• Tidak ada hasil yang ditemukan

GIAO DjCH CHIJfNG KHOAN PHAI SINH

N/A
N/A
Protected

Academic year: 2024

Membagikan "GIAO DjCH CHIJfNG KHOAN PHAI SINH"

Copied!
8
0
0

Teks penuh

(1)

^ '

GHI€NCUUTRflODOI

GIAO DjCH CHIJfNG KHOAN PHAI SINH - MO HINH DjNH GIA THICH HOP CHO THI TRl/ONG CHUfNG KHOAN VIET NAM

TS. Bui Phuc Trung Dal hoc Kinh te, thanh pho Ho Chi Minh

Khai niem chUng khoan phai sinh (CKPS) hien dang tham nhap vao thi trudng chUng khoan Viet Nam (TTCK). Mdt so cong ty chUng khoan (CTCK) dang rat quan tam den sin pham nay, cac nha dau tu ngay cang tim hieu CKPS thdng qua eac TTCK phat then tren the gidi. CKPS da duqc de cap den trong luat chCfng khoan 2006 vdi khai niem ve quyen chqn va hqp dong k'y han. Nam 2010, Uy ban ChCfng khoan Nha nudc (UBCKNN) cung da bat dau thanh lap to nghien cCfu chuyen ve CKPS de sdm then khai giao dich CKPS tai Viet Nam.

CKPS duqc xem la mdt loai hang hda cua thi trudng tai chinh, vi vay cung khdng nim ngoai quy luat kinh te hang hda. Mdt sin pham phai xuat phat tCf nhu eau eua thi trudng thi mdi tdn tai duqc, day chinh la nhu cau giao dich cua cdng chung dau tu. Khi giao dich thi cdng cu quan trqng nhat chinh la md hinh toan hoe dinh gia CKPS. Trong khudn kho bai viet nay xin neu len cac khai niem, cac dinh nghia, cac md hinh va cac dang ham toan hqe la cdng cu cho dinh gia CKPS nham phuc vu cho nhu eau cCia nha dau tu

1

. Gidi thieu CKPS

Djnh nghTa: Hgp ddng tai chfnh dUdc xem la ehCfng khoan phai sinh, hoac khoan bdi thudng ngau nhien, neu gia tri ciia nd d ngay dao han Tduge xac djnh chfnh xac bdi gia thj trudng eua cdng cu tien mat cd sd tai thdi diem T(lngersoll, 1987).

Nhu vay, tai thdi diem dao ban eiia hgp ddng chung khoan phai sinh, bieu thj bang 7, gia F{T) ciia tai s i n phai sinh dupe hoan toan xac djnh bdi gia trj eiia "tai s i n co sd" Sp Sau ngay dd chCmg khoan ngCmg tdn tai. Dac trUng don giln nay ciia tai s i n phai sinh ddng vai trd rat quan trgng trong viec djnh gia chung.

2. Vi du CO ban ve djnh gia tai san

Chung ta sif dung mdt md hinh ddn g i l n de giii thich hau het cae ket qua quan trgng trong djnh gia tai s i n phai sinh. Vdi md hinh nay: Thir nhat, chung tdi se minh hga tfnh logic duge dung trong djnh gia tai s i n phai sinh. Thvthai, chung tdi hy vgng se gidi thieu nhUng cdng cu toan hgc ma nhCmg cdng cu nay can thiet cho viec tien hanh tht/c hien tfnh logic trong ap dung thUe ti§n. Chung tdi ed chii dich khi dUa ra md hinh ddn g i l n .

G i l djnh rang thdi gian bao gdm "thdi diem hien tai" va "thdi diem ketiep " va hai thdi diem nay each nhau mdt khoing thdi gian A , A la mdt khoing nhd nhung khdng qua nhd.

Chung ta xem xet trudng hdp ma nhirng ngudi tham gia vao thj trudng chi quan tam den ba loai tai s i n .

2.1 ThCf nhat la: mdt tai san khdng rCtl ro nhu mdt trai phieu kho bac ngan han ma tdng tien lai cho tdi thdi diem ke tiep la (l -f- r A ) . Tien lai nay la "khdng riii ro", la mdt hang sd va khdng phu thudc vao cac trang thai mdi trudng ciia nd.

2.2 ThCf hai la: mdt tai san ea sd, vi du nhu mdt cd phan S{t). G i l sir trong sudt khoang thdi gian A , S{t) chi cd the nhan mdt trong hai gia trj tdn tai. Cd nghTa la mdt gia trj nhd nhat 28

(2)

trong hai trang thai mdi trudng. S{t) cd riii ro bdi vi Ipi fch ciia nd khac nhau trong hai trang thai mdi trudng.

2.3 ThUba la: mot tai san phai sinh , mdt quyen chgn mua bao gdm phi hqp dong C{t) va gia thue hien hqp dong Q . Hop ddng dao ban d thdi diem "ke tiep". G i l djnh rang tai s i n CO sd cd hai gia trj tdn tai nen quyen chgn mua cung se nhan hai gia trj.Cau true nay kha don gian. Cd ba tai san (A'^ = 3 ) , hai trang thai mdi trudng {K = 2). Mdt trong ba tai s i n la chCmg khoan co sd, tai s i n thCf hai la quyen chgn mua va thCf ba la vdn vay hoac cho vay khdng riii ro.

Thuc te la mot nha kinh doanh boat ddng trong thdi gian lien tuc cd the du tfnh chgn mdt vj trf trong mdt quyen mua ban cd phIn nao dd. Neu thdi gian xem xet "nho", gia tai san ed the khdng ddi qua mot dau tang hoac g i l m . VI the, g i l djnh ve hai trang thai mdi trUdng cd the la gan dung.

Chung ta cu the hda nhOrng thdng tin tren bang nhCmg ky hieu,gia tai san se dugc bieu di§n bang mdt vector S, chi vdi ba yeu td:

S,= S{t) C{t\

(1)

Trong dd:

Byt) la vdn vay hoac cho vay khdng riii ro.

S{t) la ehCmg khoan.

C(r) la gia trj ciia hgp ddng quyen chgn mua.

t la thdi diem ma nhCirng gia nay dugc ap dung.

NhCrng Igi fch se tap hgp lai trong ma tran D,. Cd ba tai s i n va cd hai trang thai mdi trudng vi vay ma tran D, se ed ba ddng va hai cdt. B{t) la vdn vay hoac cho vay khdng rui ro. PhIn Igi ich ciia nd B{t) se nhu nhau ma khdng bj I n h hudng bdi trang thai mdi trudng xet trong

"thdi diem ke tiep". S{t) ed riii ro va gia tri ciia nd cd the len den 5',(r + A ) hoac giam xudng 5'2(r + A). Cudi eung la gia trj thj trudng ciia quyen chgn mua C{t) se thay ddi ciing vdi nhCrng thay ddi ciia gia tai s i n cd sd S{t). Vi the, trong trudng hgp nay, Z), dugc the hien nhu sau:

"(1 + rA)B(t) (1 + rA)B(t)^

D,= S,(t + A) S,(t + A) , (2)

^ C,(r + A) C,(r + A) , trong dd: /• la lai suat khdng riii ro.

3. Mo hinh djnh gia chufng khoan phai sinh 3.1 Gidi thieu

Do ed mdt vai khfa canh khac biet ma eac cdng cu djnh gia chCmg khoan phai sinh tach biet ra khdi cae ly thuyet djnh gia tai s i n chung. De cho ddn giln hda, ta ed the bieu d i i n gia khdng ed Igi eiia ehCmg khoan phai sinh la mdt ham sd ciia cae loai chCmg khoan co b i n , dd la mdt tap hgp eac bieu thCfc, ta cd the sif dung ham dd de djnh gia tai s i n ma khdng can xem xet den bat ky su ket hgp vdi cac thi trudng tai chfnh khac hay hoat ddng thue te eiia nen kinh te.

29

(3)

^ 1

GHI€N CUU TRflO DOI

y tudng ciia cd loi dupe sif dung de xac djnh mdt do do xac suat ma thdng qua dd cac tai s i n tai chfnh dupe xif ly nhU ly thuyet martingale khau hao mot lan mot each dung dan. Cdng cu sd hgc Martingale rat thfch hgp trong trUdng hop nay va ta cd the djnh gia khdng cd Igi mdt each de dang bang sU Udc lugng mong dpi n g l u nhien. Cdng cu dung de djnh gia phai sinh dd duge ggi la phuong phap do do Martingale tuong duong.

Phuong phap dinh gia thu" hai sif dung cO Igi cd the lay ket q u i mot each true tiep. Dau tien ngudi ta xay dung danh muc d I u tu phi riii ro, va sau dd thanh lap mdt phuong trinh vi phan tCmg phan (PDE) trong dd bao gdm e l sU thieu hut cd hdi co Ipi. PhUdng trinh PDE nay hoac duge gill bIng giii tfch hoac Udc lupng sd hgc.

Trong cae trudng hdp, van de ciia djnh gia CKPS la tim phuong trinh ham F(S,,t), phUdng trinh nay cd lien he den gia eiia s i n pha'm phai sinh, gia tai san co b i n , va mdt sd nhan td riii ro thj trudng khac. Khi dang gan dung eiia ham khdng the xac dinh dugc, ta tim cac phugng phap sd hgc de md t l cae chCre nang ciia F(S^,t). Ham djnh gia F(S^,t) cho chCmg khoan phai sinh tuyen tinh va phi tuyen.

3.2 Ham djnh gia

Van de chua biet eiia djnh gia CKPS la ham F(S,,t) vdi S, la gia ciia tai s i n co sd, t la thdi gian. Cac nha phan tfch tai chinh se cd gang tim ra cdng thCfc dang ddng cho ham F(S,,t).

Trong trudng hop nay, cdng thufc Black- Scholes la giii phap tdt nhat. Cdng thCfc Blaek- Scholes eung cap cho ta gia eiia hgp ddng chgn mua trong thdi han eiia tai s i n cd djnh va mdt sd tham sd khac cd lien quan. Tuy nhien, d day cd nhieu trudng hgp phCfe tap hdn nhieu.

Neu dat trudng hgp cdng thCre dang gan dung eiia F(S,,t) khdng tdn tai thi cae nha phan tfch ed gang tim ra mdt bieu thCre ehi phdi cac chCfe nang ciia F^S,,?).

3.2.1 Hop dong ky han.

Ta xem xet hinh thCre tien dang chuyen va lam each nao ma ham djnh gia F(S,,t), S, la tai s i n CO sd, dugc sir dung cho hgp ddng ky ban vdi nhCmg dieu kholn sau:

• Tai thdi diem T trong tuong lai

t<T (3) F la sd dd la se duge t r i khi nhan mdt don vj vang.

Hpp ddng dupe ky ket tai thdi diem t, nhung khdng cd cac kholn bdi thudng do thay ddi hgp ddng cho tdi thdi diem T.

Do dd ta cd mdt hgp ddng trong dd e l hai ben ddi tac deu chju nghTa vu ddng thue. Mdt ben nhan vang, va mdt ben chap nhan chuyen nhugng.

Lam each nao ta xac djnh duge ham F(S,,t), vdi ham F(S,,t) la ham cho ta biet gia tri tren thj trudng binh d i n g ciia hgp ddng tai thdi diem t, vdi cae tham sd eo b i n .

Ta sir dung ddi sd "eg Igi".

G i l sif ta mua mdt don vj vang tai thdi diem t vdi gia S,, sd tien dugc lay tCr quy tai chfnh ma ta vay vdi lai suat phi riii ro kep lien tuc la r,. Cho rang lai suat r, nay la cd djnh trong sudt ky ban eiia hgp ddng. Ta ed chi phf b i o hiem va luu trir mdt ddn vj hang hda trong mdt ddn vj thdi gian la c dollar. Tdng ehi phi de luu giOr lupng vang nay trong mdt khoing thdi gian 7 - 1 la

e''''-'^S,+{T-t)c (4) Trong dd e''^^"^S, la tien vdn gdc va tien lai phii tra cho ngan hang tai thdi diem T, (T - t)e

la tdng ehi phf lUu trijf va b i o hiem phii t r i tai thdi diem T.

Day la mdt each de giu bao d i m mdt lupng vang tai thdi diem T. Ta vay mot lugng tien can thiet, mua mdt lugng hang hda cd sd va luu trCf nd cho den thdi diem T.

30 kintiteitiiitlTiei

(4)

Hop ddng ky ban la mdt each khac de giCf b i o d i m mdt lupng vang tai thdi diem T. Khi ta ky mdt hgp ddng de nhan mdt ddn vi vang vao thdi diem T, dieu dd eung cd nghTa la cae kholn thanh toan se dupe t r i tai thdi diem dao ban.

Do dd, ket q u i eiia hai ben ky ket la gidng nhau. Dieu dd cd nghTa la hg cung phii t r i mdt lugng tien tugng tu. Ngugc lai, nd se tao ra nhCmg co hdi cho co Igi. Nhung nha tai chfnh thdng minh s§ dang ky hai hgp ddng rieng biet, mua mdt lugng vang d day vdi gia re va ban ra lugng vang vdi gia cao hdn d ben kia cung mot luc.

Ve mat toan hgc, dieu dd cd the trinh bay dudi dang dang thCfc nhU sau

F(S„t)=e'''-"S,+(T-t)c (5) Theo dd, chung ta da sif dung k h i nang khai thac cae cd hdi ed Igi va da dat dugc bieu

thCfc dd, bieu thCre tren bieu dien gia ciia hgp ddng tUdng lai F(S,, t) dudi dang mdt ham ciia eac sd S,, rva cae tham sd khac. Trong thue te, ta xac dinh ham F(S,,t) tai mdt thdi diem f bat ky.

Trong F(S,,f), S, va t la eac bien sd thi chung cd the thay ddi trong sudt thdi gian tdn tai ciia hgp ddng. Mat khac, c, /-,, T la cac tham sd. Ta g i l sif chung la nhCmg hang sd trong khoing thdi gian T-t.

Chu y r i n g ham F('S,,f) trong bieu thCrc (5) la mdt ham tuyen tinh vdi S,.Vi vay, hgp ddng ky ban cdn dugc ggi la s i n pham tuyen tfnh. d phIn sau, chung ta se ed duge cdng thCrc Black - Scholes, cdng thCrc nay cung cap ham djnh gia F(S,, t) cho hgp ddng chgn mua. Cdng thCfc nay phi tuyen ddi vdi S,. Cdng cij ma cd sU lUa chgn thfch hgp tieu bieu duge ggi la cae san pham phi tuyen.

3.2.2 Quyen chon

Xac djnh ham djnh gia F(S,, t) cho cae tai san phi tuyen khdng de dang nhU trUdng hgp ciia hgp ddng ky ban. Trong phan nay, chung tdi chi gidi thieu mdt tinh chat quan trgng eiia ham F(S,, t), ham nay v i n ap dung duge vdi s i n pham phi tuyen. Dieu nay se tao nen t i n g cho viec nghien cCfu cae cdng cu toan hgc cao hOn.

G i l sir C, la hgp ddng chgn mua duge ghi tren chCmg khoan S,. Dat r la lai suat phi riii ro khdng ddi. K la gia thue hien, va 7, f < 7 la thdi gian dao ban. NhU vay gia ciia hgp ddng ed the bieu dien nhu sau:

C,=F(S„t) (6) Ham djnh gia FiS,, t) cho quyen lua chgn se cd nhCmg tinh chat eg b i n . Vdi dieu kien ddn

giln hda, S, se la ngudn ciia qua trinh ngau nhien va se tac ddng tdi gia hgp ddng. Vi vay sU bien ddng khdng the doan trUde dugc ciia S, ed the bu dap nhung vj trf ddi lap ddng thdi ciia C,. Thudc tinh nay ap dat mot sd dieu kien, trong dd ham FfS,, t) cd the bien thien trong khoing thdi gian ma S, bien thien.

De tim hieu ly do tai sao thudc tinh nay dupc tao ra mdt each rd rang hon, ta xem Hinh 1.

Phan ben dudi ciia Hinh 1 the hien bieu dd ldi ich cho mdt vj the ngan ciia S,. Diem A the hien sd don vi eiia tai s i n ed djnh dugc vay va duge ban d mCrc gia S,.

Phan cao hon ciia hinh 1 the hien gia F(S,, t) eiia hgp ddng chgn mua dugc thanh lap vdi S,. Trong phan nay ta bd qua each thCrc thanh lap cdng thCfc F{S,,t) va each ve dd thj.

Iiiil trien 31

(5)

^ 1

GHI6N CUU TRflO DOI

Gil sif khdi dau eiia tai sin eO bin la S,. Va tUdng Cmg nhU vay ta cd diem A tren dUdng eong F(S,, t). Neu gia chCmg khoan tang len mdt khoing la dS, thi tuong Crng tren do thi se mat di chfnh xac mdt doan ngin tUOng Cmg vdi dS,. NhUng vj the eua quyen chgn vin dat tdi.

Tuy nhien, ta xem xet tai diem tdi ban. Theo Hinh 1, khi S, tang mdt lugng la dS, thi gia eiia hpp ddng se tang mdt lugng chi bang dC,, do bien thien sau nhd hdn bdi vi do ddc ciia dudng cong tuong Cmg thap hon.

dC, < dS, (7) Vl ly do dd, neu chung ta sd hCru mdt hpp ddng chgn mua va ban mdt cd phieu, sutang gia

mdt lugng bang dS, se din tdi Id rdng.

Nhung lap luan dd da dua ra gil thiet la vdi sU dieu chinh vi trf mdt each can than thi tdn that cd the dugc loai bd. Xem do ddc ciia dudng tiep tuyen vdi dd thj F{S,, t) tai diem A. Do ddc nay cd the dupc tfnh nhu sau

5F(S.,r)

dS, = F,

(8)

32

Kinh teJ'tial Irien

(6)

Bay gid, gil sir chung ta khdng rut ggn phan tren, ngoai trCr F^ don vj chimg khoan cd sd.

Sau dd S, tang mdt lugng la dS,, thiet hai tdng cdng se la F^dS,. Nhung theo Hinh 1, sd lupng dd gan bang vdi dC,. Dd dupc coi la dC,.

Rd rang, neu dS, la kholn bien thien nhd sd gia thi dC, la mdt udc lugng gin dung ciia khoing bien thien thuc te ciia dC,. Do dd, sU tang them gia trj cua hgp ddng (udc lugng) se bu lai nhCmg thiet hai trong vj the ngIn han. Nhu the danh muc dau tu se khdng bien thien ngoai dudoan.

Nhu vay, sU bien thien eiia sd gia trong ham F(S,, f) va S, cd mdi lien he thdng qua mdt sd cdng thCfc sau.

d[F^S,] + d[F(S,,t)] = g(t), trong dd g(t) la ham du doan gan dung trong thdi gian t.

Hinh 2:

\ F,<1

SC,

20 40 60 80 100 120

dS.

33

(7)

^ 1

'GHI6N CUU TRflO DOI

Theo each tfnh vi phan, cdng thufc tren cd the dugc sir dung de tim ra bieu thCrc dang gan dung ciia F{S^, t). Khi bieu thifc dang g i n dung khdng tdn tai, cac phuong phap sd tim ra F(S,, t) bang each dira vao quy dao ciia dd thj dd.

Bu dap khoing bien thien C, bang each giir gia trj eiia F^ ddn vj tai s i n ed djnh dupc ggi la du phdng delta. Vdi danh muc dau tU, tham sd F^ dupc ggi la delta.

Khi dS, Idn thi Udc lupng

dC,=dC, (9) se sai. Dieu nay rat quan trgng khi bien ddng cUc Idn, "hang rao dU phdng" khdng the giCr

dugc. Ta cd the xem trudng hgp nay d Hinh 2. Neu bien thien S, bang vdi dS, thi tUdng Cmg vdi nd dC, se vugt qua mCre thiet hai - F ^ dS,.

Rd rang g i l thuyet ve van de lien tuc tuyet ddi giur mdt vai trd cd b i n trong djnh gia tai s i n . Trong thUe te, chung ta cd the tai tao lai sd bien ddng trong vi trf lUa chgn bang nhung dieu chinh cue nhd trong tai s i n cd b i n . Dieu nay ed the lam cho nhung dieu chinh vi phan ciia danh muc dau tu xoay quanh sU thCra nhan bien cd lien tuc. Nhu da trinh bay d tren, vdi sd gia cue Idn thi nhCmg udc lugng se gilm gia trj nhanh chdng.

3.3. Qng dung: PhUdng phap djnh gia CKPS

Bai bao nay de cap den cae van de toan hgc eiia phugng phap djnh gia tai s i n phai sinh.

Tuy nhien, nhung tranh luan ve nhOrng phUdng phap chung ciia viec dinh gia tai s i n phai sinh la dieu khdng the tranh khdi. Dieu dd c l n thiet de minh hoa bang mdt dang toan hgc ma tdi du djnh se trinh bay va eung cap cho cac ban nhirng vf dtj cu the.

Chung tdi sif dung nhCrng phIn trinh bay d tren de tdng ket lai phUdng phap djnh gia sif dung nhung phuong trinh dao ham rieng (PDEs).

3.3.1 G i l sir rang nha phan tich quan sat gia hien hanh eiia mot s i n pham phai sinh, ta ky hieu la F(S,,t), trong dd S, la gia tai s i n co sd trong thdi gian thue. G i l sif nha phan tfch mudn tfnh do bien thien gia tai s i n phai sinh dF(S,, t) dudi su bien thien eua gia tai s i n co sd dS,.

3.3.2 O day lien quan tdi cac khai niem ma chung tdi da trinh bay . Can nhd rang khai niem ve phep lay vi phan la mdt cdng cu ma ta can sif dung nd de Udc lugng nhCfng khoang bien thien nhd ciia mdt ham sd. Trong trudng hgp dac biet ta cd ham F(.) phu thudc vao S,, t.

Do dd, neu ta sif dung phep tfnh chuan, ta ed the viet:

dF(S,,t) = F^dS,+F,dt (10) trong dd F,' la cae dao ham rieng

r dF ^ dF

Vdi dF{S,, t) bieu thj cho do bien thien toan phan.

3.3.3 Dang thCre (13) duge ggi la vi phan toan phIn ciia F(.), cho ta biet sU bien thien ciia gia tai san phai sinh trong khoing bien thien xac djnh. Vi vay quan diem ciia nha phan tfch cho rang khi da cd Udc lupng eiia dS,, ta ed the sif dung dang thCrc vi phan toan phan de Udc lupng dF(S,, t). Dang thCre (13) cd the dupc sir dung dao ham rieng bac mot /%, F, la nhCfng Udc lugng bang sd. Mat khac, nd eung can thiet de ta xac djnh dang ham sd cua F{S,, t).

Tuy nhien, dieu^nay phu thudc hoan toan vao k h i nang ciia ta de lay dupe vi phan toan phIn gidng nhu bieu thCre (10).

34

(8)

NGHI6N CUU TRflO m m

3.3.4 Dang n g l u nhien ciia bieu thCre (10) da dupe xac djnh. Ta cd the hgan thanh "mdt thuat toan" de djnh gia tai s i n phai sinh theo each sau:

Sif dung du phdng delta va danh sach danh muc d I u tu phi riii ro, ta ed the xay dung mdi lien quan phu giUa dF{S,,t), dS, va dt. TCr mdi quan he dupc them vao dd ta cd the udc lupng tat c l cae vi phan trong bieu thCre (10).

3.3.5 Ta da cd dupc mdi quan he lien ket cac dao ham rieng ciia F(.) vdi nhau. Cae dang thCre dd dupe ggi la cac phUOng trinh dao ham rieng, giii nhOmg phuong trinh dd ta se tim dupc F(S,, t) vdi dieu kien la p h i i thda man dieu kien bien va tdn tai dang gan dung eiia F(S^, t).

Tuy nhien se n l y sinh mdt van de la "nhumg cai gi khdng biet thi coi la mot ham sd". Cau tdm tat tren cho ta biet rang de g i i i quyet van de tren ta c l n p h i i nghien cCru ve phuong trinh dao ham rieng va nhOrng phuong phap g i i i khac.

Vf du sau day cd the cho ta thay rd hdn.

3.4 V i d u

G i l sif ta cd dao ham rieng theo x, xe [0,X] ciia F(x) la mdt hang sd b.

F,= b • (12) Dang thCfc nay la mot dang thdng thudng ciia phUdng trinh dao ham rieng. Bieu thCfc nay bao gdm dao ham rieng ciia F(x), mdt sd hang ciia ham sd chUa biet.

Sif dung phUOng trinh PDE nay, ta cd the tim dugc dang ciia ham F(x) hay khdng? Cau t r i Idi la cd. Chi nhOfng quan he tuyen tfnh mdi ed dang nhu vay. Vi vay, F(x) dugc viet lai nhu sau:

F{x) = a+b(x) (13) Do dd, dang thCfc ciia F(x) duge cd djnh. Tuy nhien tham sd a v i n chua biet. Tham sd nay

cd the tim dUdc bang each sif dung dieu kien bien.

Vf du, neu ta biet tai dieu kien bien cd x = X

F ( X ) = 1 0 (14) Nhu vay tham sd a duge xac djnh

a=^0-bX (15)

Can nhd rang trong trudng hgp ciia s i n pham chCmg khoan phai sinh, thdng thudng ta chi cd dugc nhOfng thdng tin ve dang thCre eiia ham F(x) tai thdi diem dao ban. Do dd, tat c l cac thdng tin can thiet de xac dinh ham F(x) rd rang chi cd duoc tCr phUdng trinh vi phan tCmg phan (PDE).

4. Ket luan:

Cac md hinh djnh gia CKPS da trinh bay d tren bat dau dugc Crng dung d TTCK Viet Nam mdt each ddn g i l n bang cae hgp ddng Options Vang, ca phe... nhung ehua duge trinh mdt each he thdng md hinh djnh gia CKPS bang cdng cu toan hgc hien dai. Bai viet nay da neu len thuat toan tinh toan tUOng ddi cu the, den khi cd dOr lieu giao djch d TTCK Viet Nam, thi se duge Cmg dung mot each hoan h l o . O

Tai lieu tham khao:

1. Hull, John, Options, Futres and other Derivatives, Frentice Hall, 5rd Edition 2003

2. Black, Fisher and Myron Sholes, The Pricing of Options and Corporate Finance, MeGraw - Hill, 7rd Edition 2003

3. Salih N.Neftci, Mathmatics of Financial Derivatives 1996

nen 35

Referensi

Dokumen terkait