• Tidak ada hasil yang ditemukan

Conclusions and Future Developments

Dalam dokumen Textile Reinforced Cement Composites (Halaman 50-53)

Mechanical Behaviour of TRC Composites

6. Conclusions and Future Developments

(a) (b)

Figure 23.Effect of fabric efficiency on the predicted analytical response and comparison with the experimental data in terms of nominal stress vs. strain for M1-based (a) and M2-based (b) composites reinforced with F7 fabric.

Appl. Sci.2019,9, 1492

it might be necessary: (i) to implement the effect of added fibres, so as to capture the second stage stress increase and the correct extent of the multi-cracking zone (this last directly correlated to the variation of the cracking pattern development due to fibres addition); (ii) to investigate the non-linear nature of the bond–slip behaviour between the fabric and the matrix by means of pull-out tests, even if this might overcomplicate the model; (iii) to better evaluate the cracking tensile stress of the employed matrix, for instance by means of direct tensile tests on more representative specimens (e.g., with the same nominal dimensions and the same mortar compaction of the TRC composites); and (iv) to develop a method to assess the fabric elastic behaviour, when transversely restrained by the mortar (furtherly investigating the effects of crimp, yarns diameter and grid spacing on the fabric “Poisson” effect).

Author Contributions:Conceptualisation, M.C.R., G.Z., M.C. and M.d.P.; methodology, M.C.R., G.Z. and M.C.;

software, M.C.R. and G.Z.; validation, M.C.R. and G.Z.; formal analysis, M.C.R. and G.Z.; investigation, M.C.R.

and G.Z.; data curation, M.C.R. and G.Z.; writing—original draft preparation, M.C.R. and G.Z.; writing—review and editing, M.C.R., G.Z., M.C. and M.d.P.; visualisation, M.C.R. and G.Z.; supervision, G.Z., M.C. and M.d.P.;

and funding acquisition, M.d.P.

Funding:This research was funded by the ReLUIS interuniversity consortium (ReLUIS PR 5 2017).

Acknowledgments:The authors would like to acknowledge Gavazzi Tessuti Tecnici Spa, BASF Construction Chemicals Italia Spa, BEng. Nicola Borgioni, MEng. Giada Catalano and MEng. Laura Tiraboschi for their precious contribution to the research.

Conflicts of Interest:The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Peled, A.; Bentur, A.; Mobasher, B.Textile Reinforced Concrete, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017;

pp. 1–473.

2. Brameshuber, W. (Ed.) Textile Reinforced Concrete—State-of-the-Art Report of RILEM TC 201-TRC; RILEM Publications SARL: Bagneux, France, 2006.

3. De Felice, G.; De Santis, S.; Garmendia, L.; Ghiassi, B.; Larrinaga, P.; Lourenço, P.B.; Oliveira, D.V.; Paolacci, F.;

Papanicolaou, C.G. Mortar-based systems for externally bonded strengthening of masonry.Mater. Struct.

2014,47, 2021–2037. [CrossRef]

4. De Santis, S.; De Felice, G. Tensile behaviour of mortar-based composites for externally bonded reinforcement systems.Compos. Part B Eng.2015,68, 401–413. [CrossRef]

5. Rampini, M.C.; Zani, G.; Colombo, M.; Di Prisco, M. Textile reinforced concrete composites for existing structures: Performance optimization via mechanical characterization. In Proceedings of the 12th Fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, 29–31 August 2018; pp. 907–914.

6. Koutas, L.N.; Tetta, Z.; Bournas, D.A.; Triantafillou, T.C. Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review.J. Compos. Constr.2019,23, 03118001. [CrossRef]

7. Mechtcherine, V.; Schneider, K.; Brameshuber, W. Mineral-Based Matrices for Textile-Reinforced Concrete.

InTextile Fibre Composites in Civil Engineering; Triantafillou, T.C., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 25–43.

8. Butler, M.; Mechtcherine, V.; Hempel, S. Durability of textile reinforced concrete made with AR glass fibre:

Effect of the matrix composition.Mater. Struct.2010,43, 1351–1368. [CrossRef]

9. Colombo, I.G.; Magri, A.; Zani, G.; Colombo, M.; Di Prisco, M. Erratum: Textile reinforced concrete:

Experimental investigation on design parameters.Mater. Struct.2013,46, 1953–1971. [CrossRef]

10. Peled, A.; Bentur, A. Mechanisms of fabric reinforcement of cement matrices: Effect of fabric geometry and yarn properties.Beton- und Stahlbetonbau2004,99, 456–459. [CrossRef]

11. Soranakom, C.; Mobasher, B. Geometrical and mechanical aspects of fabric bonding and pullout in cement composites.Mater. Struct.2009,42, 765–777. [CrossRef]

12. Barhum, R.; Mechtcherine, V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete.Mater. Struct.2013,46, 557–572. [CrossRef]

44

13. Consiglio Nazionale delle Ricerche.CNR DT-215 Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Interventi di Consolidamento Statico Mediante L’utilizzo di Compositi Fibrorinforzati a Matrice Inorganica; Consiglio Nazionale delle Ricerche: Rome, Italy, 2018. (In Italian)

14. Consiglio Superiore dei Lavori Pubblici, Servizio Tecnico Centrale. Linea Guida per la Identificazione, la Qualificazione ed il Controllo di Accettazione di Compositi Fibrorinforzati a Matrice Inorganica (FRCM) da Utilizzarsi per il Consolidamento Strutturale di Costruzioni Esistenti; Consiglio Superiore dei Lavori Pubblici, Servizio Tecnico Centrale: Rome, Italy, 2018. (In Italian)

15. Aveston, J.; Cooper, G.A.; Kelly, A. Single and multiple fracture. The Properties of Fibre Composites. InProc Conf National Physical Laboratories; IPC Science & Technology Press Ltd.: London, UK, 1971; pp. 15–24.

16. Aveston, J.; Kelly, A. Theory of multiple fracture of fibrous composites. J. Mater. Sci. 1973,8, 352–362.

[CrossRef]

17. Cuypers, H.; Wastiels, J. Stochastic matrix-cracking model for textile reinforced cementitious composites under tensile loading.Mater. Struct.2006,39, 777–786. [CrossRef]

18. UNI EN 196.Method of Testing Cement-Part 1: Determination of Strength; UNI EN: Brussels, Belgium, 2005.

19. fib Model Code 2010, Vol. 1, Bull. 65; International Federation for Structural Concrete: Lausanne, Switzerland, 2012.

20. ISO 4606.Textile Glass—Woven Fabric—Determination of Tensile Breaking Force and Elongation at Break by the Strip Method; ISO: Geneva, Switzerland, 1995.

21. Cohen, Z.; Peled, A. Controlled telescopic reinforcement system of fabric-cement composites - Durability concerns.Cem. Concr. Res.2010,40, 1495–1506. [CrossRef]

22. Hegger, J.; Will, N.; Curbach, M.; Jesse, F. Tragverhalten von textilbewehrtem Beton.Beton- und Stahlbetonbau 2004,99, 452–455. (In German) [CrossRef]

23. RILEM Technical Committee 232-TDT (Wolfgang Brameshuber). Recommendation of RILEM TC 232-TDT:

Test Methods and Design of Textile Reinforced Concrete.Mater. Struct.2016,49, 4923–4927. [CrossRef]

24. Blom, J.; Cuypers, H.; Van Itterbeeck, P.; Wastiels, J. Determination of material parameters of a textile reinforced composite using an inverse method. In Proceedings of the ECCCM 13 Conference, Stockholm, Sweden, 2–5 June 2008.

25. Curtin, W.A. Stochastic Damage Evolution and Failure in Fibre-Reinforced Composites.Adv. Appl. Mech.

1999,36, 163–253.

26. Weibull, W. A Statistical distribution function of wide applicability.ASME J.1951,18, 293–297.

27. Sun, H.; Pan, N.; Postle, R. On the Poisson’s ratios of a woven fabric.Compos. Struct.2005,68, 505–510.

[CrossRef]

28. Shahabi, N.E.; Saharkhiz, S.; Varkiyani, S.M.H. Effect of fabric structure and weft density on the Poisson’s ratio of worsted fabric.J. Eng. Fibers Fabr.2013,8, 63–71. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

applied sciences

Article

Dalam dokumen Textile Reinforced Cement Composites (Halaman 50-53)