Investigations on the Influence of Strain Rate, Temperature and Reinforcement
12.4 Conclusions
cracking which is accompanied with particle rearrangement processes. As a result, Mg-PSZ particles are lined up in unattached cluster chains leading to a weakening of the cell wall cross section, cf. Figure12.19d.
The sum of damage processes is adverse for theα-martensite evolution as the measurements of ferromagnetic phase content reveal. At low engineering strains (up to approx. 10%), partially higher α-martensite contents can be identified in the central deformation areas of the composite honeycomb-like structures whereas at 50% engineering strain the highestα-martensite content within the same area is found in the non-reinforced sample [62,67]. Nevertheless, the reinforcement of TRIP-steel with Mg-PSZ particles can contribute to an increased energy absorption capability up to 50% engineering strain as the comparison of the non-reinforced and the 5 vol% Mg-PSZ containing sample in Fig.12.18shows.
Thus, the main finding—likewise on basis of other employed steel batches—
is the increase of energy absorption capability by reinforcing the steel with Mg- PSZ particles being most effective for low strains where material damages are not pronounced [46].
• In OOP mode the cell walls were exposed to a stretch-dominated deformation mechanism and the occurrence of a plastic pre-buckling stage was identified.
The strength level and strain hardening potential, respectively, in this stage were controlled by the relative density of the structure, the deformation mechanisms in the steel and the steel/Mg-PSZ particle interactions.
• IP compression resulted in a lower strength and thus in a reduced energy absorption capability in comparison to OOP loading. However, altering the cell shape from square-celled to Kagome configuration contributed considerably to an enhanced IP performance.
• Decreasing the austenite stability and the stacking fault energy led to an increase of flow stress and strain hardening rate. Even though the failure strain at the peak stress decreased with decreasing nickel content, the low nickel containing samples exhibited the highest TRIP-effect, and thereby possessed the greatest energy absorption capability.
• The reinforcement with Mg-PSZ particles contributed to an increase of flow stress and energy absorption capability. Damage processes like interfacial debonding, particle cracking and crack bifurcation caused a shift of structural collapse to lower stresses and strains.
Acknowledgements This work was funded by the German Research Foundation or Deutsche Forschungsgemeinschaft (DFG), and was created as part of the Collaborative Research Center TRIP-Matrix-Composites (Project number 54473466—CRC 799). The build-up of the Freiberg Shock Wave Laboratory was fully financed by the Dr. Erich Krüger foundation. Special thanks are addressed to Dr. D. Ehinger and Dr. S. Wolf for their outstanding work in this sub-project generating numerous publications and hence significant foundation for this book chapter. Prof. T.
Halle of OVGU Magdeburg supported the project with FEM-calculations. Moreover, part of the experimental work was done by Ms. C. Ullrich, Dr. M. Motylenko, Dr. A. S. Savinykh and Prof.
S. V. Razorenov (RAS, Chernogolovka, Russia), for which we would like to express our sincere thanks. Additionally, the authors thank all technical employees who were tasked with mechanical processing of samples for mechanical testing and microstructure analysis as well as all students supporting the research project.
References
1. L. Remy, A. Pineau, Mater. Sci. Eng.28, 99 (1977)
2. O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast16, 1391 (2000) 3. G. Frommeyer, U. Brüx, P. Neumann, ISIJ Int.43, 438 (2003)
4. O. Bouaziz, S. Allain, C. Scott, Scr. Mater.58, 484 (2008)
5. V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, Trans. ASM60, 252 (1967) 6. G.B. Olson, M. Cohen, Metall. Trans. A6, 791 (1975)
7. I. Tamura, Met. Sci.16, 245 (1982)
8. S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. A47, 49 (2016) 9. O. Bouaziz, H. Zurob, M. Huang, Steel Res. Int.12, 937 (2013)
10. L. Krüger, S. Decker, R. Ohser-Wiedemann, D. Ehinger, S. Martin, U. Martin, H.J. Seifert, Steel Res. Int.82, 1017 (2011)
11. C.G. Aneziris, W. Schärfl, H. Biermann, U. Martin, Int. J. Appl. Ceram. Technol.6, 727 (2009)
12. D. Ehinger, L. Krüger, S. Krause, U. Martin, C. Weigelt, C.G. Aneziris, EPJ Web Conf.26, 1056 (2012).https://doi.org/10.1051/epjconf/20122601056
13. A. Weiß, P.R. Scheller, A. Jahn, Patent WO 2008/009722, 24 Jan 2008
14. A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, P.R. Scheller, Steel Res. Int.82, 39 (2011) 15. G.T. Gray III, Mechanical testing and evaluation, inASM Handbook,vol. 8 ed. by H. Kuhn,
D. Medlin (ASM International, Materials Park, OhioText, 2000), p. 462 16. D.J. Frew, Exp. Mech.45, 186 (2005)
17. J.C. Gong, L.E. Malvern, D.A. Jenkins, J. Eng. Mater. Technol.112, 309 (1990) 18. L.M. Barker, R.E. Hollenbach, J. Appl. Phys.43, 4669 (1972)
19. G.I. Kanel, S.V. Razorenov, V.E. Fortov (eds.),Shock-Wave Phenomena and the Properties of Condensed Matter(Springer, New York, 2004)
20. R. Eckner, B. Reichel, A.S. Savinykh, L. Krüger, S.V. Razorenov, G.V. Garkushin, Metall.
Mater. Trans. A47, 75 (2016)
21. K. Thoma, U. Hornemann, M. Sauer, E. Schneider, Meteorit. Planet. Sci.40, 1283 (2005) 22. R. Eckner, L. Krüger, C. Ullrich, D. Rafaja, T. Schlothauer, G. Heide, Metall. Mater. Trans. A
47, 4922 (2016)
23. S. Martin, S. Wolf, S. Decker, L. Krüger, U. Martin, Steel Res. Int.86, 1187 (2015) 24. A. Weidner, H. Biermann, JOM67, 1729 (2015)
25. L. Krüger, S. Wolf, S. Martin, U. Martin, A. Jahn, A. Weiß, P.R. Scheller, Steel Res. Int.82, 1087 (2011)
26. L. Krüger, S. Wolf, U. Martin, S. Martin, P.R. Scheller, A. Jahn, A. Weiß, J. Phys: Conf. Ser.
240, 12098 (2010)
27. J. Talonen, H. Hänninen, P. Nenonen, G. Pape, Metall. Mater. Trans. A36, 421 (2005) 28. J. Talonen, H. Hänninen, Acta Mater.55, 6108 (2007)
29. M. Isakov, S. Hiermaier, V.-T. Kuokkala, Metall. Mater. Trans. A46, 2352 (2015) 30. T.S. Byun, Acta Mater.51, 3063 (2003)
31. L. Krüger, S. Wolf, M. Rüssel, U. Martin, A. Jahn, A. Weiß, P.R. Scheller, MP Materials Testing 52, 588 (2010)
32. A. Andrade-Campos, F. Teixeira-Dias, U. Krupp, F. Barlat, E.F. Rauch, J.J. Grácio, Strain46, 283 (2010)
33. R. Eckner, L. Krüger, KEM742, 113 (2017)
34. G.L. Huang, D. Matlock, G. Krauss, Metall. Trans. A20, 1239 (1989) 35. A. Bäumer, J.A. Jiménez, W. Bleck, Int. J. Mater. Res.101, 705 (2010)
36. L. Krüger, S. Wolf, U. Martin, P. Scheller, A. Jahn, A. Weiß, inProceedings of the 9th Inter- national Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading (DYMAT 2009),Brussels, Belgium, 7–11 September 2009
37. A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, J. Lu, Acta Mater.59, 3697 (2011) 38. S. Wolf, S. Martin, L. Krüger, U. Martin, Mater. Sci. Eng., A594, 72 (2014)
39. D.C. Ludwigson, J.A. Berger, J. Iron Steel Inst.207, 63 (1969) 40. T. Narutani, G.B. Olson, M. Cohen, J. Phys.43, 429 (1982)
41. S. Wolf, S. Martin, L. Krüger, U. Martin, U. Lorenz, Steel Res. Int.83, 529 (2012) 42. S. Wolf, Dissertation, TU Bergakademie Freiberg, 2012
43. G.R. Johnson, W.H. Cook, inProceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983
44. S. Nemat-Nasser, Mechanical testing and evaluation, inASM Handbook,vol. 8, ed. by H. Kuhn, D. Medlin (ASM International, Materials Park, OhioText, 2000), p. 429
45. L.W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krüger, K.P. Staudhammer, J. Mater. Process.
Technol.182, 319 (2007)
46. C. Baumgart, D. Ehinger, C. Weigelt, L. Krüger, C.G. Aneziris, Compos. Struct.136, 297 (2016)
47. D. Borisova, V. Klemm, S. Martin, S. Wolf, D. Rafaja, Adv. Eng. Mater.15, 571 (2013) 48. Q. Huang, O. Volkova, H. Biermann, J. Mola, Mater. Sci. Technol.33, 1224 (2017) 49. D. Bancroft, E.L. Peterson, S. Minshall, J. Appl. Phys.27, 291 (1956)
50. L.M. Barker, R.E. Hollenbach, J. Appl. Phys.45, 4872 (1974)
51. S.A. Maloy, G.T. Gray, C.M. Cady, R.W. Rutherford, R.S. Hixson, Metall. Mater. Trans. A35, 2617 (2004)
52. L.E. Murr, J.A. Korbonski, Metall. Trans.1, 3333 (1970)
53. K. Chen, C. Zheng, Z. Yuan, J. Lu, X. Ren, X. Luo, Mater. Sci. Eng., A587, 244 (2013) 54. R. Eckner, L. Krüger, M. Motylenko, A.S. Savinykh, S.V. Razorenov, G.V. Garkushin, EPJ
Web Conf.183, 3007 (2018).https://doi.org/10.1051/epjconf/201818303007
55. C. Ullrich, R. Eckner, L. Krüger, S. Martin, V. Klemm, D. Rafaja, Mater. Sci. Eng., A649, 390 (2016)
56. D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C.G. Aneziris, Steel Res. Int.82, 1048 (2011) 57. D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C.G. Aneziris, Int. J. Solids Struct.66, 207
(2015).https://doi.org/10.1016/j.ijsolstr.2015.02.052
58. D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C.G. Aneziris, Adv. Eng. Mater.15, 646 (2013) 59. Q.-X. Dai, A.-D. Wang, X.-N. Cheng, X.-M. Luo, Chin. Phys.11, 596 (2002)
60. F. Côté, V.S. Deshpande, N.A. Fleck, A.G. Evans, Mater. Sci. Eng., A380, 272 (2004) 61. G.F. Bocchini, Int. J. Powder Metall22, 185 (1986)
62. D. Ehinger, Dissertation, TU Bergakademie Freiberg, 2013
63. L.J. Gibson, M.F. Ashby,Cellular Solids(Cambridge University Press, Cambridge, 1997) 64. W.E. Baker, T.C. Togami, J.C. Weydert, Int. J. Impact Eng21, 149 (1998)
65. U. Ballaschk, H. Berek, D. Ehinger, C.G. Aneziris, L. Krüger, Adv. Eng. Mater.15, 590 (2013) 66. C. Baumgart, C. Weigelt, C.G. Aneziris, L. Krüger, EPJ Web Conf.183, 3014 (2018).https://
doi.org/10.1051/epjconf/201818303014
67. D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C.G. Aneziris, Steel Res. Int.83, 565 (2012) 68. C. Baumgart, T. Halle, C. Weigelt, L. Krüger, C.G. Aneziris, Sci. Technol. Mater.30, 35 (2018) 69. V.S. Deshpande, M.F. Ashby, N.A. Fleck, Acta Mater.49, 1035 (2001)
70. A.-J. Wang, D.L. McDowell, J. Eng. Mater. Technol.126, 137 (2004)
71. M. Wendler, A. Weiß, L. Krüger, J. Mola, A. Franke, A. Kovalev, S. Wolf, Adv. Eng. Mater.
15, 558 (2013)
72. A. Jahn, A. Kovalev, A. Weiβ, P.R. Scheller, S. Wolf, L. Krüger, S. Martin, U. Martin, in Proceedings of the 8th European Symposium on Martensitic Transformations (ESOMAT 2009), Prague, Czech Republic, 7–11 September 2009
73. S. Martin, S. Wolf, U. Martin, L. Krüger, Solid State Phenom.172–174, 172 (2011) 74. T. Iwamoto, T. Tsuta, Y. Tomita, Int. J. Mech. Sci.40, 173 (1998)
75. H. Schumann, Krist. Tech.10, 401 (1975)
76. A. Jahn, A. Kovalev, A. Weiß, P.R. Scheller, Steel Res. Int.82, 1108 (2011)
77. S. Martin, C. Ullrich, D. Šimek, U. Martin, D. Rafaja, J. Appl. Crystallogr.44, 779 (2011) 78. G.B. Olson, M. Cohen, Metall. Trans. A7, 1897 (1976)
79. F. Lecroisey, A. Pineau, Metall. Mater. Trans. B3, 391 (1972) 80. N. Chawla, Y.-L. Shen, Adv. Eng. Mater.3, 357 (2001)
81. S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Steel Res. Int.82, 1133 (2011)
82. H. Berek, A. Yanina, C. Weigelt, C.G. Aneziris, Steel Res. Int.82, 1094 (2011) 83. C. Weigelt, S. Giersberg, C. Wenzel, C.G. Aneziris, Adv. Eng. Mater.12, 486 (2010) 84. C. Weigelt, C.G. Aneziris, H. Berek, D. Ehinger, U. Martin, Adv. Eng. Mater.14, 53 (2012)
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.