• Tidak ada hasil yang ditemukan

Conclusions and Recommendations

A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future

6. Conclusions and Recommendations

6.1. Conclusions

This study has provided a review of studies on GCI engines fueled with biodiesel-gasoline blends in order to increase engine performance and decrease exhaust emissions. Based on a comprehensive review of the open literature, the present understanding of GCI engines fueled with biodiesel-gasoline blends research work includes the following contributions:

A literature study of GCI engines potentially fueled with biodiesel-gasoline blends.

The study on the combustion process and exhaust emission behaviors of gasoline CI engines using various injection timings in a single injection mode fueled with biodiesel-gasoline blends.

The study about the effects of 5 and 20% biodiesel-gasoline blends on the efficiency and exhaust emissions in gasoline compression ignition engines under single injection mode.

A study of the combustion and exhaust emissions of a gasoline CI engine fueled with biodiesel-gasoline through a double injection method which comprises of pilot and main injection.

Experimental investigation of the combustion process and emission behaviors of CI engines fueled with biodiesel-gasoline blends in the early injection HCCI mode.

An investigation on the effect of EGR and inlet boosting on the process of combustion and emission behaviors of a GCI engine using gasoline-biodiesel-blends.

6.2. Recommendations

Some valuable insights and new ideas were identified based on an experimental series and extensive investigation into GCI engines fueled with a mixture of gasoline and biodiesel. These have not been pursued more fully further within the current research. The following suggestions are provided for future research:

Use of hot EGR to raise the inlet temperature and a smaller fuel injection pressure (to minimize too much mixing and cylinder wall-wet/impingement of fuel) is required for the GCI engine concept of volatile/vaporizable/less-reactivity and also low cetane-number fuels at smaller engine speeds or engine operating loads.

Several issues related to the emission and combustion behaviors of gasoline CI engines using blends of biodiesel in gasoline need to be studied further, including stability under low and middle load conditions, cold start and idle conditions, operation in acceptable transient conditions, noise/engine sound quality and in-cylinder PRR at middle and big loads through injection of

147

fuel methods, exhaust emissions (especially HC, carbon monoxide, NOx and smoke emissions control), LTO and diesel particulate filters (DPFs).

Several issues related to hardware optimization of gasoline CI engines using a mixing of gasoline-biodiesel also need to be studied further. In this case they include: the combustion chamber/cylinder-head/piston-crown design, injectors holes and angles, injection arrangement and injection method systems, cooled and uncooled EGR, turbochargers combined with superchargers or boosting to obtain higher intake pressures at big EGR ratio, subsequent/exhaust treatment, and quality of fuel (lubrication behavior, viscosity, and detergent-like properties). Thus, advanced additive technology has to be implemented for the various conditions come upon in gasoline compression ignition engines.

More significant experimental, simulation and development studies and work are required to push gasoline compression ignition engine technology to the step of real application.

Author Contributions:Y.P. carried out the development of the concept of the paper, performed the literature study, prepare the paper structure, aim, objectives, research question, analyzed the data, and as well as writing the paper. O.L. supervised the research, advised on the research gap and objective, proofread the paper, and guided the writing process as well as reviewing the presented concepts and outcomes.

Funding:This research was supported by The Leading Human Resource Training Program of Regional Neo Industry through the National Research Foundation of Korea (NRF) funded by The Ministry of Science, ICT and Future Planning (2016H1D5A1908826).

Acknowledgments:Yanuandri Putrasari acknowledges support from the Program for Research and Innovation in Science and Technology (RISET-Pro) Ref. No. 61/RISET-Pro/FGS/III/2017, Ministry of Research, Technology and Higher Education, Republic of Indonesia

Conflicts of Interest:The authors declare no conflict of interest.

References

1. Tutak, W.; Lukacs, K.; Szwaja, S.; Bereczky, A. Alcohol-diesel fuel combustion in the compression ignition engine.Fuel2015,154, 196–206. [CrossRef]

2. Dec, J.E. Advanced compression-ignition engines—Understanding the in-cylinder processes.Proc. Combust. Inst.

2009,32, 2727–2742. [CrossRef]

3. Lu, X.; Han, D.; Huang, Z. Fuel design and management for the control of advanced compression-ignition combustion modes.Prog. Energy Combust. Sci.2011,37, 741–783. [CrossRef]

4. Kalghatgi, G.T.; Risberg, P.; Ångström, H. Advantages of Fuels with High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion; SAE Technical Paper 2006-01-3385;

SAE International: Warrendale, PA, USA, 2006. [CrossRef]

5. Won, H.W.; Peters, N.; Pitsch, H.; Tait, N.; Kalghatgi, G.Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine; SAE Technical Paper;

SAE International: Warrendale, PA, USA, 2013; Volume 11. [CrossRef]

6. Ra, Y.; Yun, J.E.; Reitz, R.D. Numerical Parametric Study of Diesel Engine Operation with Gasoline.Combust.

Sci. Technol.2009,181, 350–378. [CrossRef]

7. Ra, Y.; Loeper, P.; Reitz, R.; Andrie, M.; Krieger, R.; Foster, D.; Durrett, R.; Gopalakrishnan, V.; Plazas, A.;

Peterson, R.; et al. Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime.SAE Int. J. Engines2011,4, 1412–1430. [CrossRef]

8. Ra, Y.; Loeper, P.; Andrie, M. Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection.

SAE Int. J. Engines2012, 1109–1132. [CrossRef]

9. Sellnau, M.; Foster, M.; Hoyer, K.; Moore, W.; Sinnamon, J.; Husted, H. Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine.SAE Int. J. Engines2014,7, 835–851. [CrossRef]

10. Han, D.; Duan, Y.; Wang, C.; Lin, H.; Huang, Z. Experimental study on the two stage injection of diesel and gasoline blends on a common rail injection system.Fuel2015,159, 470–475. [CrossRef]

11. Benajes, J.; Broatch, A.; Garcia, A.; Monico Muñoz, L.An Experimental Investigation of Diesel-Gasoline Blends Effects in a Direct-Injection Compression-Ignition Engine Operating in PCCI Conditions; SAE Technical Paper 2013-01-1676; SAE International: Warrendale, PA, USA, 2013. [CrossRef]

Energies2019,12, 238

12. Adams, C.A.; Loeper, P.; Krieger, R.; Andrie, M.J.; Foster, D.E. Effects of biodiesel-gasoline blends on gasoline direct-injection compression ignition (GCI) combustion.Fuel2013,111, 784–790. [CrossRef]

13. Zelenyuk, A.; Reitz, P.; Stewart, M.; Imre, D.; Loeper, P.; Adams, C.; Andrie, M.; Rothamer, D.; Foster, D.;

Narayanaswamy, K.; et al. Detailed characterization of particulates emitted by pre-commercial single-cylinder gasoline compression ignition engine.Combust. Flame2014,161, 2151–2164. [CrossRef]

14. Zhang, F.; Rezaei, S.Z.; Xu, H.; Shuai, S.-J. Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine.SAE Int. J. Engines2014,7, 1920–1930. [CrossRef]

15. Putrasari, Y.; Praptijanto, A.; Budi, W.; Lim, O. Resources, policy, and research activities of biofuel in Indonesia: A review.Energy Rep.2016,2, 237–245. [CrossRef]

16. Salvi, B.L.; Panwar, N.L. Biodiesel resources and production technologies—A review. Renew. Sustain.

Energy Rev.2012,16, 3680–3689. [CrossRef]

17. Hassan, M.H.; Kalam, M.A. An overview of biofuel as a renewable energy source: Development and challenges.Procedia Eng.2013,56, 39–53. [CrossRef]

18. Yang, B.; Li, S.; Zheng, Z.; Yao, M.; Cheng, W.A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel; SAE International: Warrendale, PA, USA, 2012; Volume 0694. [CrossRef]

19. Shi, Y.; Reitz, R.D. Optimization of a heavy-duty compression-ignition engine fueled with diesel and gasoline-like fuels.Fuel2010,89, 3416–3430. [CrossRef]

20. Rose, K.D.; Ariztegui, J.; Cracknell, R.F.; Dubois, T.; Hamje, H.D.C.; Pellegrini, L.; Rickeard, D.J.; Heuser, B.;

Schnorbus, T.; Kolbeck, A.F.Exploring a Gasoline Compression Ignition (GCI) Engine Concept; SAE International:

Warrendale, PA, USA, 2013. [CrossRef]

21. Misra, R.D.; Murthy, M.S. Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine—A review. Renew. Sustain.

Energy Rev.2011,15, 2413–2422. [CrossRef]

22. Kweon, C.; Okada, S.; Foster, D.; Bae, M.; Schauer, J. Effect of engine operating conditions on particle-phase organic compounds in engine exhaust of a heavy-duty direct-injection (DI) diesel engine.SAE Trans.2003, 112, 460–476.

23. Kweon, C.; Okada, S.; Stetter, J.; Christenson, C.; Shafer, M.; Schauer, J.; Foster, D.Effects of Fuel Composition on Combustion and Detailed Chemical/Physical Characteristics of Diesel Exhaust; SAE International: Warrendale, PA, USA, 2003; Volume 22. [CrossRef]

24. Bae, C.; Kim, J. Alternative fuels for internal combustion engines.Proc. Combust. Inst.2017,36, 3389–3413.

[CrossRef]

25. Tesfa, B.; Mishra, R.; Zhang, C.; Gu, F.; Ball, A.D. Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel.Energy2013,51, 101–115. [CrossRef]

26. Wang, Z.; Li, L.; Wang, J.; Reitz, R.D. Effect of biodiesel saturation on soot formation in diesel engines.Fuel 2016,175, 240–248. [CrossRef]

27. Cordiner, S.; Mulone, V.; Nobile, M.; Rocco, V. Impact of biodiesel fuel on engine emissions and Aftertreatment System operation.Appl. Energy2016,164, 972–983. [CrossRef]

28. Rakopoulos, C.D.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.; Andritsakis, E.C. Performance and emissions of bus engine using blends of diesel fuel with bio-diesel of sunflower or cottonseed oils derived from Greek feedstock.Fuel2008,87, 147–157. [CrossRef]

29. Pulkrabek Willard, W.Engineering Fundamentals of Internal Combustion Engine, 2nd ed.; Pearson Prentice Hall:

Upper Saddle River, NJ, USA, 2003.

30. Kalghatgi, G.Fuel/Engine Interactions; Society of Automotive Engineers: Wallendale PA USA, 2014.

31. Cracknell, R.; Ariztegui Cortijo, J.; Dubois, T.; Engelen, B.; Manuelli, P.; Pellegrini, L.; Williams, J.;

Deppenkemper, K.; Graziano, B.; Heufer, K.A.; et al.Modelling a Gasoline Compression Ignition (GCI) Engine Concept; SAE Technical Paper 2014-01-1305; SAE International: Warrendale, PA, USA, 2014; pp. 1–54. [CrossRef]

32. Lu, X.; Qian, Y.; Yang, Z.; Han, D.; Ji, J.; Zhou, X.; Huang, Z. Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends.Energy2014, 64, 707–718. [CrossRef]

33. Han, D.; Ickes, A.M.; Bohac, S.V.; Huang, Z.; Assanis, D.N. HC and CO emissions of premixed low-temperature combustion fueled by blends of diesel and gasoline.Fuel2012,99, 13–19. [CrossRef]

149

34. Feng, Z.; Zhan, C.; Tang, C.; Yang, K.; Huang, Z. Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system.Energy 2016,112, 549–561. [CrossRef]

35. Kodavasal, J.; Kolodziej, C.P.; Ciatti, S.A. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions. Int. J. Engine Res. 2016,18, 824–836.

[CrossRef]

36. Sim, J.; Elwardany, A.; Jaasim, M. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels. J. Energy Resour. Technol. 2017,138, 052202.

[CrossRef]

37. Zhong, S.; Wyszynski, M.L.; Megaritis, A.; Yap, D.; Xu, H. Experimental Investigation into HCCI Combustion Using Gasoline and Diesel Blended Fuels.SAE Int. J. Engines2005. [CrossRef]

38. Leermakers, C.A.J.; Van den Berge, B.; Luijten, C.C.M.; Somers, L.M.T.; de Goey, L.P.H.; Albrecht, B.A.

Gasoline-Diesel Dual Fuel: Effect of Injection Timing and Fuel Balance; SAE Technical Paper 2011-01-2437;

SAE International: Warrendale, PA, USA, 2011. [CrossRef]

39. Prikhodko, V.Y.; Curran, S.J.; Barone, T.L.; Lewis, S.A.; Storey, J.M.; Cho, K.; Wagner, R.M.; Parks, J.E.Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending; SAE International:

Warrendale, PA, USA, 2010; Volume 2266, pp. 946–955.

40. Curran, S.; Prikhodko, V.; Cho, K.; Sluder, C.; Parks, J.; Wagner, R.; Kokjohn, S.; Reitz, R.In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine; SAE Technical Paper 2010-01-2206; SAE International: Warrendale, PA, USA, 2010; pp. 1–20.

[CrossRef]

41. Lawler, B.; Splitter, D.; Szybist, J.; Kaul, B. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility.Appl. Energy2017,189, 122–132. [CrossRef]

42. Loeper, P.; Ra, Y.; Foster, D.; Ghandhi, J. Experimental and computational assessment of inlet swirl effects on a gasoline compression ignition (GCI) light-duty diesel engine. In Proceedings of the SAE 2014 World Congress and Exhibition, Detroit, MI, USA, 8–10 April 2014; Volume 1. [CrossRef]

43. Agarwal, A.K.; Singh, A.P.; Maurya, R.K. Evolution, challenges and path forward for low temperature combustion engines.Prog. Energy Combust. Sci.2017,61, 1–56. [CrossRef]

44. Krasselt, J.; Foster, D.; Ghandhi, J.; Herold, R.; Reuss, D.; Najt, P. Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion—Part I: Metal Engine Results.SAE Int. J. Engines 2009,2, 1034–1053. [CrossRef]

45. Kalghatgi, G.T.; Risberg, P.; Angstrom, H.-E.Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison with a Diesel Fuel; SAE Technical Paper 2007-01-0006; SAE International: Warrendale, PA, USA, 2007. [CrossRef]

46. Loeper, P.; Ra, Y.; Adams, C.; Foster, D.; Ghandhi, J.; Andrie, M.; Krieger, R.; Durrett, R. Experimental investigation of light-medium load operating sensitivity in a gasoline compression ignition (GCI) light-duty diesel engine. In Proceedings of the SAE 2013 World Congress and Exhibition, Detroit, MI, USA, 16–18 April 2013; Volume 2. [CrossRef]

47. Kodavasal, J.; Kolodziej, C.P.; Ciatti, S.A.; Sibendu, S. Computational Fluid Dynamics Simulation of Gasoline Compression Ignition.J. Energy Resour. Technol.2017,137, 032212. [CrossRef]

48. Yu, L.; Shuai, S.; Li, Y.; Li, B.; Liu, H.; He, X.; Wang, Z. An experimental investigation on thermal efficiency of a compression ignition engine fueled with five gasoline-like fuels.Fuel2017,207, 56–63. [CrossRef]

49. Zhou, L.; Boot, M.D.; De Goey, L.P.H.Gasoline—Ignition Improver—Oxygenate Blends as Fuels for Advanced Compression Ignition Combustion; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013;

Volume 2. [CrossRef]

50. Doornbos, G.; Somhorst, J.; Boot, M. Literature Study and Feasibility Test Regarding a Gasoline/EHN Blend Consumed by Standard CI-Engine Using a Non-PCCI Combustion Strategy; SAE Technical Paper;

SAE International: Warrendale, PA, USA, 2013. [CrossRef]

51. Weall, A.; Collings, N.Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel with a Mixture of Gasoline and Diesel; SAE Technical Paper 2007-01-4058;

SAE International: Warrendale, PA, USA, 2007. [CrossRef]

52. ¸Sahin, Z.; Durgun, O.; Bayram, C. Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine.Energy2008,33, 1298–1310. [CrossRef]

Energies2019,12, 238

53. Manente, V.; Johansson, B.; Cannella, W. Gasoline partially premixed combustion, the future of internal combustion engines?Int. J. Engine Res.2011,12, 194–208. [CrossRef]

54. Cnr, I.M.; Corcione, F.; Valentino, G.; Tornatore, C.; Merola, S.; Marchitto, L.Optical Investigation of Premixed Low-Temperature Combustion of Lighter Fuel Blends in Compression Ignition Engines; SAE Technical Paper 2011-24-0045; SAE International: Warrendale, PA, USA, 2011. [CrossRef]

55. Zhang, F.; Xu, H.; Zhang, J.; Tian, G.; Kalghatgi, G. Investigation into Light Duty Dieseline Fuelled Partially-Premixed Compression Ignition Engine.SAE Int. J. Engines2011,4, 2124–2134. [CrossRef]

56. Yang, H.; Shuai, S.; Wang, Z.; Wang, J. Fuel octane effects on gasoline multiple premixed compression ignition (MPCI) mode.Fuel2013,103, 373–379. [CrossRef]

57. Kim, K.; Kim, D.; Jung, Y.; Bae, C. Spray and combustion characteristics of gasoline and diesel in a direct injection compression ignition engine.Fuel2013,109, 616–626. [CrossRef]

58. Thoo, W.J.; Kevric, A.; Ng, H.K.; Gan, S.; Shayler, P.; La Rocca, A. Characterisation of ignition delay period for a compression ignition engine operating on blended mixtures of diesel and gasoline.Appl. Therm. Eng.

2014,66, 55–64. [CrossRef]

59. Kolodziej, C.; Kodavasal, J.; Ciatti, S.; Som, S.; Shidore, N.; Delhom, J.Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle; SAE Technical Paper 2015-01-0832; SAE International: Warrendale, PA, USA, 2015. [CrossRef]

60. Wang, B.; Wang, Z.; Shuai, S.; Xu, H. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines.Appl. Energy2015,160, 769–776. [CrossRef]

61. Du, J.; Sun, W.; Guo, L.; Xiao, S.; Tan, M.; Li, G.; Fan, L. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends.Energy Convers. Manag.

2015,100, 300–309. [CrossRef]

62. Li, J.; Yang, W.M.; An, H.; Chou, S.K. Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine.Appl. Energy2015,160, 777–783. [CrossRef]

63. Yang, B.; Yao, M.; Zheng, Z.; Yue, L. Experimental Investigation of Injection Strategies on Low Temperature Combustion Fuelled with Gasoline in a Compression Ignition Engine.J. Chem.2015,2015, 207248. [CrossRef]

64. Huang, H.; Zhou, C.; Liu, Q.; Wang, Q.; Wang, X. An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends.

Appl. Energy2016,170, 219–231. [CrossRef]

65. Lee, S.; Jeon, J.; Park, S. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel.Energy Convers. Manag.2016,126, 638–648. [CrossRef]

66. Liu, H.; Wang, Z.; Wang, J.; He, X. Improvement of emission characteristics and thermal ef fi ciency in diesel engines by fueling gasoline/diesel/PODEn blends.Energy2016,97, 105–112. [CrossRef]

67. Wang, B.; Wang, Z.; Shuai, S.; Wang, J.Investigations into Multiple Premixed Compression Ignition mode Fuelled with Different Mixtures of Gasoline and Diesel; SAE Technical Paper 2015-01-0833; SAE International:

Warrendale, PA, USA, 2015. [CrossRef]

68. Reitz, R.D.; Duraisamy, G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines.Prog. Energy Combust. Sci.2015,46, 12–71. [CrossRef]

69. Heywood, J.B.Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988.

70. Kalghatgi, G.T. Fuel effects in CAI gasoline engines. InHCCI and CAI Engines for the Automotive Industry;

Zhao, H., Ed.; Woodhead Publishing: Cambridge, UK, 2007; pp. 206–237.

71. Eng, J.A.Characterization of Pressure Waves in HCCI Combustion Reprinted From: Homogeneous Charge Compression Ignition Engines; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2002; Volume 1, p. 15. [CrossRef]

72. Wang, Q.; Wang, B.; Yao, C.; Liu, M.; Wu, T.; Wei, H.; Dou, Z. Study on cyclic variability of dual fuel combustion in a methanol fumigated diesel engine.Fuel2016,164, 99–109. [CrossRef]

73. Maurya, R.K.; Agarwal, A.K. Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods.Appl. Energy2013,111, 310–323. [CrossRef]

74. Wang, Y.; Xiao, F.; Zhao, Y.; Li, D.; Lei, X. Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel.Appl. Energy2015,143, 58–70. [CrossRef]

151

75. Christensen, M.; Johansson, B.Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel; SAE Technical Paper 2000-01-1835; SAE International: Warrendale, PA, USA, 2000.

[CrossRef]

76. Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines.

Prog. Energy Combust. Sci.2007,33, 233–271. [CrossRef]

77. Sjöberg, M.; Dec, J.E.; Hwang, W.Thermodynamic and Chemical Effects of EGR and Its Constituents on HCCI Autoignition; SAE Technical Paper 2007-01-0207; SAE International: Warrendale, PA, USA, 2007; pp. 776–790.

[CrossRef]

78. Iverson, R.J.; Herold, R.E.; Augusta, R.; Foster, D.E.; Ghandhi, J.B.; Eng, J.A.; Najt, P.M.The Effects of Intake Charge Preheating in a Gasoline-Fueled HCCI Engine; SAE Technical Paper 2005-01-3742; SAE International:

Warrendale, PA, USA, 2005.

79. Andreae, M.M.; Cheng, W.K.; Kenney, T.; Yang, J.Effect of Air Temperature and Humidity on Gasoline HCCI Operating in the Negative-Valve-Overlap Mode; SAE Technical Paper 2007-01-0221; SAE International:

Warrendale, PA, USA, 2007. [CrossRef]

80. Iida, M.; Aroonsrisopon, T.; Hayashi, M.; Foster, D.; Martin, J.The Effect of Intake Air Temperature, Compression Ratio and Coolant Temperature on the Start of Heat Release in an HCCI (Homogeneous Charge Compression Ignition) Engine—Operation Ragin; SAE International: Warrendale, PA, USA, 2014. [CrossRef]

81. Qiu, T.; Song, X.; Lei, Y.; Dai, H.; Cao, C.; Xu, H.; Feng, X. Effect of back pressure on nozzle inner flow in fuel injector.Fuel2016,173, 79–89. [CrossRef]

82. Desantes, J.M.; Payri, R.; Salvador, F.J.; Manin, J.Influence on Diesel Injection Characteristics and Behavior Using Biodiesel Fuels; SAE Technical Paper 2009-01-0851; SAE International: Warrendale, PA, USA, 2009;

Volume 4970. [CrossRef]

83. Wislocki, K.; Pielecha, I.; Czajka, J.; Stobnicki, P.Experimental and Numerical Investigations into Diesel High-Pressure Spray—Wall Interaction under Various Ambient Conditions; SAE International: Warrendale, PA, USA, 2012; Volume 1662. [CrossRef]

84. Shehata, M.S.; Attia, A.M.A.; Abdel Razek, S.M. Corn and soybean biodiesel blends as alternative fuels for diesel engine at different injection pressures.Fuel2015,161, 49–58. [CrossRef]

85. Tirabnpath, P.; Hespel, C.; Chanchaona, S.; Foucher, F. Influence of biodiesel and diesel fuel blends on the injection rate under cold conditions.Fuel2015,144, 80–89. [CrossRef]

86. Anand, K.; Reitz, R.D. Exploring the benefits of multiple injections in low temperature combustion using a diesel surrogate model.Fuel2016,165, 341–350. [CrossRef]

87. Kim, D.; Bae, C. Application of double-injection strategy on gasoline compression ignition engine under low load condition.Fuel2017,203, 792–801. [CrossRef]

88. Jiang, X.; Deng, F.; Yang, F.; Zhang, Y.; Huang, Z. High temperature ignition delay time of DME/n -pentane mixture under fuel lean condition.Fuel2017,191, 77–86. [CrossRef]

89. Ying, W.; Li, H.; Jie, Z.; Longbao, Z. Study of HCCI-DI combustion and emissions in a DME engine.Fuel 2009,88, 2255–2261. [CrossRef]

90. Dernotte, J.; Dec, J.E.; Ji, C. Investigation of the Sources of Combustion Noise in HCCI Engines.SAE Int.

J. Engines2014,7. [CrossRef]

91. Ogunkoya, D.; Fang, T. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine.Energy Convers. Manag.2015,95, 342–351. [CrossRef]

92. Lapuerta, M.; Armas, O.; Rodríguez-Fernández, J. Effect of biodiesel fuels on diesel engine emissions.

Prog. Energy Combust. Sci.2008,34, 198–223. [CrossRef]

93. Cairns, A.; Blaxill, H.The Effects of Combined Internal and External Exhaust Gas Recirculation on Gasoline Controlled Auto-Ignition; SAE International: Warrendale, PA, USA, 2005. [CrossRef]

94. Zhao, H.; Peng, Z.; Williams, J.; Ladommatos, N.Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (CAI) Combustion in Four-Stroke Gasoline Engines; SAE International: Warrendale, PA, USA, 2001. [CrossRef]

95. Olsson, J.-O.; Tunestål, P.; Ulfvik, J.; Johansson, B. The effect of cooled EGR on emissions and performance of a turbocharged HCCI engine.Soc. Autom. Eng.2003,2003, 21–38. [CrossRef]

96. Yao, M.; Chen, Z.; Zheng, Z.; Zhang, B.; Xing, Y.Effect of EGR on HCCI Combustion fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels; SAE Technical Paper 2005-01-3730; SAE International: Warrendale, PA, USA, 2005. [CrossRef]

Energies2019,12, 238

97. Sjöberg, M.; Dec, J.E.EGR and Intake Boost for Managing HCCI Low-Temperature Heat Release over Wide Ranges of Engine Speed; SAE International: Warrendale, PA, USA, 2007; pp. 776–790. [CrossRef]

98. Saxena, S.; Bedoya, I.D. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits.Prog. Energy Combust. Sci.2013,39, 457–488.

[CrossRef]

99. Suzuki, Y.; Harada, T.; Watanabe, H.; Shoji, M.; Matsushita, Y.; Aoki, H.; Miura, T. Visualization of aggregation process of dispersed water droplets and the effect of aggregation on secondary atomization of emulsified fuel droplets.Proc. Combust. Inst.2011,33, 2063–2070. [CrossRef]

100. Califano, V.; Calabria, R.; Massoli, P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions.Fuel2014,117, 87–94. [CrossRef]

101. Segawa, D.; Yamasaki, H.; Kadota, T.; Tanaka, H.; Enomoto, H.; Tsue, M. Water-coalescence in an oil-in-water emulsion droplet burning under microgravity.Proc. Combust. Inst.2000,28, 985–990. [CrossRef]

102. Strizhak, P.A.; Piskunov, M.V.; Volkov, R.S.; Legros, J.C. Evaporation, boiling and explosive breakup of oil–water emulsion drops under intense radiant heating.Chem. Eng. Res. Des.2017,127, 72–80. [CrossRef]

103. Kadota, T.; Yamasaki, H. Recent advances in the combustion of water fuel.Prog. Energy Combust. Sci.2002, 28, 385–404. [CrossRef]

104. Watanabe, H.; Okazaki, K. Visualization of secondary atomization in emulsified-fuel spray flow by shadow imaging.Proc. Combust. Inst.2013,34, 1651–1658. [CrossRef]

105. Putrasari, Y.; Lim, O. A study on combustion and emission of GCI engines fueled with gasoline-biodiesel blends.Fuel2017,189, 141–154. [CrossRef]

106. Thongchai, S.; Lim, O. The influence of biodiesel blended in gasoline-based fuels on macroscopic spray structure from a diesel injector.Int. J. Autom. Technol.2019. accepted.

107. Kanti, S.; Kim, K.; Lim, O. Experimental study on non-vaporizing spray characteristics of biodiesel-blended gasoline fuel in a constant volume chamber.Fuel Process. Technol.2018,178, 322–335. [CrossRef]

108. Thongchai, S.; Lim, O. Investigation of the combustion characteristics of gasoline compression ignition engine fueled with gasoline-biodiesel blends.J. Mech. Sci. Technol.2018,32, 959–967. [CrossRef]

109. Vu, D.N.; Das, S.K.; Jwa, K.; Lim, O. Characteristics of auto-ignition in gasoline—Biodiesel blended fuel under engine-like conditions.Proc. Inst. Mech. Eng. Part D J. Authomob. Eng.2018, 1–13. [CrossRef]

110. Putrasari, Y.; Lim, O. A study of a GCI engine fueled with gasoline-biodiesel blends under pilot and main injection strategies.Fuel2018,221, 269–282. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

153