On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors
Item Type Article
Authors Paterson, Alexandra;Faber, Hendrik;Savva, Achilleas;Nikiforidis, Georgios;Gedda, Murali;Hidalgo, Tania C.;Chen,
Xingxing;McCulloch, Iain;Anthopoulos, Thomas D.;Inal, Sahika Citation Paterson, A. F., Faber, H., Savva, A., Nikiforidis, G., Gedda,
M., Hidalgo, T. C., … Inal, S. (2019). On the Role of Contact
Resistance and Electrode Modification in Organic Electrochemical Transistors. Advanced Materials, 31(37), 1902291. doi:10.1002/
adma.201902291 Eprint version Post-print
DOI
10.1002/adma.201902291Publisher Wiley
Journal Advanced Materials
Rights Archived with thanks to Advanced Materials Download date 2024-01-08 17:10:56
Link to Item
http://hdl.handle.net/10754/656276Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.
Supporting Information
for Adv. Mater., DOI: 10.1002/adma.201902291
On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors
Alexandra F. Paterson, Hendrik Faber, Achilleas Savva, Georgios Nikiforidis, Murali Gedda, Tania C. Hidalgo,
Xingxing Chen, Iain McCulloch, Thomas D. Anthopoulos, and
Sahika Inal*
1
Supporting Information
On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors
Alexandra F. Paterson, Hendrik Faber, Achilleas Savva, Georgios Nikiforidis, Murali Gedda, Tania C.
Hidalgo, Xingxing Chen, Iain McCulloch, Thomas D. Anthopoulos, Sahika Inal*
2
Figure S1. Transmission line method and contact resistance (RC) extraction for the three different OECT systems: (a) Au:MBT:P-90, (b) Au:PFBT:P-90 and (c) Au:P-90.
0 20 40 60 80 100
0 5 10 15 20 25 30
0.35 V 0.40 V 0.45 V 0.50 V 0.55 V 0.60 V
RON (MOhm)
Channel length (m)
0 20 40 60 80 100
0 5 10 15 20 25 30
RON (MOhm)
Channel length (m)
0.35 V 0.40 V 0.45 V 0.50 V 0.55 V 0.60 V
0 20 40 60 80 100
0 5 10 15 20 25 30
RON (MOhm)
Channel length (m)
0.35 V 0.40 V 0.45 V 0.50 V 0.55 V 0.60 V
Equation y = a + b*x
Plot RON_0.35 RON_0.40 RON_0.45
Weight No Weighting
Intercept 5.22965 ± 5.22642.76448 ± 1.878511.62468 ± 1.12555 Slope 0.19522 ± 0.086120.09756 ± 0.030950.07246 ± 0.01855 Residual Sum of Squares 180.45363 23.31231 8.36928
Pearson's r 0.74988 0.84437 0.89014
R-Square(COD) 0.56233 0.71296 0.79236
Adj. R-Square 0.45291 0.6412 0.74044
Au:PFBT:P-90
Au:MBT:P-90 Au:P-90
a b c
3
Figure S2. (a) Transfer curves and corresponding output curves for best-performing (b) Au:P-90, (c) Au:PFBT:P-90 and (d) Au:MBT:P-90 OECTs, where ΔVG = 0.05 V.
0.2 0.3 0.4 0.5 0.6
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ID0.5 (mA)
VG (V) Au:P-90 Au:MBT:P-90 Au:PFBT:P-90
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0
0.1 0.2 0.3 0.4 0.5 0.6
ID (A)
VD (V)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0
0.1 0.2 0.3 0.4 0.5 0.6
ID (A)
VD (V)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0
0.1 0.2 0.3 0.4 0.5 0.6
ID (A)
VD (V)
c d
b
Au:PFBT:P-90 Au:MBT:P-90
Au:P-90
a
4
Figure S3. Representative transfer characteristics showing both ID and IG for (a) Au:P-90, (b) Au:MBT:P-90 and (c) Au:PFBT:P-90 OECTs. IG is not found to influence the overall transistor results or contact resistance analysis.
0.0 0.2 0.4 0.6
0.0 0.1 0.2 0.3 0.4 0.5 0.6
VG (V) ID (A)
ID IG
0.0 0.2 0.4 0.6
0.0 0.1 0.2 0.3 0.4 0.5 0.6
VG (V) ID (A)
ID IG
0.1 0.2 0.3 0.4 0.5 0.6 0.0
0.1 0.2 0.3 0.4 0.5 0.6
VG (V) ID (A)
ID IG
Au:PFBT:P-90 Au:MBT:P-90
Au:P-90
c
a b
5
Figure S4. Cyclic voltammetry (CV) data for Au:P-90, Au:PFBT:P-90 and Au:MBT:P-90 thin- films with equivalent geometries, measured at a scan rate of 50 mVs-1 in a 100 mM NaCl aqueous electrolyte solution. The arrow indicates the scan starting point and direction.
-1.0 -0.5 0.0 0.5
-1.0 -0.5 0.0 0.5 1.0
Current (A)
Potential (V) vs. Ag/AgCl Au Au:P-90 Au:MBT:P-90 Au:PFBT:P-90
6
Figure S5. (a) Cyclic voltammogram of the Au:MBT:P-90 electrode in 100 mM NaCl aqueous electrolyte solution at different scan rates. The arrow indicates the scan starting point and direction. Plots showing current vs. scan rate for: (b) Au:MBT:P-90, (c) Au:PFBT:P-90 and (d) Au:P-90 electrodes. A reasonably linear relationship between the current and the scan rate is evident over the entire range of sweep rates (50-1000 mV s-1), signifying surface controlled processes.[52]
0.0 0.2 0.4 0.6 0.8 1.0
-12 -8 -4 0 4 8 12 16
Current (A)
Scan rate (Vs-1)
Oxidation1 Reduction
0.0 0.2 0.4 0.6 0.8 1.0
-12 -8 -4 0 4 8 12 16
Current (A)
Scan rate (Vs-1)
Oxidation1 Reduction
-0.8 -0.4 0.0 0.4
-16 -8 0 8 16 24
100 mVs-1 200 mVs-1 400 mVs-1 600 mVs-1 800 mVs-1 1 Vs-1 10 mVs-1
30 mVs-1 50 mVs-1 75 mVs-1
Current (A)
Potential (V) vs. Ag/AgCl
0.0 0.2 0.4 0.6 0.8 1.0
-12 -8 -4 0 4 8 12 16
Current (A)
Scan rate (Vs-1)
Oxidation1 Reduction
c d
b a
Au:PFBT:P-90
Au:MBT:P-90
Au:P-90 Au:MBT:P-90
7
Figure S6. Atomic force microscopy (AFM) images showing the topography of P-90 thin-films formed at the channel in (a) Au:P-90, (b) Au:MBT:P-90 and (c) Au:PFBT:P-90 OECTs. Corresponding surface roughness values are given as insets.
100 nm 500 nm
Au:MBT:P-90
Au:P-90 Au:PFBT:P-90
100 nm 500 nm
100 nm 500 nm
a b c
RMS = 8.0 nm
RMS = 2.9 nm
RMS = 5.8 nm
RMS = 1.6 nm
RMS = 8.8 nm
RMS = 2.7 nm
8
Figure S7. Frequency dependent (a) impedance, (b) phase and (c) capacitance, measured using electrochemical impedance spectroscopy in 100 mM NaCl aqueous electrolyte solution, at a doping potential of 0.5 V, on the Au:P-90, Au:MBT:P-90 and Au:PFBT:P-90 systems. All P-90 thin-films were deposited onto 580 x 580 µm Au electrode-pads and have comparable thicknesses (≈135 nm).
10-1 100 101 102 103 104 105 0
20 40 60 80
-Phase (°)
Frequency (Hz) Au:P-90 Au:MBT:P-90 Au:PFBT:P-90
10-1 100 101 102 103 104 105 103
104 105 106
Au:P-90 Au:MBT:P-90 Au:PFBT:P-90
Z ()
Frequency (Hz)
10-1 100 101 102 103 104 105 10-10
10-9 10-8 10-7 10-6
Capacitance (F)
Frequency (Hz) Au:P-90
Au:MBT:P-90 Au:PFBT:P-90
c b
a