• Tidak ada hasil yang ditemukan

Surface heat transfer area over volume 𝛼

N/A
N/A
Protected

Academic year: 2023

Membagikan "Surface heat transfer area over volume 𝛼"

Copied!
72
0
0

Teks penuh

(1)

MEP 460 Heat Exchanger design

King Abdulaziz University

Mechanical Engineering Department

March 2019

Ch. 10 Compact Heat Exchangers

(2)

Ch. 10 Compact Heat Exchangers

1-Introduction

2-Tube-fin heat exchangers 3-Plate-fin heat exchangers 4-Examples

(3)

1- Introduction

(4)

Compact heat exchangers

(5)

Surface heat transfer area over volume 𝛼

(6)
(7)
(8)

Tube fin compact heat exchangers

(9)

Tube fin compact heat exchangers

Non-circular tubes

(10)

2- Tube fin heat exchangers

continuous fins on

flat tubes Continuous fins

on circular tube

Circular fins on circular tubes

(11)

Heat transfer and pressure drop for tube fin heat exchangers

1

𝑈𝑜𝐴𝑜 = 1

𝑖𝜂𝑖𝐴𝑖 + 𝑅𝑓𝑖

𝜂𝑖𝐴𝑖 + 𝑅𝑤 + 𝑅𝑓𝑜

𝜂𝑜𝐴𝑜 + 1 ℎ𝑜𝜂𝑜𝐴𝑜

For ho outside (gas) heat transfer coefficient use

Kays &

London book

in compact heat exchangers 𝜂𝑜 = 1 − 𝐴𝑓

𝐴 (1 − 𝜂𝑓)

Overall surface efficiency 𝜂𝑜

𝜂𝑓 is the fin efficiency

(12)

Definitions

Frontal area A

fr

Free Flow area A

min

= A

ff

Fin area/total area=A

f

/A

o

𝜎 = 𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎

𝐹𝑟𝑜𝑛𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 = 𝐴𝑓𝑓 𝐴𝑓𝑟

𝛼 = Surface area/Volume Hydraulic diameter D

h

Mass velocity G=  u

max

(13)

Definitions

Colburn j

H

factor 𝑗

𝐻

= 𝑆𝑡𝑃𝑟

2 3Τ

𝑆𝑡 = 𝑁𝑢

𝑅𝑒 𝑃𝑟 = ℎ

𝜌𝐶𝑝𝑉𝑚𝑎𝑥 = ℎ 𝐶𝑝𝐺

Mass velocity [kg/(m

2

.s)

𝐺 = 𝜌𝑉𝑚𝑎𝑥 = 𝜌𝑉𝐴𝑓𝑟

𝐴𝑓𝑓 = 𝑚ሶ

𝐴𝑓𝑓 = 𝑚ሶ 𝜎𝐴𝑓𝑟

Stanton Number

𝑅𝑒 = 𝐺𝐷

/𝜇

Δ𝑃 = 𝑓 𝐿

𝐷 𝜌 𝑉2

Friction coefficient f

2

Major Pressure drop

(14)

𝑣𝑚 = 𝑣𝑖 + 𝑣𝑜 2 𝐴

𝐴𝑓𝑓 = 𝛼𝑉 𝜎𝐴𝑓𝑟 A: heat transfer area

Afr Frontal area Aff Free flow area

𝜎 = 𝐹𝑖𝑛 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 = 𝐴𝑓 𝐴

𝛼 = 𝐴 𝑉

Pressure drop gas side

𝑣

𝑖

specifc volume at inlet 𝑣

𝑜

specific volume at outlet

𝑣

𝑚

mean specific volume =

𝑣𝑖+𝑣𝑜

2

The above equation for pressure drop can be also written in terms of densities instead of specific volume

(15)

Surface information (CF-7.0-5/8J)

Circular fin on circular tubes

From Incropera 6th edition

(16)

Typical data for tube fin heat exchangers (8.0-3/8T)

Continuous fin on circular tubes

(17)

𝐹𝑖𝑛 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 = 𝐴

𝑓

𝐴

𝛼 = 𝛽 = 𝐴 Surface density 𝑉

Surface information

Hydraulic diameter Dh

𝜎 = 𝐹𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎

𝐹𝑟𝑜𝑛𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 = 𝐴𝑓𝑓 𝐴𝑓𝑟

(18)

Surface information

(19)

1

𝑈𝑜𝐴𝑜 = 1

𝑖𝜂𝑖𝐴𝑖 + 𝑅𝑓𝑖

𝜂𝑖𝐴𝑖 + 𝑅𝑤 + 𝑅𝑓𝑜

𝜂𝑜𝐴𝑜 + 1 ℎ𝑜𝜂𝑜𝐴𝑜

1

𝑈𝑜 = 1

𝑖( Τ𝐴𝑖 𝐴𝑜) + 𝐴𝑜𝑙𝑛( Τ𝑟𝑜 𝑟𝑖)

2𝜋𝑘𝐿 + 1 ℎ𝑜𝜂𝑜

Need to know the heat transfer area ratio Ai/Ao

Evaluating overall heat transfer coefficient

Neglecting fouling resistances

𝑅𝑤 = ln( Τ𝑟𝑜 𝑟𝑖) 2𝜋𝑘𝐿

1

𝑈𝑜 = 1

𝑖( Τ𝐴𝑖 𝐴𝑜) + 𝐷𝑖𝑙𝑛( Τ𝑟𝑜 𝑟𝑖)

2𝑘 ( Τ𝐴𝑖 𝐴𝑜) + 1 ℎ𝑜𝜂𝑜

(20)

Ratio of inside to outside heat transfer area

𝐴𝑖 = 𝜋𝐷𝑖𝐿 𝐴𝑜,𝑝 = 𝜋𝐷𝑜𝐿

𝐴𝑜 = 𝐴𝑢𝑓 + 𝐴𝑓 = 𝐴𝑜,𝑝 + 𝐴𝑓 𝐴𝑖

𝐴𝑜,𝑝 = 𝐷𝑖 𝐷𝑜

𝐴𝑜,𝑝 = 𝐴𝑜 − 𝐴𝑓 𝐴𝑖

𝐴𝑜 = 𝐷𝑖

𝐷𝑜 ∗ 1 − 𝐴𝑓 𝐴𝑜 𝐴𝑖 = 𝐷𝑖

𝐷𝑜 𝐴𝑜,𝑝

D

o

D

i

Fins

Inside heat transfer area Outside heat transfer area without fins

Neglecting the area occupied by fins. i.e. Auf=Aop

(21)
(22)

 h

i

is given

 From frontal area A

fr

,  and mass flow rate get G and Re

Dh

 Get j from Kays & London graphs and h

o

 Get fin efficiency for circular fins on circular pipe

 Get U

o

value

 Knowing q and q

max

get the effectiveness 

 Knowing C

r

and the effectiveness  get NTU

 From NTU=UA/C

min

calculate the heat transfer area A

o

 Calculate the volume of the heat exchanger using𝛼 = 𝛽 =

𝐴𝑜

 Get the depth of the heat exchanger L form V=A

𝑉 fr

L

 Calculate the number of rows of tubes

Example 11.6

(23)

Surface: 8.0-3/8 T

Continuous fins on circular tubes

(24)

Surface CF-8.72(c) Circular fins on circular tubes

(25)

Circular fin on circular tubes

CF-8.7-5/8J

(26)

Heat transfer

factor j and friction coefficient f for

some tube-fin and plate- fin surface

Ref.: Kays & London

(27)

Continuous fin with flat tube

(28)

Some of the data for plate-fin and tube fin compact heat exchangers

(29)

Δ𝑝 = 𝐺2

2𝜌𝑖 4𝑓 𝐿 𝐷

𝜌𝑖

𝜌 + 1 + 𝜎2 𝜌𝑖

𝜌𝑜 − 1

Δ𝑝 = 𝐺2

2𝜌𝑖 𝑓 𝐴 𝐴𝑚𝑖𝑛

𝜌𝑖

𝜌 + 1 + 𝜎2 𝜌𝑖

𝜌𝑜 − 1 𝐴

𝐴𝑚 = 4𝐿

𝐷 = ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑎𝑟𝑒𝑎 𝑚𝑖𝑛. 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎

Pressure drop (Gas side)

Amin min. flow area

A =heat transfer area

P=perimeter A=heat transfer area=P*L

Dh= 4Amin/P

𝐷 = 4𝐴𝑚𝑖𝑛 𝑃

𝐿

𝐿 = 4𝐴𝑚𝑖𝑛𝐿 𝐴

𝐴

𝐴𝑚𝑖𝑛 = 4𝐿 𝐷 L

(30)

3- Plat fin compact heat exchangers

(31)
(32)

Kays & London heat transfer and pressure drop data for plate-fin and tube-fin heat exchangers

Ch. 9

(33)

Ch. 9 Kays & London

Plain fins

(34)

Ch. 9 Kays & London

Strip fins

(35)

Ch. 9 Kays & London

Louvered fins

(36)

Ch. 9 Kays & London

(37)

Ch. 9 Kays & London

Circular tubes, continuous fins Flat tubes continuous fins

(38)

Ch. 9 Kays & London

Circular tubes- circular fins

(39)

Ch. 9 Kays & London

Flow inside circular and flattened tubes

(40)

Δ𝑝 = 𝐺2

2𝜌𝑖 𝑘𝑐 + 1 − 𝜎 + 2 𝜌𝑖

𝜌𝑜 − 1 + 𝑓 𝐴 𝐴𝑚𝑖𝑛

𝜌𝑖

𝜌 − 1 − 𝑘𝑒 − 𝜎2 𝜌𝑖 𝜌𝑜

Entrance Exit

Acceleration

Friction Major loss

Pressure drop for plat-fin heat exchanger

1

𝜌 = 1 2

1

𝜌𝑖 + 1 𝜌𝑜 Average density can be found using

(41)

Typical data for plate-fin compact heat exchanger

(42)

Surface tabulated data for plate-fin compact heat exchangers

(43)

Gas

Air

Surface 1 Surface 2

Hydaulic diameter Dh1 Plate spacing b1

Fin thickness 𝛿𝑓1

Area/ volume between plate, 𝛽1 Fin area/heat transfer area, 𝜔1 Length of the fin, 𝑙𝑓1

2 =A2/V

Hydaulic diameter Dh2 Plate spacing b2

Fin thickness 𝛿𝑓2

Area/ volume between plate, 𝛽2 Fin area/heat transfer area, 𝜔2 Length of the fin, 𝑙𝑓2

1=A1/V

Afr1

Afr2 Plate-fin compact heat exchanger (Gas-to-Gas HX)

Calculate

1-Number of passes Np

2-Calculate volume between plates for side 1 and side 2

3-Calculate heat transfer area A1, and A2 4-Calculate Amin1, Amin2

5-Calculate G1, and G2 6-Get j1,j2, f1, f2

7-Calculate h1 and h2

8-Calculate ηf1, ηf2, η0102 9-Calculate U value

10-Calculate Cr and NTU, then get 

11-Calculate outlet temperatures 12-Calculate pressure drops

for both sides

L1 L2

L3

(44)

𝐿𝑐 = 𝑁𝑝𝑏1 + 𝑁𝑝 + 1 𝑏2 + 2 𝑁𝑝 + 1 𝑎

Assuming the number of passes in one side is Np and Np+1 on the other side, then the common edge length can be written in terms the pate spacing's b1, b2 and the plate thickness a as follows

Calculating the heat transfer areas for side (1) and side (2)

𝑁𝑝 = 𝐿𝑐 − 𝑏2 − 2𝑎 𝑏1 + 𝑏2 + 2𝑎

Volume between the plates for side (1) and side (2)

𝑉𝑝1 = 𝐿1 ∗ 𝐿2 ∗ 𝑁𝑝 ∗ 𝑏1 𝑉𝑝2 = 𝐿1 ∗ 𝐿2 ∗ 𝑁𝑝 ∗ 𝑏2

Utilizing the relation between  and the volume between the plates

𝛽1 = 𝐴1

𝑉𝑝1 𝛽2 = 𝐴2 𝑉𝑝2

(45)

If 1 and 2 are calculated based on b1, b2 a, and  , then one can easily find the heat

transfer areas A1 and A2

𝛼1 = 𝐴1

𝑉 𝛼2 = 𝐴2 𝑉

Where V is the total volume of the heat exchanger

(46)

𝜎1 = 𝐴𝑚𝑖𝑛,1

𝐴𝑓𝑟,1 = 𝐴𝑚𝑖𝑛,1𝐿𝑝1

𝐴𝑓𝑟,1𝐿𝑝,1 = 𝐴1 𝐷ℎ,1Τ4

𝑉 = 𝑉1𝛽1 𝐷ℎ,1Τ4 𝑉

𝑉 = 𝐿1 ∗ 𝐿2[𝑏1𝑁𝑝 + 𝑏2(𝑁𝑝+1) + 2𝑎 ∗ (𝑁𝑝 + 1)]

𝜎1 = 𝑚𝑖𝑛. 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎 𝑓𝑟𝑜𝑛𝑡𝑎𝑙 𝑎𝑟𝑒𝑎

𝛽 = ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑎𝑟𝑒𝑎 𝑉𝑜𝑙𝑢𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒𝑠

𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟

𝜎1 = 𝑉1𝛽1 𝐷ℎ,1Τ4

𝐿1 ∗ 𝐿2 [𝑏1𝑁𝑝 + 𝑏2(𝑁𝑝+1) + 2𝑎 ∗ (𝑁𝑝 + 1)] = 𝐿1 ∗ 𝐿2 ∗ 𝑏1 ∗ 𝑁𝑝 ∗ 𝛽1 𝐷ℎ,1Τ4

𝐿1 ∗ 𝐿2 [𝑏1𝑁𝑝 + 𝑏2(𝑁𝑝+1) + 2𝑎 ∗ (𝑁𝑝 + 1)]

𝜎1 = 𝑏1𝛽1 𝐷ℎ,1Τ4 𝑏1 + 𝑏2 + 2𝑎

𝛼1 = 𝐴1

𝑉 = 𝐴1

𝐴𝑓𝑟,1𝐿1 = 𝐴1Τ𝐿1

𝐴𝑓𝑟,1 = 4𝐴𝑚𝑖𝑛,1Τ𝐷ℎ,1

𝐴𝑓𝑟,1 = 4𝜎1

𝐷ℎ,1 = 𝑏1𝛽1 𝑏1 + 𝑏2 + 2𝑎

𝐿𝑝1 𝑓𝑙𝑜𝑤 𝑝𝑎𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑠𝑖𝑑𝑒 (1)

𝑏1 𝑏2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑓𝑜𝑟 𝑠𝑖𝑑𝑒 1 𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 2

Deducing the relation for 1 and 2

𝑁𝑝 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑠 𝐷 = 4𝐴𝑚𝑖𝑛

𝑃 𝐿

𝐿 = 4𝐴𝑚𝑖𝑛𝐿 𝐴

(47)

𝜎2 = 𝑏2𝛽2 𝐷ℎ,2Τ4 𝑏1 + 𝑏2 + 2𝑎

𝛼2 = 𝐴2

𝑉 = 𝐴2

𝐴𝑓𝑟,2𝐿2 = 𝐴2Τ𝐿2

𝐴𝑓𝑟,2 = 4𝐴𝑚𝑖𝑛,2Τ𝐷ℎ,2

𝐴𝑓𝑟,2 = 4𝜎2

𝐷ℎ,2 = 𝑏2𝛽2 𝑏1 + 𝑏2 + 2𝑎

𝑏

1

𝑏

2

𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑓𝑜𝑟 𝑠𝑖𝑑𝑒 1 𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 2

𝑁

𝑝

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑠

For side 2

(48)

1

𝑈1𝐴1 = 1

1𝐴1𝜂01 + 𝑅𝑤 + 1 2𝐴2𝜂02

𝜂01 = 1 − 𝐴𝑓1

𝐴1 (1 − 𝜂𝑓1) 𝜂02 = 1 − 𝐴𝑓2

𝐴2 (1 − 𝜂𝑓2)

𝜂𝑓 = tanh(𝑀𝑙𝑓) 𝑀𝑙𝑓

𝑀 = 2ℎ 𝑘𝑓𝛿𝑓

𝑙𝑓 is the length of the fin 𝛿𝑓 is the fin thickness

Overall heat transfer for plate-fin heat exchanger

𝐴𝑤 = 𝐿1𝐿2 ∗ 2(𝑁𝑝 + 1) 𝑅𝑤 = 𝑎

𝑘𝑤𝐴𝑤 Conduction resistance

(49)

a) Plain triangular fin

b) Plain rectangular fin c) Wavy fin d) Offset strip fin e) multi-louver fin f) Perforated fin

Some types of plate fin Compact HX

(50)

Fin types for plate fin compact heat exchanger

(51)

4-Examples

(52)

U=10 m/s

Find h and Dp

Air at p=1 atm T=400 K

(53)

Example 10.1

(54)

Example 10.1

(55)

U=20 m/s

Find h and Dp

Air at p=2 atm T=500 K

(56)

Example 10.2

(57)

Example 10.2

(58)

m=1500 kg/s Afr=0.25 m2

Find h and Dp

Air at p=1 atm T=30 C

To=100 C

(59)

Example 10.3

(60)

Example 10.3

(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)

Referensi

Dokumen terkait

The qualitative data used is in the form of interviews with Badan Pendapatan Daerah Bitung City employees and several taxpayers regarding the exemption from administrative