• Tidak ada hasil yang ditemukan

Supporting Information

N/A
N/A
Protected

Academic year: 2024

Membagikan "Supporting Information"

Copied!
8
0
0

Teks penuh

(1)

Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction

and Superlattice Metal Oxide Transistors

Item Type Article

Authors Khim, Dongyoon;Lin, Yen-Hung;Anthopoulos, Thomas D.

Citation Khim, D., Lin, Y., & Anthopoulos, T. D. (2019). Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and Superlattice Metal Oxide Transistors.

Advanced Functional Materials, 29(38), 1902591. doi:10.1002/

adfm.201902591 Eprint version Post-print

DOI 10.1002/adfm.201902591

Publisher Wiley

Journal Advanced Functional Materials

Rights Archived with thanks to Advanced Functional Materials Download date 2024-01-08 17:11:03

Link to Item http://hdl.handle.net/10754/656182

(2)

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201902591

Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and

Superlattice Metal Oxide Transistors

Dongyoon Khim,* Yen-Hung Lin, and Thomas D.

Anthopoulos*

(3)

1

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

Impact of Layer Configuration and Doping on Electron Transport and Bias Stability in Heterojunction and Superlattice Metal Oxide Transistors

Dongyoon Khim*, Yen-Hung Lin, Thomas D. Anthopoulos*

Figure S1. Transfer characteristics of bottom-gate, top-contact IZO TFTs fabricated by spin- coating of a blend of precursor materials followed by thermal annealing at 200 oC (red) and 400 oC (blue) in ambient air.

(4)

2

Figure S2. Evolution of; (a) saturation electron mobility (µSAT), (b) on-set voltages (VON), (c) threshold voltages (VTh) and (d) on-current and on/off current ratio as a function of channel configuration for Type-I TFTs.

Figure S3. Evolution of, (a) saturation electron mobility (µSAT), (b) on-set voltages (VON), (c) threshold voltages (VTh), and (d) on-current and on/off current ratio as a function of channel configuration for Type-II TFTs.

0 2 4 6 8 10 12

SAT (cm2 V-1 s-1 )

a

0 2 4 6

VON (V)

Ideal VON

b

Z I

Z I I I

Z I Z

I Z

I Z I I I

Z I Z

I Z

I Z I I I

Z I Z

I

0.0 0.5 1.0 1.5

On-current (VD=40 V) (mA)

106 107 108

On/Off Ratio

6 8 10 12 14 16

VTH (V)

c d

Z I

Z I I I

Z I Z

I

Z I

Z I I I

Z I Z

I

10 15 20 25 30 35 40

VTH (V)

0 10 20 30 40

VON (V)

10-3 10-2 10-1 100 101

SAT (cm2 /Vs)

0.00 0.05 0.10 0.15 0.20 0.25

On-current (VD= 40 V) (mA)

101 102 103 104 105

On/Off Ratio

Z Z

I I Z I

Z Z

I Z

a b c d

Z Z

I I Z I

Z Z

I Z

Z Z

I I Z I

Z Z

I Z

Z Z

I I Z I

Z Z

I Z

(5)

3

Figure S4. Transfer characteristics of TFTs with different channel lengths and the corresponding µSAT values for ZnO [(a) and (b)], In2O3 [(c) and (d)], In2O3/ZnO [(e) and (f)], and IZIZ [(g) and (h)] devices.

Figure S5. (a) Gate-voltage dependence of the electron mobilities of: (a) In2O3, (b) ZnO, (c) In2O3/ZnO, and (d) IZIZ TFTs. Solid lines (solid blue line for low-field, and red line for high- field) are the fits to the power law equation.

0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

In2O3

Id (A)

Vd (V)

L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m

Vd= 40V

0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

IZIZ

Id (A)

Vd (V)

L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m Vd= 40V

a b c d

0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Id (A)

Vd (V)

L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m Vd= 40V ZnO

100 80 50 40 30 1.0

1.5 2.0 2.5 3.0

Channel Length (m)

SAT (cm2V-1s-1)

100 80 50 40 30 0.0

0.5 1.0 1.5 2.0

SAT (cm2 V-1 s-1 )

Channel Length (m)

0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

In2O3/ZnO

Id (A)

Vd (V)

L= 100 m L= 80 m L= 50 m L= 40 m L= 30 m Vd= 40V

100 80 50 40 30 2

3 4 5 6 7

SAT (cm2 V-1 s-1 )

Channel Length (m)

100 80 50 40 30 7

8 9 10 11 12 13

SAT (cm2V-1s-1)

Channel Length (m)

e f g h

In2O3

SiO2

Si (n++)

S D

S D

ZnO In2O3

SiO2

Si (n++) SiO2

Si (n++) ZnO

S D

ZnO In2O3

SiO2

Si (n++) In2O3

ZnO

S D

-10 0 10 20 30 40 10-1

100 101

FE (cm2 V-1 s-1 )

Vg (V)

FE= (VG-VT)

low field

high field

FE= (VG-VP)

In2O3

-10 0 10 20 30 40 10-1

100 101

FE (cm2 V-1 s-1 )

Vg (V)

In2O3/ZnO

FE= (VG-VT)

low field

high field

FE= (VG-VP)

-10 0 10 20 30 40 10-1

100 101

FE (cm2 V-1 s-1 )

Vg (V)

IZIZ

low fieldFE= 4.7(VG-VT)

high field

FE= (VG-VP)

-10 0 10 20 30 40 10-1

100 101

FE (cm2 V-1 s-1 )

Vg (V)

ZnO

FE= (VG-VT)

low field

high field

FE= (VG-VP)

a b

c d

(6)

4

Figure S6. Prefactor K values according to the power law equation µFE = K(VG-VT,P)γ of In2O3, ZnO, In2O3/ZnO, and IZIZ TFTs.

Figure S7. Time dependence of (a) Von shift (ΔVon) and (b) µSAT under bias stress and recovery states.

Recovery Recovery

0 10k 20k 30k 40k

0 2 4 6 8 10 12 14

In2O3/ZnO

ZnO In2O3

SAT (cm2 V-1 s-1 )

Stress Time (S)

IZIZ

0 10k 20k 30k 40k

12 10 8 6 4 2 0

In2O3/ZnO

In2O3

V (V) on ZnO

Stress Time (S)

IZIZ

a b

(7)

5

Figure S8. Time dependence of ΔVTh/(Vg-VTh,0) for gate bias stresses of (a) In2O3, (b) ZnO, (C) In2O3/ZnO, and (d) IZIZ TFTs. The measured data are well fitted with a stretched- exponential equation with a characteristic trapping time τ and a stretched-exponential exponent β.

Figure S9. Fermi energy level in In2O3, In2O3/ZnO (IZ), IZI, and IZIZ layers deposited on ITO and Au substrates measured by Kelvin probe (KP).

0 10000 20000 30000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

VTh/(Vg - VTh,0)

Times (S)

Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced

Chi-Sqr 2.74034

E-4 Adj. R-Squa 0.97969

Value Standard Er

J

a 1 0

b 0.49557 0.0471

c 231796.530 61024.2831

ZnO

0 10000 20000 30000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

VTh/(Vg - VTh,0)

Times (S)

Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced

Chi-Sqr 4.66937E

-5 Adj. R-Squ 0.99615

Value Standard Er

K

a 1 0

b 0.50951 0.0205

c 234206.865 25940.0615

In2O3

0 10000 20000 30000

0.00 0.05 0.10 0.15 0.20

VTh/(Vg - VTh,0)

Times (S)

Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced

Chi-Sqr 8.22762E

-6 Adj. R-Square 0.9959

Value Standard Error

L

a 1 0

b 0.3056 0.01739

c 2.68687E7 1.14363E7

In2O3/ZnO

0 10000 20000 30000

0.00 0.05 0.10 0.15 0.20

VTh/(Vg - VTh,0)

Times (S)

Model StretchExp1 (User) Equation y = a*(1-1/(exp((x/c)^b))) Reduced

Chi-Sqr 3.24322

E-5 Adj. R-Squ 0.98971

Value Standard

M

a 1 0

b 0.28057 0.02035 c 1.45633 7.50893E

IZIZ

a b

c d

(8)

6

Figure S10. Transfer characteristics of before (blue) and after (red) bias stress and after recovery (green) of 15,000s of (a) ZnO, (b) In2O3, (c) In2O3/ZnO (IZ), and (d) IZIZ TFTs.

Table S1. Summary of the bias stress effect on µSAT, VTh, and Von depending on stress time and trapping time τ and a stretched-exponential exponent β of the various channel architectures investigated.

Bias-stress condition

ZnO In2O3 In2O3/ZnO IZIZ

µSAT. (cm2/Vs)

VTh

(V) Von

(V)

µSAT

(cm2/Vs) VTh

(V) Von

(V)

µSAT

(cm2/Vs) VTh(

V) Von

(V) µSAT

(cm2 /Vs)

VTh

(V) Von

(V)

Pristine (no-stress)

2.32 13.9 4.6 3.0 7.5 0 6.38 5.90 -1.0 12.1 7.46 0

900 s 2.23 14.9 6.1 2.8 9.4 1.2 6.26 7.2 -0.8 12.3 9.63 0.93

1,800 s 2.20 15.9 7.2 2.8 10.4 2.1 6.30 8.71 -0.7 12.3 10.14 1.38

5,400 s 2.05 18.2 9.9 2.65 11.8 4.6 6.48 8.46 -0.5 12.4 10.7 1.98

10,800 s 1.97 19.4 12.1 2.70 13.5 5.8 6.40 8.94 0 11.9 11.2 3.0

21,600 s 1.84 20.7 14.0 2.54 15.6 8.3 6.32 9.54 0.5 11.8 12.3 4.0

32,400 s 1.71 21.9 16.0 2.64 17.7 10.5 6.25 9.95 1.0 11.9 13.0 4.9

Recovery (2 h)

1.78 19.8 13.6 2.8 8.6 0.8 6.20 7.0 0 11.8 9.32 3.3

β 0.49 0.50 0.31 0.28

τ (s) 2.31 × 106 2.34 × 106 2.69 × 107 1.46 × 107

-10 0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Id (A)

Vd (V)

Pristine Stress Recovery Vd= 40V

IZIZ

-10 0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Id (A)

Vd (V)

Pristine Stress Recovery Vd= 40V

In2O3

-10 0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

I d (A)

Vd (V)

ZnO Vd= 40V

Pristine Stress Recovery

-10 0 10 20 30 40 10-10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Id (A)

Vd (V)

Pristine Stress Recovery Vd= 40V

In2O3/ZnO

a b

c d

Referensi

Dokumen terkait

Section3shows the influence of the replacement of the electron transport layer along with doping, resistance, and temperature analysis of both solar devices, and Section4 concluded the

S9 Supporting Information 7 Figure S7: A MS/MS spectra of [Ag44FTP30]3- with increasing collision energy and B an expanded view of the region between m/z 3700 and 4300

JABA Journal of Applied Business Administration https://jurnal.polibatam.ac.id/index.php/JABA The Role of SIMS and Information Quality in Supporting Decision Making and Employee