• Tidak ada hasil yang ditemukan

Conclusions

Dalam dokumen Novel Enzyme and Whole-Cell Biocatalysts (Halaman 86-90)

Characterization of Two Endo-β-1,3-Glucanases from the Thermophilic Bacterium Fervidobacterium sp

5. Conclusions

Laminarinases are enzymes which could be applied in diverse fields, from biomass conversion, over yeast extract production, agents against fungal plant pathogens to the production of antiviral and antitumor therapeutics fromβ-1,3-glucans. The biochemical characterization of the two laminarinases FLamA and FLamB derived from aFervidobacteriumspecies revealed high specific activities and resistance to elevated temperatures and various additives which make both enzymes suitable candidates for application under harsh conditions. Moreover, the comparative analysis of both enzymes showed differences in their thermal stability and catalytic efficiency towardsβ-1,3-glucans, like laminarin and curdlan. In conclusion, these results will contribute to our knowledge of sequence-function correlations and will potentially help to improve activity and stability of laminarinases and other related glucanases.

Supplementary Materials:The following are available online athttp://www.mdpi.com/2073-4344/9/10/830/s1, Figure S1: Structural models of FLamA and FLamB, Figure S2: Amino acid alignment of the catalytic domains of FLamA and FLamB with other members of GH 16, Figure S3: Laminarinase activity of FLamA and FLamB after incubation at pH 3-11 and 4C for 24 h, Table S1: Purification of the recombinant FLamA and FLamB fromE. coli.

Author Contributions: C.B. designed the study and performed the experimental work. C.S., G.S. and G.A.

supervised this study. C.B. prepared the manuscript. C.S., J.C. and G.A. reviewed and edited the manuscript before submission.

Funding:This research was funded by BMBF (Bundesministerium für Bildung und Forschung, Germany) in the project LIPOMAR (Lipids and surfactants from marine biomass), FKZ 031A261.

Conflicts of Interest:The authors declare no conflict of interest.

References

1. Stone, B.A. Chemistry, biochemistry, and biology of (1-3)-β-glucans and related polysaccharides. InChemistry ofβ-Glucans, 1st ed.; Bacic, A., Fincher, G.B., Stone, B.A., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2009; pp. 5–46.

2. Ebringerová, A.; Hromádková, Z.; Heinze, T. Hemicellulose. InPolysaccharides, I. Structure, Characterisation and Use; Heinze, T.T., Ed.; Springer-Verlag GmbH: Berlin/Heidelberg, Germany, 2005; pp. 1–67.

3. Painter, T.J. Algal polysaccharides. InThe Polysaccharides; Aspinall, G.O., Ed.; Academic Press (Molecular biology): New York, NY, USA, 1983; pp. 195–285. Volume 2.

4. Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima Alaria esculenta.J. Appl. Phycol.

2015,27, 363–373. [CrossRef]

5. Wei, N.; Quarterman, J.; Jin, Y.-S. Marine macroalgae: an untapped resource for producing fuels and chemicals.Trends Biotechnol.2013,31, 70–77. [CrossRef] [PubMed]

6. Jung, K.A.; Lim, S.-R.; Kim, Y.; Park, J.M. Potentials of macroalgae as feedstocks for biorefinery.Bioresour.

Technol.2013,135, 182–190. [CrossRef] [PubMed]

7. Hehemann, J.-H.; Boraston, A.B.; Czjzek, M. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae.Curr. Opin. Struct. Biol.2014,28, 77–86. [CrossRef] [PubMed]

8. Shi, P.; Yao, G.; Yang, P.; Li, N.; Luo, H.; Bai, Y.; Wang, Y.; Yao, B. Cloning, characterization, and antifungal activity of an endo-1,3-β-D-glucanase fromStreptomycessp. S27. Appl. Microbiol. Biotechnol. 2010,85, 1483–1490. [CrossRef] [PubMed]

9. Vetvicka, V. Glucan-immunostimulant, adjuvant, potential drug. World J. Clin. Oncol. 2011,2, 115–119.

[CrossRef]

10. Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.Nucleic Acids Res.2009,37, D233–D238.

[CrossRef]

11. Sarmiento, F.; Peralta, R.; Blamey, J.M. Cold and Hot Extremozymes: Industrial Relevance and Current Trends.Front. Bioeng. Biotechnol.2015,3, 348. [CrossRef]

12. Krahe, M.; Markl, H.; Antranikian, G. Fermentation of extremophilic microorganisms.FEMS Microbiol. Rev.

1996,18, 271–285. [CrossRef]

13. Schroeder, C.; Elleuche, S.; Blank, S.; Antranikian, G. Characterization of a heat-active archaeal beta-glucosidase from a hydrothermal spring metagenome. Enzyme Microb. Technol. 2014,57, 48–54.

[CrossRef]

14. Zhaxybayeva, O.; Swithers, K.S.; Lapierre, P.; Fournier, G.P.; Bickhart, D.M.; DeBoy, R.T.; Nelson, K.E.;

Nesbø, C.L.; Doolittle, W.F.; Gogarten, J.P.; et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales.Proc. Natl. Acad. Sci. USA2009,106, 5865–5870. [CrossRef] [PubMed]

15. Patel, B.K.C.; Morgan, H.W.; Daniel, R.M. Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium.Arch. Microbiol.1985,141, 63–69. [CrossRef]

16. Wang, Y.; Wang, X.; Tang, R.; Yu, S.; Zheng, B.; Feng, Y. A novel thermostable cellulase from Fervidobacterium nodosum.J. Mol. Catal. B: Enzym.2010,66, 294–301. [CrossRef]

17. Labourel, A.; Jam, M.; Legentil, L.; Sylla, B.; Hehemann, J.H.; Ferrières, V.; Czjzek, M.; Michel, G. Structural and biochemical characterization of the laminarinase ZgLamCGH16 from Zobellia galactanivorans suggests preferred recognition of branched laminarin.Acta Crystallogr. D2015,71 Pt 2, 173–184. [CrossRef]

18. Palumbo, J.D.; Sullivan, R.F.; Kobayashi, D.Y. Molecular Characterization and Expression in Escherichia coli of Threeβ-1,3-Glucanase Genes from Lysobacter enzymogenes Strain N4-7.J. Bacteriol.2003,185, 4362–4370.

[CrossRef] [PubMed]

19. Hong, T.-Y.; Huang, J.-W.; Meng, M.; Cheng, C.-W. Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-β-glucan.Microbiology2002,148 Pt 4, 1151–1159. [CrossRef]

20. Qian, W.; Zhang, J. Gene dosage and gene duplicability.Genetics2008,179, 2319–2324. [CrossRef]

21. Wagner, A. Energy Constraints on the Evolution of Gene Expression.Mol. Boil. Evol.2005,22, 1365–1374.

[CrossRef]

22. Francino, M.P. An adaptive radiation model for the origin of new gene functions.Nat. Genet. 2005,37, 573–578. [CrossRef]

23. Bratlie, M.S.; Johansen, J.; Sherman, B.T.; Huang, D.W.; Lempicki, R.A.; Drabløs, F. Gene duplications in prokaryotes can be associated with environmental adaptation.BMC Genom.2010,11, 588. [CrossRef]

24. Cota, J.; Alvarez, T.M.; Citadini, A.P.; Santos, C.R.; Neto, M.D.O.; Oliveira, R.R.; Pastore, G.M.; Ruller, R.;

Prade, R.A.; Murakami, M.T.; et al. Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila. Biochem. Biophys. Res. Commun.

2011,406, 590–594. [CrossRef] [PubMed]

25. Zverlov, V.V.; Volkov, I.Y.; Velikodvorskaya, T.V.; Schwarz, W.H. Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable beta-glucosidase that is a laminaribiase.Microbiology1997,143 Pt 11, 3537–3542. [CrossRef]

26. Gueguen, Y.; Voorhorst, W.G.B.; van der Oost, J.; de Vos, W.M. Molecular and biochemical characterization of an endo-β-1,3-glucanase of the hyperthermophilic archaeonPyrococcus furiosus.J. Biol. Chem.1997,272, 31258–31264. [CrossRef] [PubMed]

27. Schwarz, W.H.; Schimming, S.; Staudenbauer, W.L. Isolation of a Clostridium thermocellum gene encoding a thermostableβ-1,3-glucanase (laminarinase).Biotechnol. Lett.1988,10, 225–230. [CrossRef]

28. Kasai, N.; Harada, T. Ultrastructure of Curdlan. InFiber Diraction Methods; French, A.D., Ed.; American Chemical Society (ACS symposium series): Washington, DC, USA, 1980; pp. 363–383. Volume 141.

29. Meng, D.D.; Wang, B.; Ma, X.Q.; Ji, S.Q.; Lu, M.; Li, F.L. Characterization of a thermostable endo-1,3(4)-beta-glucanase from Caldicellulosiruptor sp. strain F32 and its application for yeast lysis.

Appl. Microbiol. Biotechnol.2016,100, 4923–4934. [CrossRef] [PubMed]

30. Kobayashi, T.; Uchimura, K.; Kubota, T.; Nunoura, T.; Deguchi, S. Biochemical and genetic characterization of beta-1,3 glucanase from a deep subseafloor Laceyella putida.Appl. Microbiol. Biotechnol.2016,100, 203–214.

[CrossRef]

31. Masuda, S.; Endo, K.; Koizumi, N.; Hayami, T.; Fukazawa, T.; Yatsunami, R.; Fukui, T.; Nakamura, S. Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96.Extremophiles2006, 10, 251–255. [CrossRef] [PubMed]

32. Spilliaert, R.; Hreggvidsson, G.O.; Kristjansson, J.K.; Eggertsson, G.; Palsdottir, A. Cloning and Sequencing of a Rhodothermus marinus Gene, bglA, Coding for a Thermostable beta-Glucanase and its Expression in Escherichia coli.JBIC J. Boil. Inorg. Chem.1994,224, 923–930. [CrossRef]

33. Krah, M.; Misselwitz, R.; Politz, O.; Thomsen, K.K.; Welfle, H.; Borriss, R. The laminarinase from thermophilic eubacteriumRhodothermus marinus. Conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis.Eur. J. Biochem.1998,257, 101–111. [CrossRef]

34. Fuchs, K.-P.; Zverlov, V.V.; Velikodvorskaya, G.A.; Lottspeich, F.; Schwarz, W.H. Lic16A ofClostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface.

Microbiology2003,149 Pt 4, 1021–1031. [CrossRef]

35. Woo, C.-B.; Kang, H.-N.; Lee, S.-B. Molecular cloning and anti-fungal effect of endo-β-1,3-glucanase from Thermotoga maritima.Food Sci. Biotechnol.2014,23, 1243–1246. [CrossRef]

36. Ilari, A.; Fiorillo, A.; Angelaccio, S.; Florio, R.; Chiaraluce, R.; Van Der Oost, J.; Consalvi, V. Crystal structure of a family 16 endoglucanase from the hyperthermophile Pyrococcus furiosus- structural basis of substrate recognition.FEBS J.2009,276, 1048–1058. [CrossRef] [PubMed]

37. Gaiser, O.J.; Piotukh, K.; Ponnuswamy, M.N.; Planas, A.; Borriss, R.; Heinemann, U. Structural basis for the substrate specificity of aBacillus1,3-1,4-beta-glucanase.J. Mol. Biol.2006,357, 1211–1225. [CrossRef]

[PubMed]

38. Pereira, J.D.C.; Giese, E.C.; Moretti, M.M.D.S.; Gomes, A.C.D.S.; Perrone, M.B.O.M.; Da Silva, R.;

Martins, D.A.B. Effect of Metal Ions, Chemical Agents and Organic Compounds on Lignocellulolytic Enzymes Activities. InEnzyme Inhibitors and Activators; IntechOpen: London, UK, 2017; pp. 139–164.

39. Labourel, A.; Jam, M.; Jeudy, A.; Hehemann, J.-H.; Czjzek, M.; Michel, G. Theβ-glucanase ZgLamA from Zobellia galactanivoransevolved a bent active site adapted for efficient degradation of algal laminarin.J. Biol.

Chem.2014,289, 2027–2042. [CrossRef] [PubMed]

40. Jeng, W.-Y.; Wang, N.-C.; Lin, C.-T.; Shyur, L.-F.; Wang, A.H.-J. Crystal structures of the laminarinase catalytic domain fromThermotoga maritimaMSB8 in complex with inhibitors: essential residues forβ-1,3- andβ-1,4-glucan selection.J. Biol. Chem.2011,286, 45030–45040. [CrossRef] [PubMed]

41. Sahm, K.; John, P.; Nacke, H.; Wemheuer, B.; Grote, R.; Daniel, R.; Antranikian, G. High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods.Extremophiles2013,17, 649–662. [CrossRef] [PubMed]

42. Petersen, T.N.; Brunak, S.; Von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions.Nat. Methods2011,8, 785–786. [CrossRef] [PubMed]

43. Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4.Nature 1970,227, 680–685. [CrossRef] [PubMed]

44. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976,72, 248–254. [CrossRef]

45. Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar.Anal. Chem.1959,31, 426–428. [CrossRef]

46. Britton, H.T.S.; Robinson, R.A. CXCVIII.—Universal buffer solutions and the dissociation constant of veronal.

J. Chem. Soc.1931, 1456–1462. [CrossRef]

©2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

catalysts

Article

Expression, Characterisation and Homology

Dalam dokumen Novel Enzyme and Whole-Cell Biocatalysts (Halaman 86-90)