) and (b)], In2O3 [(c) and (d)], In2O3/ZnO [(e) and (f)], and IZIZ [(g) and (h)] devices.
Figure S5. (a) Gate-voltage dependence of the electron mobilities of: (a) In2O3, (b) ZnO, (c) In2O3/ZnO, and (d) IZIZ TFTs. Solid lines (solid blue line for low-field, and red line for high- field) are the fits to the power law equation.
0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
In2O3
Id (A)
Vd (V)
L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m
Vd= 40V
0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
IZIZ
Id (A)
Vd (V)
L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m Vd= 40V
a b c d
0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Id (A)
Vd (V)
L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m Vd= 40V ZnO
100 80 50 40 30 1.0
1.5 2.0 2.5 3.0
Channel Length (m)
SAT (cm2V-1s-1)
100 80 50 40 30 0.0
0.5 1.0 1.5 2.0
SAT (cm2 V-1 s-1 )
Channel Length (m)
0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
In2O3/ZnO
Id (A)
Vd (V)
L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m Vd= 40V
100 80 50 40 30 2
3 4 5 6 7
SAT (cm2 V-1 s-1 )
Channel Length (m)
100 80 50 40 30 7
8 9 10 11 12 13
SAT (cm2V-1s-1)
Channel Length (m)
e f g h
In2O3
SiO2
Si (n++)
S D
S D
ZnO In2O3
SiO2
Si (n++) SiO2
Si (n++) ZnO
S D
ZnO In2O3
SiO2
Si (n++) In2O3
ZnO
S D
-10 0 10 20 30 40 10-1
100 101
FE (cm2 V-1 s-1 )
Vg (V)
FE= (VG-VT)
low field
high field
FE= (VG-VP)
In2O3
-10 0 10 20 30 40 10-1
100 101
FE (cm2 V-1 s-1 )
Vg (V)
In2O3/ZnO
FE= (VG-VT)
low field
high field
FE= (VG-VP)
-10 0 10 20 30 40 10-1
100 101
FE (cm2 V-1 s-1 )
Vg (V)
IZIZ
low fieldFE= 4.7(VG-VT)
high field
FE= (VG-VP)
-10 0 10 20 30 40 10-1
100 101
FE (cm2 V-1 s-1 )
Vg (V)
ZnO
FE= (VG-VT)
low field
high field
FE= (VG-VP)
a b
c d
4
Figure S6. Prefactor K values according to the power law equation µFE = K(VG-VT,P)γ of In2O3, ZnO, In2O3/ZnO, and IZIZ TFTs.
Figure S7. Time dependence of (a) Von shift (ΔVon) and (b) µSAT under bias stress and recovery states.
Recovery Recovery
0 10k 20k 30k 40k
0 2 4 6 8 10 12 14
In2O3/ZnO
ZnO In2O3
SAT (cm2 V-1 s-1 )
Stress Time (S)
IZIZ
0 10k 20k 30k 40k
12 10 8 6 4 2 0
In2O3/ZnO
In2O3
V (V) on ZnO
Stress Time (S)
IZIZ
a b
5
Figure S8. Time dependence of ΔVTh/(Vg-VTh,0) for gate bias stresses of (a) In2O3, (b) ZnO, (C) In2O3/ZnO, and (d) IZIZ TFTs. The measured data are well fitted with a stretched- exponential equation with a characteristic trapping time τ and a stretched-exponential exponent β.
Figure S9. Fermi energy level in In2O3, In2O3/ZnO (IZ), IZI, and IZIZ layers deposited on ITO and Au substrates measured by Kelvin probe (KP).
0 10000 20000 30000
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
VTh/(Vg - VTh,0)
Times (S)
Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced
Chi-Sqr 2.74034
E-4 Adj. R-Squa 0.97969
Value Standard Er
J
a 1 0
b 0.49557 0.0471
c 231796.530 61024.2831
ZnO
0 10000 20000 30000
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
VTh/(Vg - VTh,0)
Times (S)
Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced
Chi-Sqr 4.66937E
-5 Adj. R-Squ 0.99615
Value Standard Er
K
a 1 0
b 0.50951 0.0205
c 234206.865 25940.0615
In2O3
0 10000 20000 30000
0.00 0.05 0.10 0.15 0.20
VTh/(Vg - VTh,0)
Times (S)
Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced
Chi-Sqr 8.22762E
-6 Adj. R-Square 0.9959
Value Standard Error
L
a 1 0
b 0.3056 0.01739
c 2.68687E7 1.14363E7
In2O3/ZnO
0 10000 20000 30000
0.00 0.05 0.10 0.15 0.20
VTh/(Vg - VTh,0)
Times (S)
Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced
Chi-Sqr 3.24322
E-5 Adj. R-Squ 0.98971
Value Standard
M
a 1 0
b 0.28057 0.02035 c 1.45633 7.50893E
IZIZ
a b
c d
6
Figure S10. Transfer characteristics of before (blue) and after (red) bias stress and after recovery (green) of 15,000s of (a) ZnO, (b) In2O3, (c) In2O3/ZnO (IZ), and (d) IZIZ TFTs.
Table S1. Summary of the bias stress effect on µSAT, VTh, and Von depending on stress time and trapping time τ and a stretched-exponential exponent β of the various channel architectures investigated.
Bias-stress condition
ZnO In2O3 In2O3/ZnO IZIZ
µSAT. (cm2/Vs)
VTh
(V) Von
(V)
µSAT
(cm2/Vs) VTh
(V) Von
(V)
µSAT
(cm2/Vs) VTh(
V) Von
(V) µSAT
(cm2 /Vs)
VTh
(V) Von
(V)
Pristine (no-stress)
2.32 13.9 4.6 3.0 7.5 0 6.38 5.90 -1.0 12.1 7.46 0
900 s 2.23 14.9 6.1 2.8 9.4 1.2 6.26 7.2 -0.8 12.3 9.63 0.93
1,800 s 2.20 15.9 7.2 2.8 10.4 2.1 6.30 8.71 -0.7 12.3 10.14 1.38
5,400 s 2.05 18.2 9.9 2.65 11.8 4.6 6.48 8.46 -0.5 12.4 10.7 1.98
10,800 s 1.97 19.4 12.1 2.70 13.5 5.8 6.40 8.94 0 11.9 11.2 3.0
21,600 s 1.84 20.7 14.0 2.54 15.6 8.3 6.32 9.54 0.5 11.8 12.3 4.0
32,400 s 1.71 21.9 16.0 2.64 17.7 10.5 6.25 9.95 1.0 11.9 13.0 4.9
Recovery (2 h)
1.78 19.8 13.6 2.8 8.6 0.8 6.20 7.0 0 11.8 9.32 3.3
β 0.49 0.50 0.31 0.28
τ (s) 2.31 × 106 2.34 × 106 2.69 × 107 1.46 × 107
-10 0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Id (A)
Vd (V)
Pristine Stress Recovery Vd= 40V
IZIZ
-10 0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Id (A)
Vd (V)
Pristine Stress Recovery Vd= 40V
In2O3
-10 0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
I d (A)
Vd (V)
ZnO Vd= 40V
Pristine Stress Recovery
-10 0 10 20 30 40 10-10
10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2
Id (A)
Vd (V)
Pristine Stress Recovery Vd= 40V
In2O3/ZnO
a b
c d