• Tidak ada hasil yang ditemukan

Kähler differential algebras for 0-dimensional schemes

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "Kähler differential algebras for 0-dimensional schemes"

Copied!
30
0
0

Teks penuh

(1)

Contents lists available atScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Kähler differential algebras for 0-dimensional schemes

Martin Kreuzera,∗, TranN.K. Linhb, Le Ngoc Longa,b

aFakultätfürInformatikundMathematik,UniversitätPassau,D-94030Passau, Germany

bDepartmentofMathematics,HueUniversity’sCollegeofEducation,34LeLoi, Hue,VietNam

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received27January2017 Availableonline11January2018 CommunicatedbyBerndUlrich

MSC:

primary13N05

secondary13D40,14N05

Keywords:

Kählerdifferentialalgebra 0-Dimensionalscheme Fatpointscheme Regularityindex Hilbertfunction

Givena0-dimensional scheme Xina projectiven-spacePn over a field K, we study the Kähler differential algebra ΩRX/KofitshomogeneouscoordinateringRX.Usingexplicit presentations of the modules ΩmR

X/K of Kähler differential m-forms,wedeterminemanyvaluesoftheirHilbertfunctions explicitlyandboundtheirHilbertpolynomialsandregularity indices.DetailedresultsareobtainedforsubschemesofP1,fat pointschemes,andsubschemesofP2supportedonaconic.

©2018ElsevierInc.Allrightsreserved.

1. Introduction

Inthe paper[5], G. deDominicis andthe firstauthor introducedthe applicationof Kählerdifferential modulesto thestudyof 0-dimensionalsubschemesXof aprojective

* Correspondingauthor.

E-mailaddresses:[email protected](M. Kreuzer),[email protected] (T.N.K. Linh),[email protected](L.N. Long).

https://doi.org/10.1016/j.jalgebra.2017.12.023 0021-8693/©2018ElsevierInc.Allrightsreserved.

(2)

space Pn over a field K of characteristic zero. They showed that this graded module overthehomogeneouscoordinateringRXcontainsnumericalandalgebraicinformation whichis notreadilyavailablefromthehomogeneousvanishingidealor fromRX.Later, in [10], theauthors extended andrefined these techniques for fatpoint schemes inPn. Following theclassicalconstructiondescribed byE.Kunzinhis book[15], itisnatural to define the Kähler differential algebra ΩRX/K =

m∈NΩmR

X/K of X as the exterior algebra ofits Kähler differential module Ω1R

X/K. Thisinvites thequestionwhether the Kähler differentialalgebracontainsnumericaland algebraicinformationaboutXwhich is not readily available in RX or in Ω1R

X/K. Thus the following example provided the initial sparkto ignitethecuriosityoftheauthors.

Example 1.1.LetXandYbe twosets ofsixreducedK-rationalpointsinP2 suchthat Xiscontainedinanon-singularconic,andsuchthatYconsistsofthreepointsonaline and threepointsonanotherline.ThentheHilbertfunctionsofRXandRYagree,as do theHilbertfunctionsof Ω1R

X/K andΩ1R

Y/K, namely HFX= HFY : 1 3 5 6 6 · · · HFΩ1

RX/K = HFΩ1

RY/K : 0 3 8 11 10 7 6 6· · ·. However,theHilbertfunctionsof Ω2R

X/K andΩ2R

Y/K aredifferent, andalso theHilbert functionsof Ω3RX/K andΩ3RY/K disagree:

HFΩ2

RX/K : 0 0 3 6 41 0 0· · ·, HFΩ2

RY/K : 0 0 3 651 0 0· · ·, HFΩ3

RX/K : 0 0 0 1 00 · · ·, HFΩ3

RY/K : 0 0 0 110 · · ·. So,theHilbertfunctionsoftheexteriorpowersof Ω1R

X/K “know”whetherXiscontained inanirreducibleorareducibleconic.

This observation motivated the studies underlying this paper. Let us now outline its contents in more detail. In the second section we start by recalling the definitions of the Kähler differential module Ω1R

X/K and the Kähler differential algebra ΩRX/K =

RX1RX/K) ofa0-dimensionalsubschemeXofPn.Asexplainedin[15],wecancalculate an explicitpresentationof ΩmR

X/K =m RX1R

X/K) for everym≥1.Moreover, weshow thatΩmR

X/K =0form> n+ 1,provide asimplifiedpresentationforΩn+1R

X/K,andshow thattheKoszulcomplexyields anexactsequence

0−→Ωn+1R

X/K −→ΩnR

X/K −→ · · · −→Ω2R

X/K−→Ω1R

X/K −→mX−→0 where mX isthehomogeneousmaximal idealmX=x0,. . . ,xnofRX.

In Section 3 we first have a brief glance at the case n = 1, i.e., at 0-dimensional subschemes of aprojective line.Unsurprisingly, inthis case the Hilbert functionsand regularity indices of Ω1RX/K and Ω2RX/K can be writtendown explicitly. Then we look

(3)

at the Hilbert functionof ΩmRX/K in special degrees.We provide explicitvalues in low degrees,show that theHilbert polynomial(i.e., thevalue inhigh degrees) is constant, andexaminemonotonicityinintermediatedegrees.Theseinsightsarecomplementedby abound fortheregularity indexof ΩmR

X/K intermsoftheregularity indexofΩ1R

X/K in thelastpartofthesection.

Then,inthenextthreesections,welookatthemodulesofKählerdifferentialm-forms for fat point schemes W. Such schemes are defined by idealsof theform IW = m11

· · ·∩℘mss,wheretheidealsi arethevanishingidealsofdistinctK-rationalpointsinPn. InSection4weprovearegularity boundfor ΩmR

W/K which usestheregularity index of the fattening of W, i.e., the scheme V defined by IV = m11+1 ∩ · · · ∩℘mss+1. For fat point schemes, we also give bounds on some specific values of the Hilbert polynomial of ΩmR

W/K.Inthereducedcase(i.e.,whenm1=· · ·=ms= 1),these valuesarezerofor m≥2,butas soonas oneoftheexponentsmi satisfiesmi 2,notallofthese values are zero anymore. Thus the property of W to be reduced is reflected in the values of the Hilbertpolynomials of ΩmR

W/K (see Corollary 4.8). Moregenerally, Proposition 4.7 providesupperandlower boundsfortheseHilbertpolynomials.

For the highest non-zero module of Kähler differentials Ωn+1R

W/K, we can sometimes determineitsHilbertpolynomialexplicitly.Moreprecisely,wehaveformulasforschemes W contained in a hyperplane (see Proposition 5.1) and for uniform schemes W (see Theorem 5.2).Anothercaseinwhichwe havemoredetailedinformationis themodule Ω2R

W/K forauniform fatpoint schemeW (i.e.,ascheme satisfyingm1 =· · ·=ms).In thiscase wecanextract thevalueofthe HilbertpolynomialofΩ2R

W/K from acomplex connecting it to its fattening and second fattening (see Proposition 5.4). We end the discussionofHilbertpolynomialswithaconjecturefortheirvalueforΩn+1R

W/K. InSection6,arichanddetailedsetofresultsdescribestheHilbertfunctionsofΩmR

W/K, wherem= 1,2,3,inthecaseofafatpointschemeWinP2 supportedonanon-singular conic.Inthiscase, theHilbertfunctionofΩ1R

W/K canbe computed explicitlyfrom the Hilbert functions of suitable fat point schemes (see Theorem 6.2). If W is a uniform fat point scheme, we construct a special homogeneous system of generators of IW in Proposition 6.4and useittocompute theHilbertfunctionof Ω3R

W/K (seeTheorem 6.6 andProposition 6.7).ThustheexactsequencegivenbytheKoszulcomplexallowsusto determinetheHilbertfunctionof Ω2R

W/K (seeProposition 6.8).

Finally,inthe last section we pointout therelation betweenthe Kähler differential algebraΩRX/K andtherelativeKählerdifferentialalgebraΩRX/K[x0]anduseittodeduce manypropertiesoftheHilbertfunction,theHilbertpolynomial,andtheregularityindex of ΩRX/K[x0] (seePropositions 7.1,7.2 and 7.3).

Throughoutthepaperweillustrateallresultswithexplicitlycomputedexamples.The necessary calculations were performedusing the second author’s package for thecom- puteralgebrasystemApCoCoA(see [1]).Unless explicitlystated otherwise,weadhere tothedefinitionsandnotationintroducedin[13,14]and[15].

(4)

2. Definitionandbasicproperties

Throughout this paper we work over a field K of characteristic zero. By Pn we denote the projective n-space over K. The homogeneous coordinate ring of Pn is S = K[X0,. . . ,Xn]. It is equipped with the standard grading deg(Xi) = 1 for i = 0,. . . ,n. Let X be a 0-dimensional scheme in Pn, and let IX be the (saturated) homogeneous vanishing ideal of X. Then the homogeneous coordinate ring of X is RX = S/IX. The ring RX =

i0(RX)i is a standard graded K-algebra. Its envelop- ing algebrais RXK RX =

i0(

j+k=i(RX)j(RX)k). ByJ we denote thekernel of the homogeneous RX-linear map of degree zero μ : RXK RX RX given by μ(f⊗g)=f g.ItiswellknownthatJ isthehomogeneousidealofRXKRXgenerated by {xi11⊗xi |0≤i≤n},where xi istheimage ofXi inRX fori= 0,. . . ,n. In thispaperweareinterestedinlookingatthealgebraicstructureandHilbertfunctionof thefollowing objects.

Definition 2.1.

(a) ThegradedRX-moduleΩ1R

X/K = J/J2 iscalled themoduleofKählerdifferential 1-forms ofRX/K,orsimplythemoduleof Kählerdifferentials.

(b) The homogeneousK-linearmap d:RXΩ1R

X/K given byf →f⊗11⊗f +J2 iscalled theuniversalderivationofRX/K.

(c) The exteriorpowerΛmRXΩ1R

X/K is called themodule of Kählerdifferential m-forms ofRX/K and isdenotedby ΩmR

X/K. (d) The direct sum ΩRX/K :=

m∈NΩmR

X/K is an RX-algebra. It is called the Kähler differentialalgebra ofRX/K.Herewe useΩ0R

X/K =RX.

More generally,for any graded K-algebraT /S, wecan define themodule ofKähler differentialm-formsΩmT /S andtheKähler differentialalgebraΩT /S analogously(cf.[15, Sect. 2]).TheKählerdifferentialalgebraofΩRX/K isinfactabigradedK-algebrawhose homogeneous component in degree (m,d) is given by (ΩmR

X/K)d. Notice that we have deg(dxi) = deg(xi)= 1 for i = 0,. . . ,n. For m 0, the graded RX-module ΩmRX/K is finitely generatedand itsHilbertfunctionisdefinedby

HFΩmR

X/K(i) = dimKmRX/K)i for alli∈Z. NotethatΩ0R

X/K =RXandΩ1R

X/K =RXdx0+· · ·+RXdxn.HenceweobtainΩmR

X/K =0 form> n+1 andΩRX/K =n+1

m=0ΩmRX/K.Furthermore,thereisapresentationofΩRX/K asΩRX/K= ΩS/K/IX,dIXΩS/K(cf.[15,Prop. 4.12]).Fromthiswededucethefollowing presentationofΩmR

X/K.

Proposition 2.2. Form≥1,thegradedRX-moduleΩmR

X/K has apresentation ΩmRX/K = ΩmS/K/(IXΩmS/K+dIXΩmS/K1).

(5)

Inthecasem=n+ 1,thepresentationofΩn+1R

X/K canbedescribed explicitly.

Corollary 2.3.Let {F1,. . . ,Fr}be a homogeneous system of generatorsof IX. There is anisomorphism ofgradedRX-modules

Ωn+1R

X/K = S/∂Fj

∂Xi |0≤i≤n,1≤j≤r

(−n−1).

Proof. Note thatΩn+1S/K =SdX0∧ · · · ∧dXn =S(−n−1).ForF ∈IX and G∈S, we haveF dG =d(F G)−GdF dIX. It follows thatIXΩmS/K dIXΩm−1S/K for all m 1.

LettingI=∂X∂Fji |0≤i≤n,1≤j≤r,Euler’srelationyieldsIX⊆I.So,itiseasyto checkthatdIXΩnS/K=IdX0∧ · · · ∧dXn,and hencetheclaimfollowsreadily. 2

NowletmX=x0,. . . ,xnbethehomogeneousmaximalidealofRX,andlete:RX RX be theEulerderivation ofRX/K which isgivenby f →i·f forf (RX)i.Bythe universalpropertyof Ω1R

X/K (cf.[15,Sect. 1]),thereisauniquehomogeneousRX-linear map γ : Ω1R

X/K RX such that e= γ◦d. In particular, we haveγ(dxi) =xi for all i= 0,. . . ,n and γ(df)= deg(f)·f for everyhomogeneouselement f ∈RX\ {0}. The Koszulcomplexofγ isthecomplex

· · ·−→γ Ω2RX/K−→γ Ω1RX/K −→γ mX−→0 whereγ: ΩmR

X/K Ωm−1R

X/K isahomogeneousRX-linearmapdefinedby γ(ω1∧ · · · ∧ωm) =

m j=1

(1)j+1γ(ωj)·ω1∧ · · · ∧ωj∧ · · · ∧ωm

for all ω1,. . . ,ωm Ω1R

X/K, and where γ(ω∧ω) = γ(ω)∧ω + (1)mω∧γ(ω) for ω ΩmR

X/K and ω ΩkR

X/K (cf. [2, 1.6.1-2]). In our setting, this complex is an exact sequence,as thefollowing propositionshows.

Proposition2.4. The Koszulcomplex 0−→Ωn+1R

X/K

−→γ ΩnRX/K−→ · · · −→Ω2RX/K −→γ Ω1RX/K −→γ mX−→0 (K) isanexact sequenceof gradedRX-modules.

Proof. Let 1 m n+ 1,let i 0, and let ω = f dxi1 ∧ · · · ∧dxim ΩmR

X/K with f (RX)iand 0≤i1<· · ·< im≤n.Thenwe have

(γ◦d)(ω) =if dxi1∧ · · · ∧dxim−df∧γ(dxi1∧ · · · ∧dxim) and

(6)

(d◦γ)(ω) =d(f m j=1

(1)j+1xijdxi1∧ · · · ∧dxij∧ · · · ∧dxim)

=df∧γ(dxi1∧ · · · ∧dxim) +mf dxi1∧ · · · ∧dxim.

This implies(γ◦d+d◦γ)(ω)= (m+i)ω.Hence(γ◦d+d◦γ)(ω)= deg(ω)ω forevery homogeneouselementω∈ΩmR

X/K.Nowsupposethatω∈ΩmR

X/K\ {0}isahomogeneous element with γ(ω)= 0.Set ω= deg(ω)1 dω∈Ωm+1R

X/K.We getγ(ω) =ω, andthe proofis complete. 2

Obviously, the ring RX is Noetherian and the graded RX-module ΩmR

X/K is finitely generated, and so the Hilbert polynomial of ΩmR

X/K exists (cf. [14, 5.1.21]) and is denoted by HPΩmR

X/K(z). The number ri(ΩmR

X/K) = min{i Z | HFΩmR

X/K(j) = HPΩmR

X/K(j) for allj i} is called the regularity index of ΩmR

X/K. In the following, we denote the Hilbert function of RX by HFX and its regularity index by rX. As a consequenceoftheexactsequence(K),wehavethefollowingbound forri(Ωn+1R

X/K).

Corollary 2.5.Wehave ri(Ωn+1R

X/K)max{rX,ri(Ω1RX/K),. . . ,ri(ΩnRX/K)}. 3. GeneralpropertiesoftheHilbertfunctionofΩmRX/K

InthissectionwedescribethevaluesoftheHilbertfunctionofthemoduleofKähler differential m-forms for a0-dimensional scheme Xin somespecial situations. Firstwe consider the easiest case, namely 0-dimensional subschemes X of P1. It is well known that Hilbertfunctionsdo notchangeunder base fieldextensions (forinstance,see [14, 5.1.20]).Thus,inordertocomputetheHilbertfunctionoftheKählerdifferentialalgebra for the0-dimensional scheme Xof P1, we mayassumethatthefieldK isalgebraically closed. In this case the homogeneous vanishing ideal IX is a principal ideal generated byahomogeneouspolynomialF ∈S=K[X0,X1].Moreover,after asuitablechangeof coordinates, wemayalsoassumethatF isoftheform F =s

i=1(X1−aiX0)mi where s≥1,m1,. . . ,ms1 anda1,. . . ,as∈K suchthatai =aj fori=j.

In[17,Sect. 4],L.G.RobertsgaveaformulafortheHilbertfunctionof ΩRX/K when m1=m2=· · ·=ms= 1.Nowweextendhisresulttoarbitraryexponentsm1,. . . ,ms 1 asfollows.

Proposition 3.1.Let XP1 be a 0-dimensional scheme, and letIX =F, where F = s

i=1(X1−aiX0)mi forsomes,m1,. . . ,ms1,andai∈Kwithai=aj fori=j,and letμ=s

i=1mi.ThentheHilbertfunctionsoftheKählerdifferentialmodulesofRX/K are givenby

HFΩ1

RX/K : 0 2 4 6 · · · 2(μ−2) 2(μ−1) 2μ−1 2μ−2 · · · 2μ−s2μ−s· · · HFΩ2

RX/K : 0 0 1 2 · · · μ−2μ−1μ−2μ−3 · · · μ−s μ−s· · · In particular,we haveri(Ω1RX/K)= ri(Ω2RX/K)=μ+s−1.

(7)

Proof. LetG=s

i=1(X1−aiX0)mi1, letH1 =s

i=1miai

j=i(X1−ajX0),and let H2 = s

i=1mi

j=i(X1−ajX0). Then we havedeg(G)= s

i=1(mi1),deg(H1) = deg(H2)=s−1 andgcd(H1,H2) = 1. Also,{H1,H2}is an S-regular sequence. Con- sequently, this sequence is also aregular sequence for the principal idealG which is regardedasagradedS-module.So,fori∈Z,we have

HFΩ2

RX/K(i) = HFS/∂F

∂X0,∂X∂F1(i−2)

= HFS/G(i−2) + HFG/GH1,GH2(i−2)

= HFS/G(i−2) + HFG(i−2)2 HFG(i−1−s) + HFG(i−2s)

= HFS(i−2)2 HFS(i−1−μ) + HFS(i−s−μ)

=i1

1

2iμ

1

+isμ+1

1

.

ThustheHilbertfunctionofΩ2RX/K is HFΩ2

RX/K : 0 0 1 2 · · · μ−2μ−1μ−2μ−3 · · · μ−s μ−s· · ·.

Moreover,itisclearthatHFmX : 0234 · · · μ−1μμ· · ·.ByProposition 2.4,wehave theexactsequenceof gradedRX-modules

0−→Ω2RX/K−→Ω1RX/K −→mX−→0.

HencetheHilbertfunctionof Ω1R

X/K satisfies HFΩ1

RX/K(i)= HFmX(i)+ HFΩ2

RX/K(i) for alli∈Z,andmoreprecisely,itisoftheclaimedform. 2

More generally, we collect some properties of the Hilbert function of ΩmR

X/K in the nextproposition. From now on,the coordinates{X0,. . . ,Xn}ofPn are always chosen suchthatnopointofXliesonthehyperplaneZ+(X0).Bythechoiceofthecoordinates, x0 is anon-zerodivisor of RX. Clearly, x0 is also a non-zerodivisor for any non-trivial graded submoduleof agraded free RX-module. Recall thatthe numberαX= min{i N|(IX)i = 0}iscalled theinitialdegreeofIX.

Proposition3.2. LetXPnK bea0-dimensionalscheme,and let1≤m≤n+ 1.

(a) Fori< m,wehave HFΩmR

X/K(i)= 0.

(b) Form≤i< αX+m−1,wehave HFΩmR

X/K(i)=n+1

m

·n+im

n

. (c) TheHilbert polynomialof ΩmR

X/K isconstant.

(d) WehaveHFΩmR

X/K(rX+m)HFΩmR

X/K(rX+m+1)≥ · · ·,andifri(ΩmR

X/K)≥rX+m then

HFΩmR

X/K(rX+m)>HFΩmR

X/K(rX+m+ 1)>· · ·>HFΩmR

X/K(ri(ΩmRX/K)).

(8)

Proof. (a) Obviously, every non-zero homogeneous element ω of ΩmRX/K has degree deg(ω)≥m,andhenceHFΩmR

X/K(i)= 0 for alli< m.

(b) Let m i < αX+m−1. Notice that IXΩmS/K dIXΩm−1S/K. Also, we have (dIXΩm−1S/K)i = 0 for all i < αX+m−1, since a non-zero homogeneous element of dIXΩmS/K1isalwaysoftheform

kdFk∧ωk,whereFk (IX)≥αX andωk mS/K1)≥m−1. ByProposition 2.2,foralli< αX+m−1,we obtain

HFΩmR

X/K(i) = HFΩmS/K(i) =n+1

m

·n+i−m

n

.

(c) Itfollowsfrom Proposition 2.2that HFΩm

RX/K(i)HFΩm

S/K/IXΩmS/K(i) =n+1

m

HFX(i)n+1

m

deg(X) foralli∈Z.HencetheHilbertpolynomialof ΩmR

X/K isaconstantpolynomial.

(d)Thegraded RX-moduleΩmRX/K hasthefollowing form:

mRX/K)i+m= (RX)idx0∧ · · · ∧dxm−1+· · ·+ (RX)idxn−m+1∧ · · · ∧dxn. Observethat(RX)i=x0(RX)i−1 ifi> rX.Thus(ΩmR

X/K)i+m=x0mR

X/K)i+m−1 forall i> rX.So,foralli> rX,wehavetheinequality

HFΩm

RX/K(i+m−1)HFΩm

RX/K(i+m).

Now letG=(∂x∂F0,. . . ,∂x∂Fn)|F ∈IXRX.By[5,Prop. 1.3]and[18, X.83],there isan exactsequenceofgraded RX-modules

0−→ G ∧RXm1

RX (RXn+1)−→m

RX(RXn+1)−→ΩmR

X/K(m)−→0.

Suppose i≥rX satisfiesHFΩm

RX/K(i+m)= HFΩm

RX/K(i+m+ 1). Then itfollows from theaboveexactsequence that

HFm

RX(Rn+1X )(i)HFG∧R

X

m−1

RX (RXn+1)(i)

= HFm

RX(Rn+1X )(i+ 1)HFG∧

RX

m−1

RX (Rn+1X )(i+ 1).

For every j rX, HFX(j) = deg(X), and so HFm

RX(Rn+1X )(j) = HFm

RX(Rn+1X )(j + 1).

Consequently, wehaveHFG∧

RX

m1

RX (Rn+1X )(i)= HFG∧

RX

m1

RX (Rn+1X )(i+ 1).Since x0 is a non-zerodivisor forthegraded RX-moduleG ∧RX m1

RX (Rn+1X ),thisimplies (G ∧RX m1

RX (Rn+1X ))i+1=x0(G ∧RXm1

RX (Rn+1X ))i.

Inviewof [7,Prop. 1.1], theidealIX canbe generated byhomogeneouspolynomialsof degrees≤rX+ 1.So,thegradedRX-moduleG ∧RXm1

RX (Rn+1X ) isgenerated indegrees

≤rX. Thusweobtain

(9)

(G∧RXm1

RX (Rn+1X ))i+2

=x0(G ∧RXm1

RX (Rn+1X ))i+1+· · ·+xn(G ∧RXm1

RX (Rn+1X ))i+1

=x0

x0(G ∧RXm1

RX (Rn+1X ))i+· · ·+xn(G ∧RXm1

RX (Rn+1X ))i

=x0(G ∧RX

m−1

RX (Rn+1X ))i+1. Altogether,wehaveHFΩmR

X/K(i+m+ 1)= HFΩmR

X/K(i+m+ 2),andtheclaimfollows byinduction. 2

Thefollowing exampleshowsthatHFΩm

RX/K(i) mayor maynotbemonotonic inthe rangeαX+m≤i≤rX+m.

Example 3.3. Let K = Q, and let X P2 be a set of six points on a line and three non-collinearpointsoffthatline,e.g.X={(1: 1: 0),(1: 1: 1),(1: 1: 2),(1: 1: 3),(1: 1: 4),(1: 1: 5),(1: 0: 1),(1: 2: 1),(1: 2: 2)}.It isclearthatHFX: 1367899· · ·, αX = 3,and rX= 5. TheHilbertfunctionsof theKähler differentialmodulesof RX/K aregivenby

HFΩ1

RX/K : 0 3 9 15 14 13 14 13 12 11 10 9 9· · · HFΩ2

RX/K : 0 0 3 9 9 4 5 4 3 2 1 0 0· · · HFΩ3

RX/K : 0 0 0 1 3 0 0· · ·. Wesee thatHFΩ1

RX/K(αX+ 1)= 14>13= HFΩ1

RX/K(αX+ 2) andHFΩ1

RX/K(αX+ 2)= 13<14= HFΩ1

RX/K(rX+ 1).So,HFΩ1

RX/K(i) isnotmonotonicintherangeαX+ 1≤i≤ rX+ 1.Similarly,HFΩ2

RX/K(i) isnotmonotonicintherangeαX+ 2≤i≤rX+ 2.

Nextwe consider theset Y=X∪ {(1 : 0: 2)}.We haveHFY: 1 3689 1010· · ·, αY = 3,and rY= 5. TheHilbertfunctionsof theKähler differentialmodulesof RY/K are

HFΩ1

RY/K : 0 3 9 16 18 16 15 14 13 12 11 10 10· · · HFΩ2

RY/K : 0 0 3 9 12 8 5 4 3 2 1 0 0· · · HFΩ3

RY/K : 0 0 0 1 3 2 0· · ·. HenceHFΩ1

RY/K(i) ismonotonic in therange αY+ 1 i≤rY+ 1, and HFΩ2

RY/K(i) is alsomonotonicintherangeαY+ 2≤i≤rY+ 2.

Inthelastpartofthissectionwegiveanupperboundfortheregularityindexofthe moduleofKählerdifferentialm-formsΩmR

X/K fora0-dimensionalschemeXinPn.Todo this,weneedthefollowing lemmas.

(10)

Lemma3.4. Letd≥1,letδ1,. . . ,δdZsuchthatδ1≤ · · · ≤δd,letW =d

j=1RX(−δj) be thegradedfreeRX-module,andletV beanon-trivialgradedsubmoduleof W.Then, for1≤m≤d,wehave

ri(V RXm

RX(W))ri(V) +δdm+1+· · ·+δd.

Proof. First we note that the Hilbert polynomial of W is HPW(z) = deg(X) and that ri(W)=rX+δd. Thisshows thattheHilbertpolynomialofV isaconstantpoly- nomial HPV(z)=u≤d·deg(X). Letr= ri(V),and letv1,. . . ,vu be aK-basisof Vr. Then theelements {xi0v1,. . . ,xi0vu}form aK-basis of theK-vector space Vr+i for all i N. We let{e1,. . . ,ed} be thecanonical RX-basis of W, we lett =d

m

, and we let 1,. . . ,εt} be a basis of the graded free RX-module m

RX(W) w.r.t. {e1,. . . ,ed}. We set δ=δdm+1+· · ·+δd,andlet

N =xδ0deg(εk)vj∧εk∈V RXm

RX(W)|1≤j≤u,1≤k≤tK.

Let = dimKN, and let w1,. . . ,w be a K-basis of N. It is not difficult to verify that N = w1,. . . ,wK = (V RX m

RX(W))δ+r. Moreover, for any i 0, the set {xi0w1,. . . ,xi0w} is K-linearly independent. Indeed, assume that there are elements a1,. . . ,a K such that

j=1xi0ajwj = 0. Since x0 is a non-zerodivisor for V RX

m

RX(W),weget

j=1ajwj= 0,andhencea1=· · ·=a= 0.

Now it sufficesto provethattheset {xi0w1,. . . ,xi0w}generates theK-vectorspace (V RX m

RX(W))δ+r+i for all i 0. Let w (V RX m

RX(W))δ+r+i be a non-zero homogeneouselement.Thenw=

j,kvj∧hkεk=

j,khkvj∧εkforsomehomogeneous elements vj V and hk RX such thatdeg(vj)+ deg(hk)= δ+r+i−deg(εk) for all j,k. Note that deg(hkvj) = δ+r+i−deg(εk) r+i. Also, we have hkvj Vδ+r+i−deg(εk)=xδ+i0 deg(εk)v1,. . . ,xδ+i0 deg(εk)vuK.So, there arebjk1,. . . ,bjku ∈K suchthathkvj =u

l=1bjklxδ+i−deg(ε0 k)vl.This implies w=

j,k

hkvj∧εk =

j,k

u l=1

bjklxδ+i−deg(ε0 k)vl∧εk

=

j,k

u l=1

bjklxi0(xδ−deg(ε0 k)vl∧εk) =

j,k

u l=1

q=1

bjklcjklqxi0wq

for some cjklq K. Thus we get w ∈ xi0w1,. . . ,xi0wK, and consequently HFVR

X

m

RX(W)(i) = for all i δ+r. Therefore ri(V RX m

RX(W)) ri(V)+δ, as wewantedtoshow. 2

Lemma3.5. LetV beagradedRX-modulegeneratedbythesetofhomogeneouselements {v1,. . . ,vd}forsome d≥1. Letδj = deg(vj)for j = 1,. . . ,d, andlet m≥1.Assume that δ1 ≤ · · · ≤ δd,and set δ=δd−m+1+· · ·+δd if m≤d.Then the regularity index of m

RX(V)satisfiesri(m

RX(V))=−∞if m> dand

Referensi

Dokumen terkait

보고서 요약서 과제 고유 번호 20150367 해당 단계 연구 기간 2017.06.08 - 2018.06.07 단계구분 3단계/3단계 연구사업명 수산실용화기술개발사업 연구과제명 대과제명 대과제가 있을 경우 기재합니다단위과제일 경우에는 아래에 기재 합니다 세부과제명 울릉도 해역에서 가두리를 활용한 어류양식기술개발