NguySn v a n Liln vd Dig T j p chl KHOA HQC & CONG NGHE 102(02) 129-136
DIEU KHIEN NGHICH LU'U 3-PHA 4-DAY TRONG HE THONG NGUON PHAN TAN DOC LAP
Nguyen Van Lien ,Triin Miiili f)u'c', Ngii Oirc Mmh 'Tru&ng Dal hoe Bdch khoa Hd \(>i. - iiiinn^:( ao clang nghe iilama2,
'Tru&ng Dai hpe Ky ihiigt Cong nghidp - 1)11 Thai S'^uven,
TOM T A T
Bai bao nghien ciiu dicu khien nghich luu 3 pha 4 day cho mdi he ihdng nguon phan tan lam viec is che do doc lap. Trong do, ky thuat dicu khien dupe ket hgp giira bp dieu khien Irugt dc dieu khien vdng lap ddng dien d ben trong (DSMC) va bp dieu khien ben vii'ng de dieu khien dien ap dupe phat trien dudi he tpa dp tham chieu tmh upo (Clarke's) sir dung phuong phap dieu che dd rdng xung vector khong gian (MSVPWM) nhim dat muc dich on dinh gia tri dien ap vdi Irang ihai sai lech tmh giam va long dd m^o dang sdng hdi thap dudi quy dmh cho phep, ham truyen dap irng nhanh khi nhieu tdi thay ddi Ngoai ra. ben canh viec phat Irien vd md la thual loan, mdt thao luan liep theo dugc de \uat la nghien cuu Ihiel ke bd loc L-C. nang cao ddng hoc ham truyen cua vdng lap kin dong dien va di?n ap Iren mien lan sd va md phdng he thdng trong dieu kien tai khac nhau.
Tir khoa: ln3Leg Tham chiiu dnh apO. DSMC, \ISl PWM. bo diiu khien RSC.
DAT VAN DE
Bp nghich luu 3-pha 4-day hoat d d n g trong he thong dien ngudn phan tan, bd nghieh luu giao tiep vdi tai theo kieu ciia he t h d n g 4-da\
Nghich luu 4-day ed hai loai loai 4-leg va loai 3-leg ket h a p vdi diem gitfa ciia ngudn mot chieu (ln3Leg), T r o n g bai bao nay sir dung loai ihii hai In3Leg vdi ky thuat dieu khien thue hien trong toa dd tham chieu tmh apO sir dung p h u a n g phap dieu c h e vector khong gian.
Trudc khi hoat d d n g trong che dd ndi ludi, cac In3Leg can lam viec d che dd each iy.
Trudc day, cac nghien c u u trong ITnh vuc nay chii y§u sir d u n g ky thuat dieu khien truyen thong: dieu khien PID, di^u khien ben v u n g , dieu khien trugt, dieu khien thdng minh.
Trong bai bao nay, cae tac gia sii' d u n g mdt ky thuat difiu khiSn mdi VAt h o p giira dieu khien ben virng va dieu khien trirgt. U'u diem ciia ky thuat dieu khi^n phire tap va tiet kiem d u g c 2 chuyen mach c d n g suat.
CAU TRUC HE THONG VA CAC MO TA TOAN HOC
He thdng l n 3 L e g d u g c lua chpn co md hinh nhu hinh 1
Trong so d o c i u triic ciia In3Leg, diem giu'a ciia bus DC d u o c ndi dat, ngd ra ciia bd
' Tel. 0913 090406. Email [email protected] edu.v
nghich luu d u a e ket ndi qua bd Igc L-C 3pha trudc khi eung c a p cho tai.
Hinh I. Bd nghich lini ln3Leg M o ta h e t h o n g t r o n g he tpa d o A B C Vector dien a p pha eiia In3Leg Vpv^,n = [VpwmA. Vp„,inB, Vp,v,nC Y Vector d d n g dien ngd ra ciia ln3Leg:
Iinv - [ 'iiivA. 'iiwB^ ' i m c ]
Vector dien ap ciia l n 3 L e g d a t len tai : V|„,d = [V|(,adA,ViojdH.V,oaDC 1 Vector ddng tai 3-pha : 'lojd - [ikiaitA^ ibadB. 'loaDC ]
Bg Igc ed dien trd ndi liep R,, cudn cam L|.
va tu dien Cp.
Tir hinh 1 viet d u o c cac p h u o n g trinh:
I- . = - - i : , „ . /.... u
129
CMI van Lien vd Diy
I ap chi KHOA HOC & CONG NGHE 102(02): 129- 136{2]
Chuyen he Igii do Clnrkc'.s
Ciic md la iren trong hp loa dd ABC hoan loan cd the Ihaiii chieu Ming hi- loa do Imh upo nhd phep bicn diii loa dd ( hiikc's Su do nhu hinh 2
-v/v -
R-f ""!
Hinh 2. Toa dd iham chieu aliO tinh Trong do t,\nt la vector xac dinh trong loa do ABt. f„()o la \eclor trong Iga do «(30. Va ma Iran T„jw dirge \ac djnh nhu la ma tran cua bien ddi ABC sang apO
1
1 1 1
Tuong tu. (1) \ii (2) dugc viet lai nhu sau:
1 1
Hinh 3. Sir dd thai the mat pha _ 1 R, _
•J ln3Leg
(')
Chuyen ddi tir he Ihong thirc sang he don vi luo'ng doi (pu) va khong gian trang thai De thuan lai cho .\a> dung cac thuat dieu khicii, hp thdng cd the chuyen ddi sang he thdng don vi luang ddi (pu). Trong dd tal ca cac bien va cac tham sd da dugc chuan hda- S|,„^ cdng suat bieu kien
Vfji^.: dien ap pha trung binh RMS Cae gia tri co ban duoc suy ra:
i
r ^ \ :r .
IL- = \~T^
Tuo'ng irng \di cac gia tri linh trong he dem vi thuc v,.-,j. i„„ . i|„,j. v„,„ •
Dc khdng mat linh ldng quat. he ihdng duo'c quy ddi ve mach luong duong nhir hinh 3.
Goi
\L,.nj„|: Dicn ap lai luang dirong ill!,,.,, Ddng nghich liru ii,Md 1-4 Ddng tai tuong duong Vp^,,„: K\' hiijii dien ap nghjch liru.
Tir hinh 3 viet dugc : 1 1
••,:..,. =7r'.- - - - ^ . . . . (6)
Vk,.L,i. dien ap iren tai;
l„,v: ddng nghich luu;
V,,„,i, dicn ap nghich luu P W M .
C.ic gia tri don vj nay cd the dugc md t nhu sau
r,.
Nguyin Van Lien vd Dig Tap clli KHOA HOC & CONG NGHE 102(02): 129- 136
va cac tham so ciJa m a c h c u n g se d u g c ddi sang he doTi vi Ihirc:
Trong do:
lui = 2nf\ = •::T • 5 0 = I O O T (ratiIS) la tan so goc co ban K l i i do ta co mo hinh tuong dirong nhu sau, hinh 4 tuong ung \ 6 i cac mo ta (8). (9):
Buoc tiep theo la mo ta he thong trong khong gian trang thai'
: .4A - S K - f Q flOl
Trong thai. :< = [v
vao u = Vp^nn, nhieu ngo vao d = iioad va cac ma Iran
do cac bien trang
"' j c t i -.•!' ^ ' ' ^^^^ ^^^^ khien ngd
,s =
rO1 i
, f =
- 1 1 r
1 R c J
L I-
XAY DI/NG CAU TRUC DIEU KHIEN ciu true digu khi^n nhu hinh 5, gdm 2 vdng ndi ling:
Hinh S. Sty dd cdu iriic he thdng dieu khien - Mach vdng dieu khien ddng dien phia trong la mpt bp dieu khien trugt gian doan ( D S M C )
- Maeh vdng dieu khien dien ap phia ngoai bd dieu khien ben vii'ng cd khau dieu che vector khdng gian ( M S V P W M )
- Cac gia Iri: v.^i la dien ap tham chicu ciia tai, i^„., la ddng nghjch luu mong mudn, icui ddng nghich luu thuc te, : ' „ „ . , . dien ap P W M
\eu cau, Vp„,„ dien ap ngd ra cua bp dieu che thuc te.
Thiet ke bo dieu khien t r u o t
Til' phuong trinh (10) mdt bp dieu khien truot dieu khien d u o c xay d u n g theo cac birdc:
Hinh 4, Md hinh
1 . 1 -~ c' '•'• ? " •
1 R
X
•ua InlLeg trong he pu
(s;
-k... m
Lnon cnu Ky la ddng cho In3Le p i ; : - 1 1 = 4 ; Trong dd:
.4. =,^"^--.8.
Di ddng dien ngo ciia budc liep theo y ( k + l ) bam theo ddng dien Iham chieu ngd vao iciiKi(k), ch^ do dieu khien truol se phan phdi sir chgn lua theo dang
s(k)=C,X(k) + i,,„j(k)
Dp bam sai lech, nhu vay khi dd d che do mat p h i n g trupl. ngd ra y(k) cd khuynh hudng ve gia tri mSii iu"ti(k)- Che do mat phang trugt co thd dat dugc neu lin hieu dieu khien ngo ra u(k) duo'c thiel ke
s ( k + l ) = C,AjX(k) icn.d(k) (12)
^ CBju(k)+CEdd(k)-
Nguyen Vdn Lien va Dtg Tap chi KHOA HQC & CONG NGHE 102(02)' 129- 136 Luai dieu khien thda iiiiiii (12) dugc gpi la bg
dieu khien luang duong [1] \'.i iliinc cho bdi:
u ^ k ) - (C,li,i)"' fiu„j(k)- C,A,,\(ki-C,l ,id(k)|
( 1 3 ) \ i i :•,. ... = ii(k).
Thiel kc bg dieu kliii-n dien iip lu'ii virng Bp diet! khien ben vuiig (KSC) dugc su dyng de on dinh \'dng lap ben ngoai [2]. Trong he Ihdng dicu khien nay ngd vao Iham chicu la dien ap ngd ra mong mudn cd lin liieu sin 50H/. nhicu la ddng uii hong thuc lc. cae ihanli pliaii cliinh ma cd the hjih huong den hp llidiig dicu kliicn la cnc sdng hai bac llifip nlur bac 3. b,'ic 5, bac 7... c:ic sdng hai bac can il bi anh huong Do dd. la bici dugc iliic linh biim cua lin hicu 1IO;"K la cae tin hieu dugc bam \;"ui. ma dugc dicu ehinh bdi sd cap cue Tn^mdo
Bd diet! khien RSC la md hinh bd dieu khien CO ban. De su dung bd dieu khien RSC can bdn dicu kien sau can ihda man [2]
Ddi tuang dieu khien la trang thai imh va cd kha nang do dugc
Sd chieu cua bd dieu khien Idn han ha> bang vdi sd lin hieu ngd ra
Diem khdng eua ddi luo'ng dieu khien de loai trir cac diem cue ciia tham eh;eu ngd \'ao va cae lin hicu nhieu
Cac lin hieu ngo ra ciia he ihdng phai do dugc Phuang trinh ddi lugng dieu khicii cho d phuong trinh (10). va chu ky lay mau '!„ chu k\ la> mau ngd vao irc, tin hieu rdi rac ciia
ddi lugng dieu khicn laIrong dd
5^1 = .C"' '"''''''" -S^r
Do Inn till u ( k - l ) , phuong trinh (14) ehuyen sang khdng gian trang thai la:
lX/l:-Vl= H,Ajki-B,,,:k)-EJ:k! ^
trong do :
X,,(k| = | X ( k ) ' u ( k - l ) ] '
| i , ( k l (k) u ( k - l ) l '
- = [ ^ ^o1-
«-rri-^=[^i
C, = [C 0 ]
Dill lugng dieu khien ciia RSC la dirge md ta:
f.V. iK- - IJ = .^ V :>•! - £ • L ' ' . ' I - L a
\ ' >;';i"=c.vj;:i trong do
A-, =A^-B^(C,Bj) 'C,.l.,C,.
B; = s,,(c;B,,r
^ lo 1 oJ
DSMC
i:i 116;
Ngd ra ciia ddi lugng dieu khien ehinh la dien ap dieu khien tai. \'i \;i\. ngd \ao va ngo ra phai cd cimg kich ihudc. Trong cac he thdng thue le, eac dien ap lai, cae ddng nghjch luu.
\a cac ddng hii tal ca phai do dugc. \'i \ay.
nd CO the dugc khai bao eho lai ca bdn dieu kien ciia RSC dugc thoa man
Viec ihicl kd RSC gdm hai phan. mgl bp bii sct\o \;i mdt bd bii tinh.
Bd bii ser\ o cd the dugc ihiet kd nhu sau. Neu dae linh bam ha\ la nhieu cac diem cue Zi'i^i z •'.•-'5. Z'''^-r z .v^- , bd bii sero la
ai 0]
'1 = .-1. -E.e Trong do
'1 = 1,
IJ, .'h.
,4 =
Nguyin v a n Liln va Dtg Tap chi KHOA HOC & CONG NGHE 102(02)' 129- 136
sai lech : e = \,ef-\\„„i.
0 1
,/(.
trongdd: i =1,3,5 va 7
Ham truyen cua bd bii servo dugc minh hga nhu sau
3 7f\-^,„
h : — * ' •
1^
Hin h 6. Sa do khdt ciia bd bit servo
Tir hinh 6 eho thay bd bii ser\'o gdm cd cac bo loe edng hudng ndi liep. Cac dac tinh tren mien tan sd gdm bdn bd Igc cdng hudng nhu hinh 8 den hinh 10.
Dac tinh cdng hudng eho phep cac tin hieu co tan sd dac biel di qua Vi tin hieu ngd vao den bd bii servo la dien ap dn ap, dien ap dn ap cd khuynh hudng nhay cam vdi eac tin hieu sai lech iTnh dn ap cimg vdi cac tan sd dac biet.
X
Hinh 7. Dd tht bode cua bo bii servo cho sdng ca ban
Hinh 8. Dd thi bode cua ba bii s cho sdng bdc 3
Hinh 9. Do ihi bode cua bd bii servo cho sdng bgc 7
Trudng hgp nay, bd bii sevo can duae rdi rac lin hieu hda vdi ciing chu k_\ lay mau T, . Thdi gian rdi rac hda ciia bd bii servo duoc tinh:
trong dd:
(18)
fi.
^ [\'^^''-'^B^dT
Su ton tai cua bd bii servo, dac linh tmh ciia
bd bii dugc tao ra nham lang tinh ket hop Tii
phuang trinh (16) va phuong irinh bd bu
servo (18) cd the duoc viet lai
Nguyen Van Lien vd Dig Tap ehf KHOA HQC & CONG NGHE 102(02): 129- 136
trong dd' Tin hipu dieu khien ngd vao U|(k) = icinii(k), nhieu ciia lai d(k)=i|„a;](k), lin hi^u Iham cliieii >K-((k) \,ei(k). vcclor ir^nig thai la
•.; = [ V ''' 1 . va hp sd cae ma Ir^in la li = '' J\
Nhicm v\i cua bd bii tmh la lam lang linh dn djnh he ihdng. Trong phirong Irinh (19), Dc dai dugc imic lieu nay, la phai tdi uu hda ky thuat dieu khien di; dam bao linh dn djnh ciia he thdng De thuc hien Idi uu bang each tuyen linh hda Ihdi gian rtTi rac nhu sau L -\.\:kyQ':\k) - e i i ^ i ; . ) ' - •.ll^:)l20l trong dd: Q duoc xac dmh la ma Iran duong ddi xung va £ > 0 la mdt sd nhd de giam trgng lugng cua bd dieu khien trong qua trinh ldi uu.
Dc trang thai phan hdi K cue tieu /= ta giai phuang Irinh dai sd Riccali
i ^,- -
.A P = PA- Q--SS- P = Q [IV
f
cd mdt nghiem duang duy nhat K--
1 ,
--S Plir dd md hinh bd dieu khien cd dang:
:k: = ,-:: = [K, K , ; h (23)
Ky thuat dieu che vector khong gian bien Ihe M.SVPWM
a) b) Hinh 11: Vector khdng gian ca ban PWM.
a) cdc vector ca ban b) diiu che vector dien dp Irong seclo I
Trong h? thdng DGIeg vdi bus DC each ly cae vector 7 va vector 8 khdng dai han vector khdng d dien ap pha. Dien ap ngd ra dugc dieu che theo luat trong bang 2
Bang 2. Ludt diiu chi MSVPW M
Sdng CO hinh 12
pan dien ap ra ciia In3Leg nhu d
va cau triic cua RSC dugc ihiel ke nhu hinh 11
' h^w
I {I I -
t I
i I
Hinh 10. Sadd cdu Inic ciia RSC Hinh 12. Dang sdng dien dp ngo ra
cua cdc Vector ca ban cua ln3Le
Nguyen VSn Liln vet Dtg Tap chi KHOA HOC & CONG NGHE 102(02) 129- 136
Tr?ng thai d o n g m o van n h u 6 hinh 13
t 1 1
1 i i
1 1"1
- - • [
• • i
.Jyv->XX^
Hinh 13. Trang thai ludn tic cua vector khdng gian CAC K E T Q U A M O P H O N G
Hinh 14 eno ket qua md p h d n g so sanh giua dang dien ap pha cda M S V P W M vdi S V P W M . T r o n g dd d u d n g c o n g net dui la dien ap pha d u o c tao bdi S V P W M , trong khi dudng cong net lien tue d u g c tao bdi M S V P W M . T r o n g he t h d n g dieu khien phan hoi, tin hieu bd bii VQ d u g c t u d d n g tao ra bdi bp dieu khien v d n g lap phan hdi, chirng id IVISVPWM da c u n g cap dieu khien eho md hinh ln3Leg trong tga do tham chieu apO, nd thuc hien tdt h a n d toa dp A B C
\
• • ' - " "
/
Hinh 14. .So sdnh giua dang dien dp pha cua MSI pit \fvd.Si pu \l
Hinh 15, md p h d n g hoal d d n g ciia InSLeg ddi vdi mdt mang dien phan lan chju lae d d n g ciia cac dang tai khae nhau. Ket qua eho thay dien ap tren tai ludn d u g c giir v u n g , d d n g hgc dap ling cao - dien ap hau n h u khdng cd gian dpan qua dp.
Hinh 16: Cdc kit qua md phdng- cdt /• Tat khdng L dn bdng, col 2. Tat phi luyen. col 3 Ddp irng budc cua tai lir 0% den 100%. cot 4 dap irng cua hdm Iruyen. lat gidm lirng budc lir 100% ve 0%,, K E T LUAN
Ket qau nghien cii'u da d u a ra mdt ky thual dieu khien mdi cho bd nghich luu 3-pha 4- day eiia mdt DG dde lap (ln3Leg), Ky thuat nay la su ket hop cQa bd dieu khien trupl ( D S M C ) va bd d'l'iu khidn bgn vung (RSC).
S u phat trien thuat loan dieu khien d u a vao md hinh t u o n g d u a n g cua tga do a|30 Bai loan da sir dung ky thuat dieu che vector khong gian M S V P W M thuc hien de dieu khien tren toa do a|30. Ket qua md phdng da so sanh uu diem hon hang ciia In3Leg dieu khien trong be tga dd apO so vdi he ABC Cae phan tich ly thuyet da d u g c kiem e h u n g thdng qua ket qua md phdng lam sang td sir anh h u d n g cua ky thuat dieu khien mdi ap d u n g eho ln3Leg
TAI LIEU T H A M K H A O [I] V. Utkin, J. Guldner. and J Shi, Sliding Mode Control in Electromchanical Systems.
Philadelpha, PA, USA: Taylor & Francis Inc.
1999.
[2]. E. J. Davison and B Scherzinger, "Perfect control of the robust servomechanism problem."
IEEE Trans. Automat Contr., vol. AC-32. no 8.
pp 689{702. Aug- 1987
[3] M Dai. M N. Marwali, J W Jung, and A Keyhani, "Power flow control of a single distributed generation unit with nonlinear local load," in Proc IEEE PES Power Syst Conf E\po 135
Nguyen v a n Lien v(> £)/^ Tap chi KHOA HQC & CONG N G H $ 102(02): 129-136
(PSCE"04), Nc\N York, NY. O a 2004, vol. i. pp. sampled PWM," IEEE Trans Ind, Electron.,vol.
398-403. 44, no. 5. pp. 670-679, Oct. 1997.
[5]. J. S. Bay, Fundamentals ol Linear Stale Space [7]. A. Kwasinski, P. T Krein, and P, L Systems New York: WCB/McGraw-1 lill, 1999. Chapman, "Time domain comparison of pulse-
|6). S, R. Bowes and 'i S Lai, "The rclalionship width modulalion schemes," IEEE Power between space-vcclor modulalion and regular- l-.lcclron, Lett., vol, l , n o , 3 , p p 6 4 - 6 8 , Sep. 2003.
SUMMARY
C O N T R O L L E R I N V E R T E R J - P H A S E - t - W I R E IN DIS'l k l l U ' T E D P O W E R S \ S T E M INDEIM N D E N T
Nguyen V;iri Lien'", T r a n Minh Due', Ngo Due Minh^
Hanoi l'mversily of .Sciences and Technology.
-I ihiiiui2 Technical and Technology College. ^College ofTeehnology- 7V('
This paper researches a three-phase four-wire inverter for a distributed generation working in island mode The control technique combines an inner sliding controller to conlrol current loop inside (DSMC) and an ,sic.id> controller lo conlrol voltage that develops under stationary upO (Clarke's) reference frame using space vector pulsewidlh modulation (MSVPWM) to achieve steady voltage regulation with low steady slate error and low total harmonic distortion and fast transient response under various load disturbances. Moreover, besides the development and description of the algorithms, a series of discussions, analysis and studies are performed on the proposed control technique, including the L-C fitter design issue, licquency domain closed-cunenl-toop and closed-vollage-loop responses, and time domain simulations under various load conditions.
Keywords: ln3Leg, Reference .static aflO. DSMC. ,\ISI PIVVl, RSC controller
\'gd) nhdn bdi:2H/2./2013. ngdy phdn bten 14/3/2013. ngdy duyel ddng-26/3/2013
Tei 0913090406. Email, lienmui mail hut edu vn 136