• Tidak ada hasil yang ditemukan

CUA NAM VAN BONG VIEN Ctf VUA TRE VIET NAM LY) Vdll THANH TJCH THI BAU PHAN TiCH MOI TI/OiNG QUAN GIlfA NANG LlfC SUY LUAN (Gdc BO

N/A
N/A
Protected

Academic year: 2024

Membagikan "CUA NAM VAN BONG VIEN Ctf VUA TRE VIET NAM LY) Vdll THANH TJCH THI BAU PHAN TiCH MOI TI/OiNG QUAN GIlfA NANG LlfC SUY LUAN (Gdc BO"

Copied!
5
0
0

Teks penuh

(1)

I M TU««HUW UrfH T)E niM - so BAG BIET/2014

PHAN TiCH MOI TI/OiNG QUAN GIlfA NANG LlfC SUY LUAN (Gdc BO T A M LY) Vdll THANH TJCH THI BAU CUA NAM VAN BONG VIEN Ctf VUA TRE VIET NAM

Bill Ngpc*

Tom tdt:

Qua nghi&n cifu ly lugn va thi/c ttSn, chung toi tien hanh phan tich tuong quan giCia nang lyc suy ludn (goc dp tam ly) vai thdnh tich thi dau cua nam van dong vien (VDV) Cd Vua tre Vi^t Nam.

Tu do xac dinh cac yeu to thanh phan cua nang luc suy lugn cb moi tuong quan chat vdi thanh tich thi dau, giup cdc nha chuydn mon trong cdng tac huan luyen. tuyen chgn VOV Cd vua.

lir khda: Cd vua. suy lugn. nang ti/c suy lugn. tuong quan. tam ly. thanh tich thi dau, van dpng /i6n, Co vua, Vigt Nam ,

Analysis ot the relationship betvween reasoning capacity {in terms of psychology) with good performances of Youth Chess male athletes in Vietnam

Summary:

Through reasoning and practical research, we analyzed the relationship between reasoning, ability (psychological perspective) with good performance of Youth Chess male athletes in Vietnam [ From that, we can identify the component elements of the inference capacity correlated with good performance, helping professionals in the training work and selection of chess athletes.

Keywords: chess, inference inference capacity, correspondence, psychology^ competition achievempn's ,Tlhif!F's rhp'^'; ViPlnam

DAT VAN o i

Ilieo quan diem tam ly hpc, suy lu^n la qua trinh lam K. do mpt ho$c mpt v i i phan doan da bict (ticn del dc tim ra nhirng ket l u ^ chira biel (ket dc). Thong qua suy lu^n. con ngucri phat hi^n dirpc nhOiiL: chan li khoa hpc. dira ra nhicu sing kicn, phat minh phyc vy d^c lyc cho cupc song xi hpi.

Suy tu^n trong ho^t dpng I9p luycn \a thi dau Co \ ua la qua trinh suy nghi, phan doan va nhanh ch6ng dua ra nhirng nude ca chitih xac.

Cy the suy lu|tn dupe the hi^n trong phan tich the t r ^ ; L^p ke ho^ch; Tinh loan bien the va kicni tra. ra quyet dinh... Nhung kien thuc co lien quan den the cb se \i tien dc de tim ra nhihig kc ho^ch. nuoc di sang t^o...

D)nh huong cong tac d ^ h gid, boi dudng va ning cao ning lyc su\ lugn cho \ l ) \ Ca vua tre nga> tir sdm ^c giiip cho cong tac lu\ en chpn va huan l u y ^ du(,Tc n£ng cao Song dc phat trien niny lyc suy lugn cAn phai can nhJc nen lac J^tHL:, vio thanh phin nao ciia n&ng lyc suy lugn dc rung cao ii\nfc thinh tich \ 0 \ Co \~ua. \ i

•TS. B« mfln Ctt. TnKmg0«i hgc ThA dwcth*thao BAC Ninh

V3> can xac d)nh muc dp tucmg quan giiia thdnh phan ndng lyc suy lugn (goc dp tam ly) vdi thanh tich thi dau ctia \ ' D \ ' Cd vua co y nghia quan trpng, vi thong qua do co the biet dupe nhihig yeu to nao ciia ndng lyc suy lugn anh hudng den thanh lich Ihi dau. tren co so dd lya chpn nhumg phuong phap. phuong ti^n phii hpp nhdm hudn lu\C"n nang cao thanh tich cho VDV Cd vua.

PHl/dNG PHAP NGHllN ClJfU

De giai qu\ct nhi^m vy nghien curu neu trcn, trong qua trinh nghidn ciru chiing tdi dd sir dyng cac phuang phap nghien cuu sau: Phucrng phap phan tich va tdng hpp tai lipu; Phuong phdp phdng \an. tpa dam; Phucmg phdp kiem tra tam ly; Phuang phap toan hpc thong kc.

KI'T QUA NGHIEN curu VA BAN LUJBIN 1. Th^rc t r ^ n g nang (i^c suy lu$n ciia nam VDV Cd* vua tre Vi^t Nam

Oc iicn hanh danh gid ndng tyc suy lugn dd cd nhieu cdng irinh nghien ciiu khoa hpc khdc nhau.

Song test Raven (dupe xay dyng tCr ndm 1938) Id mpt trong nhimg test pho bicn vd y nghTa ly lugn Ion. Den na> van dupe cac nude trcn the gidi su

(2)

BAI BAO KHOA HOG

dyng rpng rai trong danh gia nang lyc suy lugn, ndng lire giai quyet van d^, nang lyc quan sdt vd thich ling vdi cupc song xa bpi.

Bp test Raven phu hpp \di cac dp tuoi, cac ddi tupng d phgm vi rpng, co trinh dp van hda, ddc di^m dan tpc va ngon ngir khdc nhau... Todn bp test Raven gdm 60 trang hinh, bp test dupe phdn thdnh 5 nhom A,B,C,D,E.

Nhom A: Ndng lyc phan biet trye gidc, so sanh hinh khoi, ndng lyc tudng tupng.

Nhdm B: Nang li^ so sanh ddng logt, td hpp hinh khoi;

Nhom C: Nana lyc suy lugn so sdnh vd td bpp hinh khoi;

Nhdm D: Ndng lyc so sdnh to hpp hinh khdi vd cdc quan h^ giira cdc day;

Bang 1. T h ^ tr^ng nang 1 ^ suy lu^i

Nhdm E: Ndng lyc so sanh trao ddi, dan xen va nang lye suy lugn trim tupng.

Mdi mpt nhdm gom cd 12 hinh. dupe sdp xep tu de den khd .

Chiing toi kiem tra ^S nam \ D \ ' Cd vua, d 17 tinh thanh khdc nhau tgi gidi vd djch Cd vua tre Todn quoc nam 2012. Dp tu6i ciia ddi tupng dupe kiem tra Id: 9 tuoi Cn=I7), II tudi (n=12), 13 tu6i (n=12). 15 tudi (n=16). 17 tudi (n=16) va20tu6i(n=15).

Khi tien hanh so sdnh sy khdc bi^t giira thdnh tich nhieu nhdm ddi tupng nghien cuu d cac ndng lyc khdc nhau, chung tdi sir dyng phucmg phdp phan tich phucmg sai don nhdn t6. Ket qud dupe trinh bdy tgi bdng 1.

n ctia nam VDV Cd* vua trd Vi$t Nam

Nhdm nSnglyv

Nhuni \ : Niing l\rc phan bi^t trvc giac. so sdnh hinh khoi, nfing life tucmg lutfng (diem) N hiim B: Nfing lvc so sfinh dong lo9t, to h^rp hinh khoi (Jioml

Nhdm C: Nang \ifc suy Iu9n so sdnh vfi to h<7p hinh khoi (diem)

Nhom D: Nfing l^rc so sanh 10 hqp hinh khoi va cac quan hi giua cac day (diem) Nh6m K: Nfing lvc so sanh trao doi, dan xen va nfing lvc suy luin tnju tutyng (diem) Gia tri trung binh ciia tong dicm cfic nhom nfing Ivc (dicm)

Nhom tuoi 9 ( n = 1 7 )

11.52^62

8.82i0.80

7.52±0.94

6.76±0,75

6.05±0.65

»0.70i 1 7.S 11 (n=12)

11 8.U0.38

I0.83i0.93

9.25±0.75

6.75±0.86

6.91 ±0.66

45 5S^1.X3 13 (n=12)

11.75*0.45

10.91 ±0.66

10.25±0.96

9.16±0.41

8,75±0.62

-M).83±1.58 15 (n=16)

Il.88±0.33

11±0.61

10.82±0.51

9.41 ±0.45

8.4U0.62

51.52±3.90 17 (n=16)

11.93±0.25

11.81 ±0.40

ll.5±0.63

10.68±0.49

lOiO.SO

S5.93±2.59 20 (n=15)

11.93±0 25

ll,73±0,59

11.53±0.63

10.8±0.46

9.8±0.54

55.8±2 14 Glitri phutntfE salF

2..tMi'

11.77"

14.i:"

I9.l'>"

10.:""

29 35"

(Chu thich; * Id ngir&ng udc sufil p<0.05. " Id ngi/firng xdc sudt p<O.Ot)

Kit qua a bang I cho thay: Gia tri phuong sai F Cf nhom .A (nfing lvc phan bi?t trvc giac, so sanh hinh khoi, nfing lvc tucmg tugng) Id c6 y nghTa 6 miic p<0.05. Con lai a cac nhom nfing lvc so sanh dong lo?t. to hgp hinh kh6i I Nhom B), nfing lvc suy lu?n so sanh va t6 hgp hinh

khoi (Nhfim C), nfing lvc so sdnh to h(?p hinh khdi vd cdc quan hi giiia cdc dfiy (Nh6m D).

nfing Ivc so sdnh trao doi, dan xen vd nfing life suy Iu$n trim tutrng (Nhcim E) vd gid trj trung binh cua tdng diem cdc nhom nfing lvc Id c6 ^ nghia 6 nguftng xac sudt p<0.01. Ket qii;i kiim

(3)

mmWiUffBITTffTHM -SdBACBl£T/2t14 tra ndng lyc su> lugn cua cdc lira tudi deu cd

chieu hudng ti 1$ thugn \ oi dp tuoi kiem tra.

Nghia Id d lua tudi Idn hon thi k^ qud kiem tra dcdc ndng lyc suy lugn cao hon. Ket qud nghien cuu ndy cung phu hpp vdi cdc cdng trinh nghien ciru quy tugt phdt trien ndng lyc suy lugn cua thanh thieu nien tgi Trung Qudc cua cac nha khoa hpc ZhangHouCan, WangXiaoPing

(1989), ZhuPeiLiang (1992) • im. Qua phdng vdn true tiep ciing cho ihdy nhumg VDV d lira ludi cao hon thi thdm nien tgp luy?n ciing cao hon vd kinh n g h i ^ thi dau cilng phong phii bon nen dan den ndng tyc suy lugn tdt hon.

De thdy rd ket qud phdn tich tgi bang I, chung tdi lgp bieu dd quan sat ndng lyc suy lugn ciia nam \'DV Ca vua tre (bieu dd 1).

bckfAng kivng IA)

«. mrn krc n i*«t lA tvp 0O«otadif(O}

A OBI Mnoknttig kfc M« Mn M M UVOB {E) - • - T jng hvp nftig tfo etc

Bicu do 1 Id XU hudng di len ctia cdc ndng lyc thdnh phdn d tat cd cac nhdm. () dp tudi cao hon thi ket qua kiem tra tot hon lira tudi nhd.

2. Phdn tich tipvng quan giOa thdnh tfch thi d^u vd ndng \ijtc suy lu$n ciia VOV Cd* vua

Chung tdi tien hdnh phdn tich moi tuong quan giiia cdc nhdm ndng lyc suy lugn vdi thanh tich thi d^u. Ket qua phan tich tuong quan thu dupe tgi bang 2.

Tir ket qud thu dupe d bdng 2 cho thdy: Mac dil ki-t qua kiem tra ciia cdc ndng lyc phan bi^t trye gidc. so sdnh hinh khoi. ndng lyc tudng

Bieu do 1 . Ndng Iv'c suy lu$n cua nam VOV Cd' vua trd Vi^t Nam

tupng (nhdm A), ndng lyc so sdnh dong logt, td hpp hinh khdi (nhom B) vd ndng lyc suy lugn so sdnh va td hpp hinh khdi (nhom C) Id rat cao (xem bang 2) nhtmg 3 nh6m nay lgi cd moi tuong quan yeu vdt thanh tich thi dau, khdng c6 nhieu dnh hudng den thdnh tich Ihi dau cua

\ D\ (r hi 0.13 ddn 0.53). Mgt khdc cho thay cdc ndng lyc nay deu Id nhung ndng lyc cd hinh thuc suy lugn don gidn, khong sau va hau het cdc lira tuoi deu cd the thye hi^n de ddng. Trong Cd vua. hogt doni: suy lugn Id qud trinh phan tich phire tgp bdi dp rpng \ a dp sdu ciia cdc bien the, the trgn vd suy lugn trim tupng rdt cao nen

Bdng 2. Phdn tfch tirarng quan glOa thdnh tich thi d^u vd ndng \\JK suy lu^n (diK>l gdc d$ tdm ly) cua nam VDV Cd* vua trd

Lira tuoi

•Jln^ 171 11 In i : i l.'ln i : i 15 111 Idl 17|n U.l : 0 ( n 15)

H^ sri tuomg quan giira thanh tich thi dau \i nfing lire suy luan (r) Nhom \

(diem) 0 17 0.17 o.:7 n ;.'- i i : - i 11 : h

Nh6m B (diem)

0.15 0.1.1 0 1(1

(I.:

Nhom C (diem)

0.53 0.21 0 : : 1131 11 ;4 1 II 25 11 16 1 0.39

Nh6m D (dicm)

0 62*

H(.3*

0 62*

0.65*

0.68*

0.72*

Nh6mE (dllm)

0.63*

0.62«

O.M*

0.71' D.M"

0.75*

(Chu mich, • ngir&ng xdc sudt p<0 05)

(4)

BiU BAO K H U HQC

muc dp tuong qtian giua cac ndng lvc nay \ en la nhirng nfing lvc suy Iu|in doi hoi sv phdn tich thdnh tich thi dau Id tinnig quan yeu. sau va tinh trim tugng cao, rdt tuong dong vdi d ndng lvc so sdnh td hgp hinh kh6i va cdc qud trinh suy lu|n phdn tich trong ho(it d$ng tip quan h? giira cdc day (Nhom D) vd ndng lvc so luy?n va thi dau Co \ua nen cdc ndng lvc niy sdnh trao ddi, dan xen va nfing lvc suy luin triru co m6i tirong quan chit v6i thdnh dch thi dau.

tugng (Nhom E) a cac liia tu6i 9,13,15,17,20 De phan tich niong quan giiia thdnh tich thi d^u ihi hi?n miic dp tuong quan chit vcri thdnh dau vdi nfing Ivc suy luin sdu hon nita. Chiing tich thi ddu (hf s6 tuong quan r tir 0.62 den 0.75, toi Iva chpn 6 VDV lira tu6i 20 c6 tdng diim kit p<0.05). Kit qud ndy cd dugc la do nfing lvc so qud thvc hifn test Raven nhu nhau nhung kit sdnh to hgp hinh khoi va cdc quan hf giiia cdc qua dtit dugc d timg nfing lvc thanh phlln cd sv diy (Nhom D) vd nfing lvc so sdnh trao ddi, dan khdc nhau. Ket qud dugc trinh biy nhu bdng 3.

xen vd ning lvc suy luin trim tugng (Nhom E)

Bing 3. Phdn tich tirarng quan glOa thinh tich thi i5lu vM ning 1 ^ suy lufn {duiri g6c d$ tim If) ciJa nam VDV Cd' vua tri li>8 tuii 20 (n^^e)

\ D \ '

1 2 3 4 5 6

XIp hang chung

cufc

2 3 4 5 6 7

Kit qud thi diu (diim)

7 7 6.5 6.5 6.5 6

Ting dllm test

Raven

57 57 57 57 57 57

H$ s6 tutrng quan giihi thdnh tich thi diu vi ning lvc suy luin (r)

Nhdm .\

(dllm) 0.27 0.19 0.26 0.35 0.25 0.27

Nhdm B (diim)

0.38 0.15 0.18 0.35 0.66*

0.67*

Nhom C (diim)

0.35 0.23 0.23 0.68*

0.67*

0.4

Nhdm D (diim)

0.74*

0.72*

0.71*

0.37 0.49 0.54

Nhdm E (dllm)

0.75*

0.68*

o.7r

0.36 0,45 0.56 Kit qud thu dugc d bang 3 cho thiy: (3 mfii

VD\' dcu cd moi tuong quan vdi nfing lvc suy luin nhit dinh ndo dd. Cv thi nhu sau:

- \'D\' sA 5,6 cd nrong quan chit vdi ning lvc so sdnh ddng lo»t, td hgp hinh khoi (Nhdm B).

- \'D\' so 4 vd cd moi tuong quan chit vdi ning lvc suy luin so sdnh vd td hgp hinh kh6i (Nhdm C).

- Cdc \ D \ so 1, s6 2 vd so 3 diu cd m6i tuong quan chit vdi ning lvc so sdnh td hgp hinh khdi vd cdc quan hf giiia cdc diy (Nhdm D), ning lvc so sdnh trao doi. dan xen vi ning lvc suy luin trim tugng (Nhdm E).

Kit qua tien cho thdy thanh tich thi dau cdc

\DN so 4. 5,6 cd sv tuong quan vdi ndng lvc d nhdm A. nhdm B va nhdm C. Nhimg nhiing ning Ivc nay la nhdm ning luc cd hinh thiic suy luin dem gidn, it dnh hudng thdnh tich thi dau

(* Id n g i / & n g xfic sudt p<O.OS)

Cd Vua sau ndy Nhiing VDV sA 1,2, 3 cd tirong quan chit vdi ning Ivc d nhdm D vd nhdm E.

Day Id nhiing ning Ivc cd ho^t dpng suy luin cao phii hgp vdi die diim phdt triln Cd vua sau ndy. VI viy chiing tdi cho ring trong cdng tdc tuyin chpn, dv bdo- ddnh gid trtnh dd ciia VDV.

cic huin luyfn viin nen Iva chpn vd huin luyin nhung VDV cd thinh tich thi diu tuong quan chit vdi ning Ivc ning lvc so sdnh ti hgp hinh khoi vd cdc quan hi giiia cdc diy (Nhdm D) va ning lvc so sdnh trao ddi, dan xen vd ning Ivc suy luin trim tugng (Nhdm E). Nhiing VDV cd ning lvc ndy sl cd nfing lvc suy luin tot vd trong tucmg lai si cd nhiing thdnh tich thi dau rat tit.

Thdng qua ket qud phdn tich cho thiy dvpc miic dd quan hf giiia thdnh tich thi dau vdi nfing lvc suy luin ciia nam % D\ O vua tid Viit Nam (Hinh 1)

(5)

MBTi««imwmTB»TlllW-siaiGBieT/2«4

Nhdm A: Ndng li/c phdn bi$t tn/c gidc, so sdnh hinh khdi, ndng Ipc ttrdng tirpng (didm)

Nh6m B: Ndng li/c so sdnh d6ng logt, t6 hpp hinh kh6i (didm)

Nh6m C: Ndng li/c suy lu$n so sdnh vd t6 hpp hinh khdi (didm)

Nh6m D: Ndng li/c so sdnh td hpp hinh khdi vd cdc quan h$ giOa cdc dav (didm)

Nhbm D: Ndng li/c so sdnh td hpp hinh khdi vd cdc quan h$ giOa dgy (ilidm)

Nhdm E: Ndng li/c so sdnh trao ddi. dan xen vi ndng l^c suy

ludn triru tuvng (didm)

Hinh 1. M6 hinh m6l tircmg quan glOa thdnh tich thi ddu vd ndng l i ^ suy lu^n cua nam VDV Cd* vua trd Vi$t Nam

K^T L U A N

1 - Ndng lvc suy lu^n Id mpt trong nhirng y^u to quan trpng quyet djnh thdnh tich thi dau Cb vua. Ndng l\fc suy lu^n dupe phat trien thong qua qud trinh tdp luy^n vd thi diu Co vua mpt cdch h{ thong vd khoa hpc.

2. Ket qud nghten curu cho thay thdnh tich thi dau vd ndng I^c suy lu$n c6 moi tucmg quan nhdt djnh. Trong d6 3 nhdm: Ndng \\fc phan bi^t tn/c gidc, so sdnh hinh khdi. ndng l^c hidfng tupng (Nhom A); Ndng lvc so sdnh ddng ]o9t, td hpp hinh khdi (Nhdm B); Ndng Igc suy ludn so sdnh vd td hpp hinh khoi (Nhdm C) co mdi tuong quan yeu v6i thdnh lich thi dau Ndng li;c so sdnh to hpp hinh khdi va cdc quan h^ giihi cac ddy (Nhdm D); ndng lvc so sdnh

tinh todn bien the.. .Nang cao qud trinh suy ludn sS ndng cao ndng lvc suy ludn cho VDV. VI vdy can dp dvng nhihig bai tdp chuyen mdn nhir Ddn phoi hpp, Cb tdn, l\ra chpn nude di m^nh nhit, xdc djnh ke ho^ch cho vdn cb... Cdc bdi tdp can phdi sdp xep theo h^ thdng, cd tinh khoa hpc vd hpp !i.

TAI LI^U THAM KHAO

1. :^«K. r^ z^m^mmm'pmm7f&

ff«i^ws%[j). ±mn^nm, 1992. (06).

^mmmnii -c-s^m, 1989, (02).

3. Hans J. Eysenck (2003), Trdc nghifm chi so thong mmh (IQ), Nxb Vdn hda-Thong tin Hd Npi. Hans J. Eysenck.

4. Bill \an Hu? (2000), Gido trinh Tdm ly trao doi. dan xen vd ndng lvc suy ludn triru y^j^:^ Sxh D91 hpc Qudc gia Hd Ndi tupng (Nhom E) co linh tucmg quan ch$t vdi

thdnh tich ihi ddu.

3. Trong qud trinh huan luy?n Co Vua. cac hudn luy^n vien can tru trpng huan luy^ nang cao ndng lvc so sdnh vd ndng lvc 5u> lu|n trim mpng cho \ D\' Cb vua txi Vi?t Nam. Cdc huan luy^n vien nen vdn dvng nhihig phuong phdp vd [^uong ticn chuyen mon de ndng cao qua trinh suy ludn ciia VD\' C6 \iia nhu qua trinh phan tich th^ trdn. qud trinh ldp k^ ho^h; qud trinh

5. E \ Jlencov (2003), iogi'c hgc bifn chung.

(Nguyen Anh Tuan djch), Nxb Vdn hod - Thdng tin, E.V''llcnc6\.

(BAl n$p ngdy 21/2/2014. phdn bifn ngdy 14/3/2014, duyft in ngdy 25/11/2014)

Referensi

Dokumen terkait