1 | P a g e Umm Al-Qura Universtiy, Makkah
Department of Electrical Engineering Electromagnetics (2) - (8022320)
Term 1: 2021/2022
Solution Homework 2 Dr. Waheed Ahmad Younis
Do not submit this homework. There will be a quiz from this homework on Wednesday, 15 Sep 2021.
Topics covered in this week:
• Concept of displacement current and displacement current density 𝐼𝑑 = ∫𝑠 𝜕𝐷𝜕𝑡⃗⃗ . 𝑑𝑆 𝐽⃗⃗⃗ =𝑑 𝜕𝐷⃗⃗
𝜕𝑡
• Modified Maxwell’s equations (adding the displacement current)
1. ∮ 𝐸⃗ . 𝑑𝑙 = − ∫𝑠 𝜕𝐵𝜕𝑡⃗ . 𝑑𝑆 Faraday’s law 2. ∮ 𝐻⃗⃗ . 𝑑𝑙 = ∫ 𝐽 . 𝑑𝑆 𝑠 + ∫𝑠 𝜕𝐷𝜕𝑡⃗⃗ . 𝑑𝑆 = ∫ (𝐽 +𝑠 𝜕𝐷𝜕𝑡⃗⃗ ) . 𝑑𝑆 = 𝐼 Ampere’s law
3. ∮ 𝐷⃗⃗ . 𝑑𝑆 = ∫ 𝜌 𝑑𝑣𝑣 = 𝑄 Gauss’s law
4. ∮ 𝐵⃗ . 𝑑𝑆 = 0 No isolated magnetic pole
• 2 theorems from vector calculus (for any vector field 𝐴 )
1. ∮ 𝐴 . 𝑑𝑆 = ∫ (∇. 𝐴 𝑣 ) 𝑑𝑣 Divergence theorem (relating the close surface integral to the volume integral
2. ∮ 𝐴 . 𝑑𝑙 = ∫ (∇ × 𝐴 ). 𝑑𝑆 𝑠 Stokes’ theorem (relating the close line integral to the surface integral
• Point form of Maxwell’s equations (using divergence and Stokes theorems) 1. ∇ × 𝐸⃗ = −𝜕𝐵⃗
𝜕𝑡
2. ∇ × 𝐻⃗⃗ = 𝐽 +𝜕𝐷⃗⃗
𝜕𝑡
3. ∇. 𝐷⃗⃗ = 𝜌 4. ∇. 𝐵⃗ = 0
• Maxwell’s equations for free space (using 𝐽 = 0, 𝜌 = 0, 𝐷⃗⃗ = 𝜖0𝐸⃗ 𝑎𝑛𝑑 𝐵⃗ = 𝜇0𝐻⃗⃗ ) 1. ∇ × 𝐸⃗ = −𝜇0𝜕𝐻⃗⃗
𝜕𝑡
2. ∇ × 𝐻⃗⃗ = 𝜖0𝜕𝐸⃗
𝜕𝑡
3. ∇. 𝐸⃗ = 0 4. ∇. 𝐻⃗⃗ = 0
• Phasor notation:
𝑣(𝑡) = 𝑉0cos(𝜔𝑡 + 𝜃) = 𝑉0 𝑅𝑒{𝑒𝑗𝜔𝑡𝑒𝑗𝜃} ⇔ 𝑉𝑝ℎ = 𝑉𝑟𝑚𝑠𝑒𝑗𝜃 = 𝑉𝑟𝑚𝑠∠𝜃 𝑑𝑣(𝑡)
𝑑𝑡 = −𝜔𝑉0sin(𝜔𝑡 + 𝜃) = 𝜔𝑉0cos (𝜔𝑡 + 𝜃 +𝜋
2) = 𝜔𝑉0 𝑅𝑒 {𝑒𝑗𝜔𝑡𝑒𝑗𝜃𝑒𝑗𝜋2}
= 𝜔𝑉0 𝑅𝑒{𝑒𝑗𝜔𝑡𝑒𝑗𝜃𝑗}
⇔ 𝑑(𝑉𝑝ℎ)
𝑑𝑡 = 𝑗𝜔𝑉𝑟𝑚𝑠𝑒𝑗𝜃 = 𝑗𝜔𝑉𝑝ℎ
2 | P a g e
• Maxwell’s equations for sinusoidal fields in free space 1. ∇ × 𝐸⃗⃗⃗⃗ = −𝑗𝜔𝜇𝑠 0𝐻⃗⃗⃗⃗ 𝑠
2. ∇ × 𝐻⃗⃗⃗⃗ = 𝑗𝜔𝜖𝑠 0𝐸⃗⃗⃗⃗ 𝑠 3. ∇ ∙ 𝐸⃗⃗⃗⃗ = 0 𝑠 4. ∇ ∙ 𝐻⃗⃗⃗⃗ = 0 𝑠
• Derivation of Helmholtz equation from Maxwell’s equations Maxwell’s equations for sinusoidal fields in free space
∇ × 𝐸⃗⃗⃗⃗ = −𝑗𝜔𝜇𝑠 0𝐻⃗⃗⃗⃗ ∇ × 𝐻𝑠 ⃗⃗⃗⃗ = 𝑗𝜔𝜖𝑠 0𝐸⃗⃗⃗⃗ ∇ ∙ 𝐸𝑠 ⃗⃗⃗⃗ = 0 ∇ ∙ 𝐻𝑠 ⃗⃗⃗⃗ = 0 𝑠 Taking curl of the first equation
∇ × (∇ × 𝐸⃗⃗⃗⃗ ) = −𝑗𝜔𝜇𝑠 0(∇ × 𝐻⃗⃗⃗⃗ ) 𝑠
Apply the vector identity [∇ × (∇ × 𝐴 ) = ∇(∇ ∙ 𝐴 ) − ∇2𝐴 ]
∇(∇ ∙ 𝐸⃗⃗⃗⃗ ) − ∇𝑠 2𝐸⃗⃗⃗⃗ = −𝑗𝜔𝜇𝑠 0(∇ × 𝐻⃗⃗⃗⃗ ) 𝑠
Inserting the 2nd and the 3rd Maxwell’s equations in the above
∇(0) − ∇2𝐸⃗⃗⃗⃗ = −𝑗𝜔𝜇𝑠 0(𝑗𝜔𝜖0𝐸⃗⃗⃗⃗ ) 𝑠
∇2𝐸⃗⃗⃗⃗ = 𝑗𝜔𝜇𝑠 0(𝑗𝜔𝜖0𝐸⃗⃗⃗⃗ ) 𝑠
∇2𝐸⃗⃗⃗⃗ = −𝜔𝑠 2𝜇0𝜖0𝐸⃗⃗⃗⃗ 𝑠
The above equation is known as Helmholtz equation.
• Solution of the 2nd order differential equation:
𝑑2𝑦
𝑑𝑥2 = −𝑘2𝑦 is 𝑦(𝑥) = 𝑌𝑒−𝑗𝑘𝑥 Proof:
𝑦 = 𝑌𝑒−𝑗𝑘𝑥 𝑦′= −𝑗𝑘 𝑌𝑒−𝑗𝑘𝑥 𝑦′′= (−𝑗𝑘)2𝑌𝑒−𝑗𝑘𝑥 = −𝑘2𝑌𝑒−𝑗𝑘𝑥 = −𝑘2𝑦
• Solution of the Helmholtz equations.
Assume that the electric field exists along x-axis only. Writing Helmholtz equation for this case
∇2𝐸𝑥𝑠 = −𝜔2𝜇0𝜖0𝐸𝑥𝑠
𝜕2𝐸𝑥𝑠
𝜕𝑥2 +𝜕2𝐸𝑥𝑠
𝜕𝑦2 +𝜕2𝐸𝑥𝑠
𝜕𝑧2 = −𝜔2𝜇0𝜖0𝐸𝑥𝑠
Assume that the electric field varies along z-axis only (the derivatives along other axes would be zero)
𝑑2𝐸𝑥𝑠
𝑑𝑧2 = −𝜔2𝜇0𝜖0𝐸𝑥𝑠
This is a 2nd order differential equation. A solution of this equation is 𝐸𝑥𝑠(𝑧) = 𝐸𝑥0 𝑒−𝑗𝜔√𝜇0𝜖0 𝑧
Converting phasor into time-domain function
𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0 𝑅𝑒 [𝑒𝑗𝜔𝑡𝑒−𝑗𝜔√𝜇0𝜖0 𝑧] = 𝐸𝑥0 𝑅𝑒 [𝑒𝑗(𝜔𝑡−𝜔√𝜇0𝜖0 𝑧)] = 𝐸𝑥0cos(𝜔𝑡 − 𝜔√𝜇0𝜖0 𝑧) Above expression represents a travelling wave of electric field. It is directed along x-axis and travelling along z-axis.
Wavelength = 𝜆 = 2𝜋
𝜔√𝜇0𝜖0 Period= 𝑇 =2𝜋
𝜔 Speed = 𝑓𝜆 = 1
√𝜇0𝜖0
____________________________________________________________________________________
3 | P a g e Q1. For the electric flux density given in Q5 of HW-1:
𝐷⃗⃗ = (2𝑥𝑦 𝑎⃗⃗⃗⃗ + 𝑥𝑥 2𝑎⃗⃗⃗⃗ ) 𝐶 𝑚𝑦 ⁄ 2
Find the total charge inside the close surface of the parallelepiped formed by the planes x=0 and 1, y=0 and 2, and z=0 and 3. Use divergence theorem.
Solution:
According to divergence theorem: ∮ 𝐷⃗⃗ ∙ 𝑑𝑆 = ∫ (∇. 𝐷⃗⃗
𝑣 ) 𝑑𝑣
𝐶ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝜌 = ∇. 𝐷⃗⃗ =𝜕𝐷𝑥
𝜕𝑥 +𝜕𝐷𝑦
𝜕𝑦 +𝜕𝐷𝑧
𝜕𝑧 = 2𝑦 + 0 + 0 = 2𝑦 𝐶 𝑚⁄ 2 𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 = ∫ 𝜌
𝑣
𝑑𝑣 = ∫ (∇. 𝐷⃗⃗
𝑣
) 𝑑𝑣 = ∭ 2𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑥=1,𝑦=2,𝑧=3
𝑥=0,𝑦=0,𝑧=0
= 12 𝐶
Q2. For the vector field given in Q6 of HW-1:
𝐷⃗⃗ = 6𝜌 sin𝜑
2 𝑎⃗⃗⃗⃗ + 1.5𝜌 cos𝜌 𝜑
2𝑎⃗⃗⃗⃗ 𝜑
Find the surface integral for the close surface bounded by 𝜌 = 2, 𝜑 = 0 𝑎𝑛𝑑 𝜋, 𝑧 = 0 𝑎𝑛𝑑 5.
Use divergence theorem.
Solution:
According to divergence theorem: ∮ 𝐷⃗⃗ ∙ 𝑑𝑆 = ∫ (Div 𝐷⃗⃗
𝑣 ) 𝑑𝑣
For cylindrical coordinates, Div 𝐷⃗⃗ = 1
𝜌
𝜕(𝜌𝐷𝜌)
𝜕𝜌 +1 𝜌
𝜕𝐷𝜑
𝜕𝜑 +𝜕𝐷𝑧
𝜕𝑧 =1 𝜌
𝜕 (𝜌 6𝜌 sin𝜑 2)
𝜕𝜌 +1
𝜌
𝜕 (1.5𝜌 cos𝜑 2)
𝜕𝜑 = 11.25 sin𝜑 2
∫ (Div 𝐷⃗⃗
𝑣
) 𝑑𝑣 = ∭ 11.25 sin𝜑
2 𝜌 𝑑𝜌 𝑑𝜑 𝑑𝑧
𝜌=2,𝜑=𝜋,𝑧=5
𝜌=0,𝜑=0,𝑧=0
= 11.25 ∫ sin𝜑 2 𝑑𝜑
𝜋
𝜑=0
∫ 𝜌 𝑑𝜌
2
𝜌=0
∫ 𝑑𝑧
5
𝑧=0
= 11.25 |−2 cos𝜑 2|
0 𝜋
|𝜌2 2|
0 2
|𝑧|05 = −22.5(0 − 1)(2 − 0)(5 − 0) = 225
Q3. For the magnetic field given in Q7 of HW-1:
𝐻⃗⃗ = (6𝑥𝑦 𝑎⃗⃗⃗⃗ − 3𝑦𝑥 2𝑎⃗⃗⃗⃗ ) 𝐴 𝑚𝑦 ⁄
Find the total current enclosed by the rectangular path formed by the lines 2 ≤ 𝑥 ≤ 5 and −1 ≤ 𝑦 ≤ 1. Use Stokes’ theorem.
Solution:
According to Stokes’ theorem: ∮ 𝐻⃗⃗ . 𝑑𝑙 = ∫ (∇ × 𝐻⃗⃗ 𝑠 ) . 𝑑𝑆
Current density = 𝐽 = ∇ × 𝐻⃗⃗ = ||
𝑎𝑥
⃗⃗⃗⃗ 𝑎⃗⃗⃗⃗ 𝑦 𝑎⃗⃗⃗⃗ 𝑧
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧 𝐻𝑥 𝐻𝑦 𝐻𝑧
|| = ||
𝑎𝑥
⃗⃗⃗⃗ 𝑎⃗⃗⃗⃗ 𝑦 𝑎⃗⃗⃗⃗ 𝑧
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧 6𝑥𝑦 −3𝑦2 0
||
= 𝑎⃗⃗⃗⃗ (0 − 0) − 𝑎𝑥 ⃗⃗⃗⃗ (0 − 0) + 𝑎𝑦 ⃗⃗⃗⃗ (0 − 6𝑥) = −6𝑥 𝑎𝑧 ⃗⃗⃗⃗ 𝐴𝑚𝑝𝑒𝑟𝑒/𝑚𝑧 2 𝑑𝑆 = 𝑑𝑥 𝑑𝑦 𝑎⃗⃗⃗⃗ 𝑧
(∇ × 𝐻⃗⃗ ). 𝑑𝑆 = −6𝑥 𝑑𝑥 𝑑𝑦
4 | P a g e
∫ 𝐽
𝑠
. 𝑑𝑆 = ∫ (∇ × 𝐻⃗⃗
𝑠
) . 𝑑𝑆 = −6 ∬ 𝑥 𝑑𝑥 𝑑𝑦
𝑦=1,𝑥=5
𝑦=−1,𝑥=2
= −6 ∫ 𝑥 𝑑𝑥
5
𝑥=2
∫ 𝑑𝑦
1
𝑦=−1
= −126 𝐴𝑚𝑝𝑒𝑟𝑒
Q4. For the magnetic field given in Q8 of HW-1:
𝐻⃗⃗ = 20𝜌2𝑎⃗⃗⃗⃗ 𝐴/𝑚: 𝜑
Fine the total current passing through the circular surface 0 ≤ 𝜌 ≤ 1, 𝑧 = 0. Use Stoke’s theorem.
Solution:
Curl 𝐻⃗⃗ = [1
𝜌
𝜕𝐻𝑧
𝜕𝜑 −𝜕𝐻𝜑
𝜕𝑧 ] 𝑎⃗⃗⃗⃗ + [𝜌 𝜕𝐻𝜌
𝜕𝑧 −𝜕𝐻𝑧
𝜕𝜌] 𝑎⃗⃗⃗⃗ +𝜑 1
𝜌[𝜕(𝜌𝐻𝜑)
𝜕𝜌 −𝜕𝐻𝜌
𝜕𝜑] 𝑎⃗⃗⃗⃗ 𝑧 = [1
𝜌
𝜕(0)
𝜕𝜑 −𝜕(20𝜌2)
𝜕𝑧 ] 𝑎⃗⃗⃗⃗ + [𝜌 𝜕(0)
𝜕𝑧 −𝜕(0)
𝜕𝜌] 𝑎⃗⃗⃗⃗ +𝜑 1
𝜌[𝜕(20𝜌3)
𝜕𝜌 −𝜕(0)
𝜕𝜑] 𝑎⃗⃗⃗⃗ 𝑧 =1
𝜌
𝜕(20𝜌3)
𝜕𝜌 𝑎⃗⃗⃗⃗ = 60𝜌 𝑎𝑧 ⃗⃗⃗⃗ 𝐴/𝑚𝑧 2
𝑑𝑆 = 𝜌 𝑑𝜑 𝑑𝜌 𝑎⃗⃗⃗⃗ (Curl 𝐻𝑧 ⃗⃗ ). 𝑑𝑆 = 60𝜌2 𝑑𝜑 𝑑𝜌 𝐼 = ∮ 𝐻⃗⃗ . 𝑑𝑙 = ∫(∇ × 𝐻⃗⃗
𝑠
) . 𝑑𝑆 = ∬ 60𝜌2 𝑑𝜑 𝑑𝜌
𝜌=1,𝜑=2𝜋
𝜌=0,0,𝜑=0
= 60 ∫ 𝜌2𝑑𝜌
1
0
∫ 𝑑𝜑
2𝜋
0
= 60 (1 3) (2𝜋)
= 40𝜋 𝐴
Q5. Find the amplitude of displacement current density around a car antenna where the field strength of an FM signal is 𝐸⃗ = 80 cos(6.277 × 108𝑡 − 2.092𝑦) 𝑎⃗⃗⃗⃗ 𝑉 𝑚𝑧 ⁄ .
Solution:
𝐷⃗⃗ = 𝜖0𝐸⃗ = 80𝜖0cos(6.277 × 108𝑡 − 2.092𝑦) 𝑎⃗⃗⃗⃗ 𝐶 𝑚𝑧 ⁄ 2 Displacement current density =𝜕𝐷⃗⃗
𝜕𝑡
= −80𝜖0(6.277 × 108) sin(6.277 × 108𝑡 − 2.092𝑦) 𝑎⃗⃗⃗⃗ 𝐶 𝑠. 𝑚𝑧 ⁄ 2
= −0.445 sin(6.277 × 108𝑡 − 2.092𝑦) 𝑎⃗⃗⃗⃗ 𝐴 𝑚𝑧 ⁄ 2 Hence, amplitude = 0.445 𝐴 𝑚⁄ 2
Q6. Express the following time function as phasor:
𝐸𝑦 = 100 cos (108𝑡 − 0.5𝑧 +𝜋
6) Solution:
𝐸𝑦 = 100 cos (108𝑡 − 0.5𝑧 +𝜋
6) = 100𝑅𝑒 [𝑒𝑗(108𝑡−0.5𝑧+
𝜋 6)
] = 100𝑅𝑒 [𝑒𝑗108𝑡𝑒𝑗(−0.5𝑧+
𝜋 6)
] 𝐸𝑦𝑠 =100
√2 𝑒−𝑗0.5𝑧+𝑗
𝜋
6 = 70.71∠ (−0.5𝑧 +𝜋
6)
Q7. Consider the field intensity vector expressed as phasor. Recover the time-domain expression:
𝐸𝑠
⃗⃗⃗⃗ = 100∠30° 𝑎⃗⃗⃗⃗ + 20∠ − 50° 𝑎𝑥 ⃗⃗⃗⃗ + 40∠210° 𝑎𝑦 ⃗⃗⃗⃗ V/m 𝑧 Solution:
5 | P a g e 𝐸𝑠
⃗⃗⃗⃗ = 100𝑒𝑗30° 𝑎⃗⃗⃗⃗ + 20𝑒𝑥 −𝑗50° 𝑎⃗⃗⃗⃗ + 40𝑒𝑦 𝑗210° 𝑎⃗⃗⃗⃗ 𝑧 𝐸𝑠
⃗⃗⃗⃗ (𝑡) = (100𝑒𝑗30° 𝑎⃗⃗⃗⃗ + 20𝑒𝑥 −𝑗50° 𝑎⃗⃗⃗⃗ + 40𝑒𝑦 𝑗210° 𝑎⃗⃗⃗⃗ )𝑒𝑧 𝑗𝜔𝑡
𝐸⃗ (𝑡) = 𝑅𝑒(100√2𝑒𝑗𝜔𝑡𝑒𝑗30° 𝑎⃗⃗⃗⃗ + 20√2𝑒𝑥 𝑗𝜔𝑡𝑒−𝑗50° 𝑎⃗⃗⃗⃗ + 40√2𝑒𝑦 𝑗𝜔𝑡𝑒𝑗210° 𝑎⃗⃗⃗⃗ ) 𝑧
= 100√2 cos(𝜔𝑡 + 30°) 𝑎⃗⃗⃗⃗ + 20√2 cos(𝜔𝑡 − 50°) 𝑎𝑥 ⃗⃗⃗⃗ + 40√2 cos(𝜔𝑡 + 210°) 𝑎𝑦 ⃗⃗⃗⃗ V/m 𝑧 Q8. Convert the following phasor into time-domain expression:
𝐻𝑠
⃗⃗⃗⃗ = 20𝑒−(0.1+𝑗20)𝑧 𝑎⃗⃗⃗⃗ A/m 𝑥 Solution:
𝐻⃗⃗ (𝑡) = 20√2 𝑅𝑒[𝑒−(0.1+𝑗20)𝑧𝑒𝑗𝜔𝑡]𝑎⃗⃗⃗⃗ = 20√2 𝑅𝑒[𝑒𝑥 −0.1𝑧+𝑗𝜔𝑡−𝑗20𝑧]𝑎⃗⃗⃗⃗ 𝑥
= 20√2𝑒−0.1𝑧 𝑅𝑒[𝑒𝑗(𝜔𝑡−20𝑧)]𝑎⃗⃗⃗⃗ = 20√2 𝑒𝑥 −0.1𝑧cos(𝜔𝑡 − 20𝑧) 𝑎⃗⃗⃗⃗ A/m 𝑥