• Tidak ada hasil yang ditemukan

knh hirdng dong thdi cua khoi lirong nen va do gho ghe iat dam den ufng xi^

N/A
N/A
Protected

Academic year: 2025

Membagikan "knh hirdng dong thdi cua khoi lirong nen va do gho ghe iat dam den ufng xi^"

Copied!
6
0
0

Teks penuh

(1)

knh hirdng dong thdi cua khoi lirong nen va do gho ghe i a t dam den ufng xi^ dong lire hoc cua dam Euler-Bernoulli ren nen dong lUc hoc chju tai trong chuyen dpng

^ le Influence of mass density ofthe foundationand roughness ofthe beam surface on /namic response of Euler-Bernoulli beams on dynamic foundation subjected to the

^ oving load

ay nhan ba); 19/4/2017 ay SLTa bai: 5/5/2017

ay chap nhan dang: 5/6/2017 Tran Quoc Tinh, Nguyin Trong Hieu,

Khong Trong Toan

va d o go ghe Iren mat dam len dap flng phuong pliap phan tti chuyen ddng cai MTAT

•ng bai bao nay, phuong phap phan til chuyen dong cai tien (IMEM) dKOc stl dyng de phan

• flng xfl dpng hQC cua ket cSu dam Euler-Bernoulli tren mo hinh nen dong Iflc hgc chm tai ig chuyen dong, Anh hildng cua cac dac tinh m o hinh nen nhti thong so dp cflng dan hoi ikler, liSp cat dua tren m o hinh Pasternak, can nhcit va thdng so dac trUng khoi Iflong nen

phan tH dam dfl^c m o hinh la nhflng phan tfl chuyen dpng c6n tai trpng thi co djnh. Dfla 1 nguyen ly can bang cong ao va ly thuyet cua phuong phap phan tfl hflu han, phuOng trinh hSn chuyg'n dong cua he dUOc thiet lap va giai bSng phuang phap tich phan s6 dua tren it todn Newmark Anh hudng cua khoi Iflong

g cua dam dfloc khao sat mgt each chi tiet khoaiMo hinh n e n dong liic hpc, khoi Iflong . dg g6 ghe, tai trpng chuyen dfing iTRACT

his paper, Improved Moving Element Method(IMEM) is used to anaSyie the dynamic onse of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the

•ing load The effects of characteristic foundation model parameters such asWinkler less, shear based on the Pasternak model, viscous retardation and mass density parameter le foundaiion Beams are modeled by moving elements while the load is fixed. Based on tlie ciple of virtual public balancmg and the theory of finite element method, the motion rential equation o f t h e system is established and solved by means of numencal integration d on the Newmark algorithm The infiuence of mass density of the foundaiion and

;hness ofthe beam surface on the dynamic response of beams is exammed in detail.

words: Dynamic foundation model, mass density of the foundation, improved Moving

lent Method, roughness of beam, movmg load.

1 Quoc Tinh, Nguyen Trpng Hieu

a Xay dflng, Trfldng D?i hoc Cong nghe TP HCM ng Trong T o a n

,1 Xay dflng, TrUdng Dai hoc Cong nghe TP.HCM

1. GidlTHieU

Ket cau ttang dam tren nen la mot trong nhUng dang ket cau duoc sfl dung tat ph6 bien trong cac cong trinh dan dung va cflng nghifip, cong trinh giao thflng, Dac biel, cae dang kit cau dim tren n^n chiu tai trong di dgng eiJa cae phuong tien van tSi nhU: nen iJuerng chiu tac dung cfla eae phuong lien giao thong, dUung ray xe I fla,...

Trong hau het cie nghier 11 phan

uehfl Winkler 11] eay la mot mo hinh co di^n nhat con dUoc goi 1^ mo hinh mot thong so, vdi gi3 thiet flat n^n bfin duoi duoe thay bSng cSc lo xo khong khoi lUong, dan hoi tuyfin tinh va cac lo xo duoe xem \i d6c

Mot tr u sot ci

bien dang nen chl xay ra trong vung gioi han cua tai trong ma

den Inh huflng cua vung . Dovi

doan gifla phan nen gia tai va khong gia tai, nhung thUctebe mat flat nen khong the hien bat ky sU gian i3o?n nao. Tfl 66 eho thay r3ng cac mfl hinh nen nay chua phin anh dung bin ehat flng xu that eiia dSt nen khi chiu tai trong (Hinh 1)

06.2017 O D n i i r a i 8 3

(2)

—iinih-

a] NSn Winkler QI M n iroio ihUc tS Hinh 1. Ciiuyen vi tiia nen dan hoi dum tac dung lai ptian bo deu M o t I f o n g n h f l n g each d e k h i c p h u c h a n ehe t t o n g m o h m h n e n Winkler la t i m each m o ta sU l u o n g tac lien tuc gifla eac 16 xo b a n g each dUa t h e m vho mat tren cfla l d p 16 xo m o t I6p khOng khfii l u o n g n h u d a m c h i u u o n , Idp m a n g chiu kSo, Idp c h i ch]u c3t hoae xet d e n k h i nang t r u o t cua flat n e n , cae Iflp nSy c d t h o n g sel k h o n g d o i va dac t r u n g c h o 5U t u a n g tae hen t u e cua cac 16 x o t r o n g m o h i n h nen Winkler, t h o n g so nay d u o e g o i la i h o n g sd t h f l hai.

Khoi n g u d n y t u d n g nay, Filonenko-Borodieh (1940]|21 da m d t i su t u a n g tac hen tuc cfla cac Id no b i n g cach dua vao m d t Idp m a n g m d n g d a n hoi chiu keo bfli m e t luc c a n g hSng sd T Tiep sau do Pasternak (1954) [3131 g i i t h i e t rang be mat t t e n c u n g cua c i c Id xo ket noi hoan l o a n v d l m d i l o p d a m ma Idp d a m nay chf c h i u b i e n d a n g trUot co m d N h U n g dac d i e m c h u n g cfla cae m o h i n h nen nay la k h o n g x e m net d e n anh hUdng cua khoi l u o n g dat n e n len flng uu eUa ket cau ben tren.

NhUng nam gan day S o Kien Qu6e va Khdng T r o n g Toan (2005) [41 da d u n g t h u c n g h i d m e h o t h i y k h o i l u o n g n e n t h a m gia vao d a o d d n g la CO a n h h u d n g d a n g ke d i n u n g x f l d g n g lUc hoe cua t a m . Tiep t h e o d d Pham D i n h T r u n g va H o a n g P h u a n g Hoa (2016)(51 c u n g lai d u n g thuc n g h i e m xae d m h t h o n g so a n h h u o n g cua k h d i l u o n g nen len dac trUng d d n g hoc cfla he m d t bac t U d a , ket q u i c u n g c h o thay r a n g i n h h u f l n g cfla t h d n g sd dac t r u n g eho i n h hUdng eua khdi l u o n g nen CIF len d^c trUng d d n g luc hoc cfla he la d a n g ke.

N g u y e n T r o n g Phudc va c d n g s u (2014) [6]da h e t h d n g hda cac m d h i n h nen va fle xuat m d h i n h nen m m d u n g i r o n g bai t o a n p h a n t i c h flng x f l cfla ket eau tUOng tae vdi n e n , tac gia da d e xuat m d h i n h nen m f l i c d xet day dil cae t h d n g s6 nhU d o cuTig 6kn hdi va t h d n g so d o cflng l d p cSt d u a t r e n m d h m h Pasternak, h ^ sS c i n n h d t cua n e n v i d i e b i M c d xet d e n i n h h u d n g cfla k h d i l u a n g n e n l S n f l n g x u ' c C i a h e k e t e a u d a m d u o c g n i la m d h i n h " n^n d d n g luc hoc".

Tiep ndi v d i n g h i e n cflu tiin, N g u y e n T r o n g Phude va c o n g su (2014) (7}da p h a n l i c h anh h u d n g efla t h d n g so k h o i l u a n g n e n t r o n g m d htnh nen d f l n g lUc hoc len d a o d d n g n e n g eua d a m K i t q u i cho thay t h d n g so khoi l u a n g nin cfl I n h h u d n g d a n g ke len dae t i n h d d n g hoc cua d a m , l i m t a n g khdi l u i j n g d a o d o n g t d n g t h ^ cfla d i m , I U d o l a m g i i m tin sd d a o d d n g n e n g cfla he

Koh va c d n g sU (2003) I8|da d e xuat y l i f d n g ve h e t p a 3 6 c h u y e n d d n g t r o n g viec g i i i q u y e t b i i l o i n p h a n tich flng x f l d d n g cfla tau-ray, p h u o n g p h a p nSy d u a c goi la p h u o n g p h a p p h a n t f l chuyen d d n g MEM ( M o v i n g Element M e t h o d ) T r o n g d d d u f l n g ray d u o c x e m n h u d a m Euler-Bernoulli d i i v d han tUa t r f i n nen Winkler vh t a u d u a e d o n giSn hda b d i m d t h e t h o n g "khdi l u o n g - l d xo-can n h a t "

L u o n g Van H i i va c d n g s u (2013) !9], D m h Ha D u y (2013) |10)da p h i n tich flng x f l d o n g cfla t a u cao tdc c d x ^ t d e n d d c o n g t h a n h ray va t u o n g t i e v d i dSt n e n C i e t i e g i l da sfl d u n g p h u a n g p h i p p h a n t f l ehuyen d d n g MEM ( M o v i n g Element M o t h o d ) t r o n g viec k h i o sat flng x f l d o n g cua t a u cao t d c Va g a n d i y , Nguyen Tuan A n h (2013) [11J da p h i n n'ch d o n g luc hoc t a u cao tfic c d xet d e n d d nay b a n h xe va t U o n g tac v d l d a t n e n Le V i n T h i n h (201 Sl (12] da p h i n l i c h d a o d o n g d a m Euler-Bernoulli tren nen d a n n h d t phi t u y e n bac ba chiu tai t r o n g c h u y e n d g n g M d h m h bai l o a n g d m co d a m Euler-Bernoulii m d t n h i p t t e n n l n d a n n h f l t va t l i t r o n g la lUc c h u y e n d d n g vdi v i n tdc k h o n g d3l q u a d a m Cac n g h i e n cflu n i y d i i p d u n g p h u o n g p h a p MEM d e p h i n t i e h flng x f l cfla he t a u - r a y

M d i d i y , N g u y e n V a n T h a n h (2016) [13] d i p h i n tich d d n g lue hoc ket cau d a m t r # n nen Pasternak c h i u t a i t r o n g c h u y e n d d n g k h o n g dieu

sfl d u n g p h u a n g p h a p IMEM ( I m p r o v e d M o v i n g E l e m e n t Mothod). T i giJi da I r l n h bay m d t p h u a n g p h a p m d i , d u o c p h a t t r i e n t f l phudr^

p h a p MEM, n h i m flua ra p h u a n g p h a p g i i i p h u o n g t n n h vi phan diii d a o m f l t e^ch n h a n h h o n , tiSt k i e m t a i n g u y e n h a n .

T r o n g k h u 6 n k h d bai b i c nay tae g i i se sit d u n g p h u a n g p h i p phan t f l c h u y e n d d n g c i i t i e n IMEM ( I m p r o v e d M o v i n g Element Method- IMEM) ai p h a n t i c h flng x f l d d n g c h o ket c a u d a m t t e n n e n d a n n h f l t l ^ t h d n g sd c h i u t l i t r o n g c h u y e n d d n g c d x ^ t d e n I n h h u d n g d d n g tl)l<

cfla t h d n g so dac t r u n g cho k h d i l u o n g nSn vS I n h h u f l n g d o s u g o g l i e cfla b e m a t d a m . Cae ma t r i n k h d i l u o n g , ma tran d o c f l n g v i ma tran c a n c h o p h 3 n t f l c h u y e n d d n g c u n g d u o c t r i n h bay chi tiet C i c ket qui t h u d u o c se la lai lieu hUu ich c h o viec n g h i e n cflu va t h i e t ke c i c k i t can d a m c h i u thi t r o n g e h u y e n d d n g t r o n g t h u c t l

2 . C O S d L ¥ T H U Y e T

M d h i n h d a m t t e n n l n d a n n h d i hai t h d n g so eo ke d e n i n h huSng khdi lUOng nen g o i t i t nen t r l n la " n e n d d n g lUc h o c " M 6 hinh nen d d n g lue hoe e6 xet d a y d f l c i c t h d n g sd n e n n h u d o cu'ng d i n hoi k,^

d o e f l n g l d p c a t k „ c a n n h d t c , v a t h d n g sd khSi l u o n g n e n t h a m gia daa d o n g m

Ket eau d a m Euler-Bernoulli c d c h i e u d a i v 6 h a n c d m d d u n danhS E, m o m e n t q u i n t i n h 1 va khoi l u o n g t r l n c h i l u dai m , ket cau d i m dudc T m h l i l n tuc t r o n g m o h i n h n l n d d n g luc hoc nay dUOC d i e trUng b f l i t h d n g so cfla Idp c h i u c i t k^ d u a t r l n t h d n g so l a p cat cfla mo hmh n l n Pasternak. T h e o N g u y i n T r o n g Phuoc va c d n g s u (2015) [6J.

p h u o n g t n n h bieu d i e n m d i q u a n h e gifla luc va c h u y e n vi tai moi viln nen d u d i t i c d u n g cfla t l i t r o n g q(x,t) dupc b i e u d i e n n h u sau,

/ V f x , i ; ^ - r f w f x , t ) , , _,, .d'w(x,t) [1]

q(x,t) = k„w(x,t)-l< •^fn dt"

i6 oing ldp chjU eit i.

•••"••"•""• MiM[i\iA-

Kinh 2 M6 hmh dam Ir^n n^n dong lUi hoc

M o h m h d i m t r l n n e n d d n g luc h o c c h i u t a i c h u y e n d d n g theo N g u y e n T r o n g Phude va c o n g sU (201S) 161 ket h o p v d i m d hinh ht t h o n g eac khdi l u a n g t r e o t h e o Koh e t al (2003) [8] ta d u o c m6 hinh ck

I 'ii mil 1111 .111 iiiiii 'i|iii"i ii!ini':ii. "

Hinh 3 Mo hmh dam tren nen d6ng lite hoc thiu Hi tmng thuyen dong Khoi l u o n g t i p t t u n g m t h a m gia d a o d p n g i r o n g m d hinh nt d o n g luc h o c d u a c l h e h i l n n h u s a u

(3)

Of- t h d n g so t h u c n g h i e m k h o n g t h U n g u y e n d i e t t u n g eho I n h h u d n g cfla t h d n g sd k h o i l U o n g n l n ;

P F - m a t d o k h d i l u o n g efla n l n ; H f - C h i 4 u s i u cfla n e n

Goi PF=aFH. la t h o n g sd d i e t r u n g c h o i n h h u d n g d o n g t h d i e Ja c h i l u sau n e n Hj va t h d n g so t h u c n g h i e m a, m o l l s u t u o n g t i c h i n tuc cua c i e 16 xo d a n h d i W i n k l e r t r o n g m d h i n h nen d d n g luc hoc C d n g thUc (21 d u o c Viet lai n h u s a u

m = p ^ H f (3) Khi tac d u n g v i o h

d a n VI, ta c6:

F = A / x t ; = f c

P h u a n g t i e n di d d n g ed ba k h d i l u o n g m d t p h u o n g n e n c d b a b a e l U d o

t ' " t„,=i

he e h u y e n vi m o t d o a n A(=1

14) vi c h u y e n v i t h e o

Hinh 4 Cat so do xat dinh ma Irin khoi luong, daoint B a n g l - B I n q x i c d i n h d d c f l n g va e i n e

Sadol Go tung

kii=ki k„=-k, k>i=0 kdi=0

f^n

Cii=Ci t!l=-Cl (11=0 cji=0

Sudn!

Do kii=-ki ku=k,+k;

ki;=-k, l l « = 0

nhSl Cij=-ti C„=Ci+t;

t j l = - t j [dJ=0

(an oia phuoni ien thuyen dong

Snild)

ea

liti=0 hi=-k, ki,= k,-i-k,

kdi= -ki Qn

Cij=D Cj,= -c, t j i = e j + c i td!= -t,

U|,U|,U|;u3,U2,U2,U3,U3,U3-lan l u o t la ehuyen vi, v i n tdc, gia toe eua t h i n xe, gia c h u y e n h u d n g va b a n h xe;

g I I gia tSe t t o n g t r u f l n g ,

F, \i luc t u a n g tac giOa b a n h xe va d a m , c h u yeu phat smh d o su i i h d n g bSng p h ^ n g t t e n m a t dSm hay con goi l i d d g d g h e t i l n d a m .

Lue t u a n g tae F, (cii xet d e n d d g o g h e tai d i e m l i e p xuc giila tai t r o n g c h u y e n d d n g va d a m ) d u a c xac d m h t h e o Koh et al va c d n q su ( 2 0 0 3 ) [ 8 ) n h u s a u -

f t = C 3 ( u r f - 1 / 5 ) ^ ^ 3 ( 0 ^ - 1 1 3 )-l-f, ( , „ t r o n g d c

' J = C3>'r+'<33'i • tai kich d o n g d u a c smh ra d o s U g o g h l t t e n mat u o - c h u y l n v i c u a dam lai d i l m l i e p xue,

Ul - l i c h u y e n vi cua b i n h xe,

y, - ehuyen vi p h a t smh d o s u g o g h e tren m a t d i m , t h e o Koh et al (2003)181, ehuyen vi p h a t sinh d o b e mat n h i m cua d i m g i i t h i e l la m d t h i m h i n h sm ed d a n g

2itS

' • - ° ' " " — '"'

t t o n g d o

a L , ^ i - l a n luot I i bien d o v l budc s o n g d d g f i g h e t t e n d a m ; S - q u i n g d u d n g di chuyen cua vat t h e

T r o n g p h u o n g p h a p p h i n t f l ehuyen d o n g , Koh et al (2003) [8] sfl d u n g g o m h e tpa d d x-y, vot truc x t r f l n g v o i truc d a m H I l o a d o chuyen d d n g r-y co gdc toa d o dUoc g3n vao lue di d o n g n h u Hinh 5. Do d d he t o a d d n i y dl c h u y e n v d l e u n g v a n toe f n h u tai chuyen d o n g

M ; - j -

0 mj 0

-C, C,+C2 - C ; 0 -C2 C2+C3J

(13)

X - truc CO d i n h , r • truc di c h u y e n , s - q u a n g d u a n g di ehuyen. Vta.tl- h i m v a n t d c ; (- t h a i g i a n di c h u y i n ;

a- gia tde

M d i lien h i giOa c i c t o a n t f l d a o ham t r o n g hai h i truc khi t l i I r o n g d i c h u y e n v o i v i n tdc Ihay doi n h u s a u

d'^w(x.t) _d''w'(r,t) -K2 I t j + K j J

Veti q u y u d c ve c h i e u d u a n g n h u H i n t o n g q u i t cfla m d h i n h xe t h e o B K Q u o c

in^ii, + c.f(Uj-U2>+ki(u.f-U2J = 'm,g |8) m 2 f l ; + C 2 ( ' U 2 - U 3 ; - c , ( u , - U 2 ; + t : 3 ( ' u 2 - ' ' 3 ' - * | f " | - ' ' 2 J = - ' " ; 9

miU3-k2lU2-u3)-C2("2--''i>=-"hS*'', i i o ) t r o n g d d ,

m ( , r n i mi:Ci, c. Cj, k>, ki. k,- lan luert f i k h d i l u o n g , h i so c i n , d o e u n g cfla t h a n xe, g i i c h u y e n h u a n g v i b i n h xe;

(14)

d^w(x,t) d^w (1,1

d^w(x,t)_d^w'(r,t) dw (r.t) dr ^ ^2 d w fr,t> ^.^d w (r.t) rf,i ' dt^ * d l dr^ drdt

(4)

Ap d u n g n g u y e n IJ c d n g i o va sfl d u n g cae h i m d a n g c h u y e n vi N, a cd t h e b i l u dien cic ma ttan khdi l u o n g M ' , ma t r l n c i n C ' v a ma t t a n 16 cflng C ' c u a p h a n t f l d a m n h u sau

M' = {m^m\^l>.''\dr I'S)

C'^c^y'^'dr-Ff (19)

K'^El\(fV_„)^i\^„di + 'i^\!</^Ndr-kAN^,\^,,dr-F^ (20)

F,^=2{m.m)v\^'^,.dr (21)

/ • / . [ ( S + m ) u + ^ ] j ^ ^ A ' , , * - ( m + m ) V = | ^ ^ / V , „ d r (22)

P^JF,!v'dr (23) Vcfi ( ) r v a ( ) „ I i n l u a t 11 d a o h i m cap m p t va cap hai t h e o r

E>di v o i p h a n t f l d a m c i e h i m d a n g n o i suy H e r m i t i a n N c d d a n g n h u s a u

Nf.-LJlr^-lrh'Hl')^] 124)

W| = — 1 — f r ' l ^ - 2 ' ^ f i ^ ) ' - i - r ( / ^ ) ^ l (25) 11^f I J

W | = - l y [ - 2 r 3 + 3 / - = ( ^ ] 1261

V i l e g l i l p h u a n g t r m h vi p h a n c h u y e n d d n g (29) d u o c thUc hiin d u a vao 5U h f i t r o cfla may t i n h dUa t t i n t h u a t t o a n Newmark, mjl c h u a n g t r i n h t i n h d u a e v i e t b i n g n g d n n g f l M a t l a b v i d d t i n c i y ciij c h u a n g t n n h t i n h c u n g n h u p h u o n g p h i p t i n h d u o c so sanh viii kA q u i c u a cae tac gia khac d u o c t t i c h d a n t t o n g t i i l i ^ u t h a m khao

3. VIDUKHAOSAT 3 . 1 . Kiem chflng c h u o n g t r i n h t f n h

T r o n g n g h i l n cUu nay, bat b l o l i l n h a n h k h i o sat hai v i d u sonh!m k i e m e h u n g d o t i n cay efla c h u o n g t r i n h dUoe v i e t b a n g n g d n ngfllip I n n h M a t l a b , ket q u i se d u a c so s i n h v d i k^t q u a cfla cac t i c g i i khit d u o c e o n g b d

K i ^ m c h f l n g bai t o i n t a u cao t o e di c h u y e n t r e n d a m vdi md'hlnli k h d i l u a n g t t e o d d n g n h U h i n h 3 d u a e Koh e l al (2003) [8] sfl dung, Cic t h d n g sfi cua xe, t h d n g sd d i m va n e n d u o c I h ^ h i l n t t i n Bang 2 vi

( ' " ) • '^d')-

T h a n x e m i k,

^'

3S00 kg 1 4 1 x 1 0 ' N/m 8,87x10'

Ns/m

G i l c h u v e n h u d n g m j k.

^'

2 5 0 k g 1 26x10*

N / m 7 1 x 1 0 '

B a n h x e m i k l

'^=

350 kg B x l t P N / m

5 7x10'Ns/m

Bang 3; T h d n q so d i m va D a m m

E 1 L

6 0 k g / m 2 x 1 0 " N / m ' 3 0 6 x 1 0 ' m ' SOm

N l n kw

c

1 x 1 0 ' N / m ' 4 9 0 0 N s / m '

T r o n g vi d u kiem c h f l n g d a u l i e n , e h u y e n vi d d n g cfla dam khi p h u a n g l i e n ehuyen d o n g t t e n d a m v d i v i n t o e k h a n g d o i , khdng «i) i n h h u d n g t h d n g sd nen t h f l hai cfla n e n (van l d c V = 2 0 m / s , bien dod) g o g h i a i = 0 , 5 m m va b u d e s a n g d 6 g d g h e >.L=0,5m),

(27)

DUa t r e n ly t h u y l t p h a n t f l huXi h a n va sfl d u n g ky t h u i t k e l n o i cac chi sd b i c t u d o t u o n g flng eac ma t t i n cfla p h a n t f l t t o n g h e toa d o l o n g t h e , p h u o n g t n n h l o n g q u a t c h u y e n flong cua m o h i n h d i m t r l n n l n CO d a n g nhU sau

Mz-i-{C-F,)7+(K-K;)7 = P 128)

M,C,K, P- I i n l u o t la ma t r i n khdi l u a n g , c i n , d d cflng va v e c t a tin t d n g t h e cfla c i he,

F,, F, - i i c i c t h i n h p h i n p h u t h u 6 e v i o t h d i gian, F, va F i k h o n g p h i i la luc tac d u n g n h U n g co d o n vi cfla cua luc n e n co t h e x e m n h u la luc gia Pseudo-force.

P h u o n g t r i n h (28)chinh la p h u o n g t r i n h vi p h a n c h f l d a o cua p h u a n g p h a p M E M t r u y e n t h d n g . T r o n g p h u o n g t r i n h (28), ta x i t t h a y

p5eudt>-force Fi v i F i V i v i y , khi g i i i b i i t o a n can p h i i cap n h l t lai ma Iran khdi l u o n g , ma t r i n c i n va ma t r i n d o eflng d a n d e n keo dai t h f l i gian

D e khac phue han che d f l cua p h u o n g p h a p MEM t r u y l n t h d n g , ta CO y t u d n g l i s i p x I p lai phUOng t r i n h (281 Cac t h i n h p h a n luc gia thay d3i t h e o t h d i gian dUoe c h u y e n sang v l p h l i , voi y tUdng t r e n dUoc g o i la p h u o n g p h a p p h i n t f l chuyen d o n g c i i t i l n IMEM, Sau khi c h u y e n ve.

p h u o n g t r i n h (28) d u o c v i l l lai nhU sau

M Z + C Z + K I = P + F|J: + F;Z (29)

Hjnli6 Chuii^nviciiadamudlaiMniluongtit a)kohelal[e|,b)Bilbao T t o n g vi d y kiem c h f l n g t i l p t h e o , c h u y e n vi d d n g cfla dSm khi p h u o n g l i $ n chuyen d o n g t t i n d a m v d i v i n tfic thay d d i , k h d n g xet inh h u d n g t h d n g sd n l n t h f l hai ciia n l n {vin t6c ban d i u V=0m/5, saudl c h u y i n d d n g n h a n h d a n d e u v d i gia toe aml.=10m/s^ sau t h d i gian 2!

t a n g tdc v i n t o c V ™ . = 2 0 m / s , c h u y e n d o n g g i l m t o e v d i gia toe a,si=- l O m / s ' v S d u n g lai sau t h d i g i a n 2s T o n g t h d i g i a n p h i n t i c h l i t=6s, 1)4 q u a i n h h u f l n g b i e n d o d d g o g h e l i e n d a m ) .

ifinh7 Chuyen VII Tfl ele kit qii eho t h i y k i t q u a

. tat diem tirung l^e s) koh et al[S], b) Bai bai sal d u a e so s i n h ven k l l q u i eu jho l i kha p h u h a p v a i cac k i t t

•n khao, c h o Ihay c h u o n g t n n h tir

(5)

c 6 d o t i n cay T f l d d l a m c o sd d l t i e p t u c p h i n tieh i n h h u d n g cua cae t h d n g sd d i e t i n h cfla n e n , m o h i n h t i i t r o n g va d d g d g h i t r l n m a t d a m len d a p uTig d d n g cua d a m .

3 . 2 . K e t q u i k h i o sat s d

T r o n g p h a n n i y , c i c t h o n g sd k h d i l U o n g t r e o d d n g va t h d n g so c f l a d i m d u o c t r i n h b i y d B i n g 2 v i B l n g 3 se d u o c d u n g d e k h a o s i t c h o cac bai t o a n cfla b^i b l o

^ B i i t o a n 1 ' K h i o sat i n h h u d n g efla t h d n g sd khdi l u o n g nen d i n flTig x f l d d n g lue efla d i m k h i p h u a n g t i l n e h u y i n d d n g v d i v i n toe k h o n g d o i , k h d n g x i t a n h h u f l n g d d g d g h e t r l n d a m

T r o n g p h i n k h a o sat d a u t i l n n i y , bai b i o k h a o sat p h u a n g t i l n c h u y e n d o n g v o i v i n tdc V = 2 0 m / s Cac t h d n g sd Sac t r u n g cfla m d h i n h n l n d d n g luc h o e d u a c lay t h e o P h a m D m h T r u n g va c d n g s u ( 2 0 1 5 ) l l 1 ] n h U s a u : k „ = l x l O ' N / m , k,=66.7x10'N, c = l . S x l O ' N s / m v i p F = 1 8 0 0 k g / m ' t h d n g sd dac t r U n g p f c h o i n h h u d n g d d n g t h o i cfla c h i l u sau n e n H ( v a t h d n g so thUe n g h i e m m lan l u o t dUoc k h i o sat la (3i =0,

| J F = 0 5 ; p F = l , | 3 f = l - 5 , P F = 2 ; pF = 2 5 v i p, = 3

':y |-;j.

Hinh 8. Chuyen vi ciia dam tai ifem timng tac

T f l ket q u a t h e h i e n t r l n H i n h 8 c h o t h a y t h d n g so d i e t t U n g cho k h d i lUOng n l n pf a n h h u d n g d a n g ke d i n d a o d d n g cfla d a m , v d i s u gia t i n g cfla g i i t n t h d n g so d a c t r U n g k h d i l u a n g p. s l l a m t a n g k h d i l u o n g n e n m t h a m gia d a o d 6 n g , d o n g nghTa v o i v\ic l i m gia l a n g k h d i lUdng t h a m gia d a o d d n g l o n g t h e cfla h i , t u d f l l i m suy y e u di he hay ndi each k h i c l a m e h o h e m e m d i , vi v l y c h u y e n v i cua d a m c u n g t a n g l l n v i d a t d u o c g i a t n Ion n h i t

<• B i i t o i n 2 ; Khao s i l i n h h u d n g flong t h d i cfla t h d n g so k h o i l u o n g n e n v i v a n t o e t i i t r o n g d i n Ung x f l d d n g lue cfla d a m

T r o n g p h a n k h i o sat I h f l hai n l y , b i i b i o k h i o s i t p h u o n g n l n c h u y e n d d n g t r l n d a m vfli v i n t d c t h a y d o i I i n l u o t i i - V=10(m/s), 20(m/s); 30(m/s); 4 0 ( m / s ) ; 50(m/5); 60(m/5), 70(m/s); 80(m/s), 9 0 ( m / s l . 100(m/s); 1 1 0 ( m / s l ; 1 2 0 ( m / s ) ; l 3 0 ( m / 5 ) , 1401m/s); 150(m/s), 160(m/s), 170(m/s): 180(m/s), 190(m/s), 2 0 0 ( m / s ) . Cic t h o n g so d i e t r u n g efla m o h i n h n e n d o n g luc h o c d u o c lay n h u bai t o a n i , n e n g t h f l n g so d i e trUng PF c h o a n h h u d n g cfla k h d i t u o n g n '

P F = 0 , 5 , p . = l , P F = 1 . 5

n lao l u o t d u a e khao

n h a u eiia t h d n g sd v i n toe d u o c x e m xet T f l Ket q u i phan tich tren H m h 9 n h i n thay khi v i n tdc chuyen d d n g V=10[m/s) d e n khoang V i 7 0 ( m / s ) N l u k h o i l u o n g n e n t h a m gia d a o d d n g eang Ion i h i chuyen V] d a m c u n g se t a n g l l n , Nguoe lai khi van t 6 c t u V = a O ( m / s ) t r d l l n Neu k h o i l u o n g nen t h a m gia dao d d n g v i o h i c l n g Idn t h i c h u y i n v i d a m c a n g g i i m v i l i e m c i n den m 6 t g i i t n nao d d

T f l cac k i t q u i t h e h i l n t r e n K m h 9 eho Ihay t h o n g sd khdi l u a n g nen I n h h U d n g d a n g ke d i n d i e t i u n g d d n g lue cfla he va t f l d o lam gia t i n g d a p flng d d n g lue cua d i m t u o n g flng voi su gia l i n g cua t h o n g sd dac t r u n g cho i n h h u d n g cua khoi l u o n g nen B d n g t h f l i , kel q u i c u n g cho t h a y cac t h d n g sd dac t r u n g cfla p h u o n g l i e n di d d n g n h u l i v i n l o c c h u y e n 6png e u n g eo i n h h u f l n g t h i t su d i n g ke d e n d a p flng d d n g luc

<r B i l t o a n 3: K h i o sa l u o n g n e n v i bien d o d d g o g l

T r o n g p h i n k h i o sat t h f l tiep t h e o nay, t>ai b a o khao s i t p h u o n g l i e n c h u y i n d o n g t r l n d i m v o i v a n toe I I V=60(m/s); C i e t h d n g sd d i e t r u n g cUa m d h m h nen d g n g lUe hoe d u o c lay n h u b i i t o a n l , n e n g t h d n g sd dae t t U n g PF cho i n h h u d n g cfla khoi l u o n g nen I i n l u g t d u p c k h i o sat la P F = 0 , p<=0,5, P F = 1 , P F = 1 .5 v l pF=2. N g o i i ra d d g o g h e t r l n d a m d u o c iDieu d i e n ) i m d t ham d i l u hoa t h e o t h d i gian t t e n be m i t d i m y,=-aism(2nS/X.) vOi a,, >., I i n luot la b i e n d o va b u d c song cfla d d n h a m m a t d i m , q u i n g d U a n g xe d i chuyen d u o c S=vt T t o n g bai t o i n n i y g i f l n g u y i n bUdc i d n g d o g d g h e t r l n d i m X, = 0 5 m , thay doi b i l n d o g o g h e lan l u o t l i a, = 0 5 m m ; 1 Smm, 2.0mm;

2 S m m ; 3 0 m m , 3 S m m va 4 0 m m .

Hinh 9- Chuyen vi Ifln nhSl tua d3n. tai diem tunng tac T r o n g b l i t o a n n i y , i n h h u d n g eua t h d n g so dac t i u n g m

•a t i l t t o n g di d o n g l l n d a p flng d d n g cfla d a m u n g v d i cae

Hmh 10; Chuyin m Idn nhStcfia dam khi giilnguyenbildc song do goghe III

=0.5ni, thay floi thong io dat ttung khoi luong tua nen ft va bien do go ghe A n h hifdng cua bien do do go g h e t r l n d a m : Theo ket q u i tten H m h 10 k h i g i f l n g u y e n bUdc song d g g d g h i t t e n d a m /.i=0,5m va t h o n g sd d i e l i u n g k h o i l u o n g cua nen pFChi thay d a i bien d o g d g h e K i t q u i c h o thay k h i t a n g gia t n cfla bien df> ab g o g h e t t e n d a m t h i gia I n c h u y i n vi eua d i m t i n g len Gia t n a, c a n g Idn t h i g i l t t i chuyen v i cfla d a m eang ldn, d i e u nay chUng t d t a n g , c h u y e n vi t r o n g d a m p h u t h u o e tat Ion vao b i l n d o d d g d g h e t r l n d i m , khi b i l n d 6 d d g o g h e t a n g len t h i gia t n chuyen vi t r o n g d a m eung t a n g len vdi t y le g i n n h u t u y e n

A n h h u d n g t h d n g so dac t t U n g k h o i li/cmg cua o l n P r k h i c6 xet d e n d o g 6 g h e t r e n m i t d a m : K l l q u a p h i n tich t t e n K m h 10 c h o Ihay n l u cti x e l a n h h u f l n g efla b i e n d d d d g o g h i t t e n d a m t h i u n g x f l d o n g cfla d a m c u t h e n h u sau b i l n d o d d g o g h i t r o n g k h o i n g t f l a - 0 5 - 1 5 m m khi t a n g gia t n t h o n g sd dac trUng p. efla k h o i l u o n g n l n t h i gia t n c h u y i n vi efla d i m se t a n g l l n , n g u o c lai khi b i l n d d d 6 g o g h i t f l 1,5mm t r d l l n khi t a n g gia tri t h d n g so d i e IrUng pF eua k h o i l u o n g n e n t h i g i i tri c h u y i n vi cfla dam se g i i m x u o n g , gia t n PF c i n g l d n I h l g-a t n e h u y i n vi eiia d a m c a n g g i i m n h u n g khi k h o i l u o n g dat d i n o i l t n n h a t d m h t h i ehuyen v i lai t a n g l l n n h u n g k h o n g d a n g k^- D o d d , t h d n g so khfii l u o n g cfla n l n l i k h i q u a n t r o n g , lam t i n g Ung xU d d n g eila h i khi m i t d a m bSng p h J n g hoac bien d d g o g h e nh6^ nguge lai l i m g i l m flng x f l d d n g l u hi mat dam c6 bi

(6)

•:• Bai t o a n 4 ; K h i o s i t i n h h u d n g d d n g I h o i cua t h d n g so khoi l u o n g n l n va b u o c s o n g d o g d g h e tren d a m d e n Ung x f l d o n g cua d a m . T r o n g p h a n khao sat n i y , e i c t h d n g sd bai toan d u a e lay n h u b i i t o i n 3 Rieng d o g o gheeua bai l o a n nay la g i f l n g u y e n bien d o d o g o g h e tren d a m ai=0 Smm, thay d o i bUdc s o n g d o g o g h e I i n l u a l la /., = 0 Sm, 1 Om, 1 Sm: 2 Om, 2 Sm, 3 Om, 3,5m, 4 . 0 m va 4 Sm

khigiOnguyenbimdDd6ga9hetiendaiiia,=05nini, Itiay doi thong sa flat IrVng khdi liwng d a nen ^ vl buiic song flo gd ghe

: L f v i o k ^ t q u i tren H m h 11 v c f l g i a t n b u O c s o n g d o g d g h e d i m e i n g Idn t h i chuy

sdng dat d e n m o t gia t i l n h i l d i n t n g a n g i i e m can flen m g t g i i t n r c h u y e n vi 11 Ud=-1 S 1 4 0 m m ; -1 • 1.4053mm, -1 4 0 0 4 m m , -1 396Smi

I eang g i i m , m i e khac khi b u o c n l u d d ehuyen vl e6 xu h u f l n g di i m h , cu the khi P F = 0 , 5 t h i g i l t n r m , - 1 4 2 0 7 m m ; - 1 4 1 1 6 m m : - 'a -1 3 9 3 2 m m l u o n g u n g • a J„=0 5m, 1.0m, 1.5m, 2 Om, 2.5m, 3.0m; 3.Sm

gia I n b u a c s d n g d d g d g h e t r l n d a m d a t m o t gia t r i 'u t i n g gia I n t h d n g sd dac t r u n g cfla k h o i l u o n g n l n t h i g i i t n e h u y i n vi efla dam se t a n g len, gia t n (Ji cang Idn t h i gia tri c h u y i n vi cua d a m c i n g t i n g , cu t h i khi b u o c s d n g d o g d g h e ? . i = U m t h i g i l t n c h u y e n vi 11 Ud= - 1 4 7 6 7 m m , - 1 4 2 0 7 m m , •1,4637mm, - 1 5 4 4 6 m m , - 1 . 6 2 7 3 m m t U o n g flng vai t h d n g sd d i e t r u n g khdi l u a n g nen lan l u a t la pF=0, pr=0,5, P F = 1 .0, [JF=1 5. p f = 2 0

4 . KET L U A N

B i l bao d i t n n h bay k i t q u a p h a n tich u n g x f l d o n g eua d i m t r l n n l n d d n g luc hoeehiu t i i t r o n g c h u y e n d o n g co xet d i n a n h h u d n g d o n g t h d i cfla t h d n g sd d i e trUng e h o a n h h u d n g cfla khdi I u o n g n l n v i sU g o g h e eua m a t d a m c f l n g n h u v i n tde cua l i i c h u y e n d o n g P h u o n g ih e h u y i n d o n g eua he k i t cau d u a c s f l d u n g d u a t r l n ly t h u y e t p h a n

d d n g efla d i m Vai s u gia PF se l i m t i n g khdi l u o n g I c l a m gia t i n g khoi l u o n g n suy yeu di he, vi vay bien t f l c h u y e n d d n g c i i t i l n IMEM Cac

t h a m gia dao d d n g co i n h h u d n g d e n da t i n g ciia t h o n g sS dac t r u n g khdi l u o n g ni n l n m t h a m gia dao d d n g , d d n g n g h i a vai t h a m gia dao d 6 n g t f i n g t h e cfla h i , t u d d I d d c h u y e n vi cila dam e u n g t a n g len

Mac khac neu co xet i n h h u d n g cua b i l n d 6 d 6 g o g h e t t e n d a m t h i Ung x f l d d n g cua d a m eung hi i n h h u d n g tat l d n Cu the, khi b i l n d d d d g d g h i t i n g t f l k h o n g ( b i n g phang) d e n a t = l S m m khi t a n g gia tti t h d n g s6 d i e t r u n g pF cua hhoi l u o n g n e n t h i gia I n c h u y i n v i cua d a m se t a n g ten, N g u o c lai khi b i l n d d d o g d g h i Idn h a n 1 Smm, khi t a n g gia i n t h o n g so dac t t U n g 0F cua k h d i l u o n g n e n t h i gia I n c h u y e n vi efla d a m se g i a m x u o n g , g i l i n pf eang Ion t h i e h u y i n vi cua d a m c i n g g i l m n h u n g khi k h d i l u o n g d a t d i n g i i t n n h a t d i n h t h i c h u y i n vi lai t a n g len nhUng k h o n g d a n g k l Do fld, t h d n g sd khdi lUpng cOa n l n l i kha q u a n t t o n g , l a m t i n g flng xfl d o n g cfla h i khi mat d i m g i n nhU t r o n ( b i n g phang) hoac bien d d g o g h e n h f l , ngUoc lai lam g i l m u n g xfl d d n g lue cfla he khi m a t d a m ed b i l n d d g 6 g h i Idn.

Ngoai ra v i n l d c eua I I I i r o n g c h u y e n d o n g e i j n g I n h h u d n g k h d n g n h d len d i p Ung d o n g cua d i m , k l l q u i n g h i e n cUu c u n g eho thay khi v i n toe c h u y e n d o n g c i n g lan t h i c h u y e n vi cua d a m eang g i i m .

Gia tti b u d c s o n g d d g d gh^

se c l n g g i i m vi khi b i ' ) n g t a n g ien d a t i

•IU h u o n g fli n g a n g l i

Cac k i t qua p h a n t i e h cfla bai b a o e h o t h a y viee n g h i l i e h i n h xac g i i t n cua I h d n g sd k h d i l u o n g n e n I h a m gia d a o d p n g l i coy nghTa va p h u h o p v d i t h u c t i e n , d i e b i e l la v i l e flng d u n g t r o n g eac bai t o a n p h a n l i c h d a p flng d d n g lue h o c cua h i k i t c a u t u o n g lac voi nin eh|u e i c m d h m h t i i t r o n g c h u y e n d o n g . N g o i i ra, s u k h d n g bing p h i n g eua be m a t k i t cau v l y l u t d v a n t o e c h u y e n d d n g cfla lai trong c u n g c i n d u o c x e m x i t la tat e i n t h i e t va d f l n g vdi sU l a m v i l e cua ket

TAI LIEU IHAM KHAO

[1] Winklcit, DieUhre von dfl ElaslizimundFesli9kelit0oininicus,l'aiague, 1367.

121 Flamenco Botodidi, M M (19401 Some Appiommale Iheones of Elasut FoundaluiL lidienyip Zapiski MotkovskogoGosudaistvennogo Univeisileta Mekhanita, 46 3-t8 (in Russian)

(3| Paslemak P L On a new method of analysis of an elaslK Foundatiiin by means oltm [onstanls tknudaislvennoe liifalelstvo lileiauin po Sttoiiehlvui Aikhiteklure, Mostow, 19S4 Im Russian)

14| floKienOuot, Khong Trang Toan Thi nghiem lacdinb inh huong tua khdi luong nm doivjitinsodaodongriengtuala'ralrennendanhdi TapthiiSydun9,!O0S,12 32-3S

IS) fhjm Binh Trung, Hoang Phuong Hoa, Mguyen Ttong Phudt Tbik nghiem »at Jial thong s63nhhil6lih tua khoi luong nen len dac liitng dong hoc tua he mot bac ttr do. Tap till ny i(ung,2016,12 88-91

|5) Nguyen Ttong Pbuot, Hoang Phuong Hoa, Pbam Oinh Trung He tbong hoa cat no hmh nen va de niSl mo hmh nen mtii dimg Uong bai toan phan tidi Ung lA tiia ket tau tuong Qi iminen Tapthiiaydung,2D15,S 47-SD

[7] Nguyen Ttong Phudc Hoang Phuong Hoa, Pham Dmh Trung, Sd Kien Quoc Anh huong tua Aong so khoi \iidpq nen liong md hmh nen ding lir< hoc len dao dong neng oia dam Tap dii iaydung,2015,3 95-99

Ifll C, G, Koh, J S Y Ong, D K H Chua and J Feng Moving etemenl for tram Imli dynamics InlemahonaUoumalforNumerital Methods in Engineeiing,S6(20O31,1549-1567

191 LUOngVan Hai, Dinh Ha Duy, Tran Mmh Thi Phan tkh ilng xU tau tao lot to let Ien lo cong thanh tay va ti/ong tac vdi dit nen ill dung phiiong phap phan tu thuyen dong Tap dilKij dung,2013,8 57-59

|1D] Dmh Ha Duy Phan tich dng xil dong lau tao lot to i^t den da eong thanh ray va tiumg lat voi dalnenluanvan That si, Bai hot BSch khoa TPHCM, 2013

(111 LeTuSnAnh Phanlichdongluthottautaotdtcoielde'nddnaybanhicvaliMigHt vdi da'l nen Luan vJn That s, Dai hoc Badi khoa TP HCM, 2013

(121 Li Vin Thinh Phan lidi dao dong dam Euler - Bernoulh iren nen dan nhdt phi hiyfn hac ba thiu tai nong di ddng Luan van Thac sT, Oai hoc Bach khoa TP HCM, 2015

1131 Nguyen Van Thanh, Phan tich dong luc hot ket ctiu dim Iren nen Paslemak chiit tli trang chuye'n dong khongdieusudungphuorgphlp MEM t i l ti^n Luan van That sT, Bai hat Bicli khoa TPHCM, 2016

114] Pham flinh Trung, Nguyin Thanh Do, Nguyen Trang Phuot Anh hutmg cua kMi luong nen len ung niidftng cua dam thiu tai trong dl dong, Tap chl XSy Oung, 2014,9.83-86.

|1S| Z FengandR Cook Beam elements on Iwo-Patamelet elastit foundationi Joumalof Engineering Mechanics. 109 (19831,1390-1402

[16] Do Kis'n Duoc, Luong Van Hai Oong luc hoc ke'l clu NXB DHOtTp.HCM 2010 [17] AnikK Chopia Dynamics of Stranuie Pearson Edutalion. 1995 [18] Nguyen Thoi Tiung, Nguyen Xuan Hung Phuong phap phan til tiHii han si) dung Matlab Nhalulthaniaydung,2015.

Referensi

Dokumen terkait