ul I.UAW eiAe e i j c . B»Y H^C
NHU^NG DAC TRlTNG CUA BAI HOC KIEN TAO
PGS.TS, D A N G T H A N H H U N G '
Abstract: Constructivism in leaching has often been much discussed, but the construclivist lesson is less considered. In fact, constructiuisl teaching has big impact to learners and on learning through lesson units, so construclivist lessons are required to take into consideration seriously and fully. This article focused on technical aspects of Ihe constructiuist lesson and rules of designing constructiuist lessons.
Keywords: Constructiuist, constructiuist lesson, constructiuist learning.
L
i^uyetkien teotht/cffig di/ge n h i c den trong day hgc hien dai. Cd vd van nhung mo hinh va kTfriuatap dung li thuyet nay trong cac mdn hge.Nhieu nghien cdu da xem xet nhdng khia canh khac nhau nhu quan diem day hge kien tao, tiep can kien tao, phi/ong phap day hgc theo quart diem kien tao, hgc tsip kien tao, mditn/dng hgc tap kien tao... nhiing van de bai hgc kien tao(BHKT) thi it dugc ban den.
Xet den cung, day hgc phai tac ddng den ngudi hgeva hgctapddonvibaihgcchdkhdngthetac dgng ehung ehung. Do dd, can xem xet van de bai hgc kien tao mdtcach nghiem tue vaday du.
1. Hgc tap kie'n tao
NhQng dac diem cuahgc tap kien tao dugc chiratd cac nghien cuu kinh dien cua J, Piaget, L.X. Vygotsky, J. Devi^ey, C R . Rogers, R. Bruner,... vasau nay cua nhieu ngudi khac nhu; Brooks, Jacqueline Grennon and Brooks, Martin G. (1993), Clements, D. H. &
Battista,M.T.(1990), Duffy, T.andothers(1992), John A. Malone va Peter C.S. Taylor (1993), George W.
Gagnon, Jr. Michelle Collay (2006), Priver R, Asoko H, Leach J, Motimer E, Scott P (1994), Nerida F, Ellerton va M.A (1992),... Tdcae cdng trinh nay cdthe hieu nhdng nguyen t i e cua hgc tap kien tao gom:
- Ngudi hgc san sinh va tao ra tri thdc mgt each chu ddng va tich cue eho minh ehd khdng phai thu ddng ti^'p nhan td ben ngoai. Ngudi hgc tutao nen y tudng chdkhdng dd dang tim thay y tudng nhu "mgt vien sdrhoac nhan dugc tdtay ngudi khac nhu"mgt mdn qua", do chinh la qua trinh sang tao each nghT md^vethegidi(Piaget).
-Nhan thde la mdtquatrinh thich nghi va to'chiJe laithegiffl quan cua chinh mdi ngucn. Nhan thi/c cua ngudi hge khdng phai la kham pha mgt the gidi hoan toan mcri ma chu the nhan thdc chua tdng biet tdi va
ehua tung ed kinh nghiem ve nd, madd la kham pha chinh minh nhu Vygotskymdta trong li tfiuyet "vung can phat trien" (Zone ot Proximal Development).
- Hge la qua trinh mang tinh chat xa hgi, trong dd ngudi hgc dan tu hda m inh vao eac hoat ddng tri tue cua nhung nguci xung quanh va nhap tam nhdng giatrituthegidixung quanh.Trong Idp hgekientao, hge sinh (HS) khdng ehi tham gia vao viec kham pha, phat minh macdn tham gia vao ca qua trinh xa hgi bao.gdm viee giai thich, trao dd1, dam phan va danh gia. Hgctap khdng chi d i l n ra trong tu duy eua mdi ea nhan ma nd cdn la tuong tac cua canhan vdl mdi trudng.
-Trithdcmdicuamdicanhan nhan dugc tdviee dieu chinh lai the gidi quan cua hg, can phai dap ung dugc nhdng yeu cau matunhien vathuc tranp xa hgi dat ra, tde la dap ung nhu cau xa hgi va de sdng chu kliong phai de dgc sach. Nha trudng khdng phai la noichuanbichotrevao ddi madddnhulacugc sd'ng eua tre (Dewey).
Tdnhdng nguyen tac dd,cdthehieu: Woeispfrffi/j tao ia chien luge hgctap chu dgng, mang tinh chat tim ta, phat hien va giii quyet van dehgc tap hoac tich IQy va phat tnen gia tri, trong do ngidung hgc tap khong duac cho sin nhu nhiing ket luan dacd bitnfdc ma la cai ma ngudi hgc ph^nS luc tim kiem, Sep nhan, xuli, danh gia va sang tao dephat trien chinh nang luc nen ting cua m inh va dat ketqui hgc tap do nhQng no luc cua minh, quadophathienminhdabietgivachuabietgi.vati^
tuc can biet gi nua.
Khi nhin td gdc do ngudi day, hgc tap kien tao chinh la chien luge hge tap tieh cue, dugc thuc day bdi nhu eau va dgng eo ben trong nguc^ hgc, duge thuc
(ki2-4/2016)
* Tn/tfng Oai hoc Suf pham Ha Noi 2
f a p chi Giao dye so 380 33
hien bang chinh kinh nghiem, gia trj, hoat dgng va nhdng ndlue eua ban tiian nguc^ hgc. Theo khai niem hgctap kientao, hoat ddnp cua ngudihgcquyet djnh thanh edng va suphattrien cua hg.
2. Bai hgc kien tao
2.1. Khai niem: BHKT duong nhien la bai hge, tdc la don vj ngi dung cua day hgc, tuong dng vdi su Ifnh hgimgtkhainiem, nguyen li, kTnang hay gia tn CO ban.Tuy nhien, nd la bai hgc duge thiet keva thuc hien theo li thuyet kien tao. Khi dd, BHKT cd nhung dac trung khae biet vacd ttie dmh nghTa khai niem nay nhu sau; BHKT la kieu bai hgc di/c^ thiet keva tien hanh tfjeo nhung nguyen tic va ban chat cua hgc tap kien tao, trong do nhiing hoat dgng giing day va hoc tap dam bio dugc moi tn/dng hgc ^ mang tinh chu dgng, qua trinh hgc dugc dinh hudng theo chien luac kien tao vaqua trinh day CO chiic nang khuyen khich, chi din va tap tmng vao nguOihgc.
Ndi each khac, BHKT la kieu bai hgc edehdc nang tich cLic hoa ngudi hgc vaquatrinh hgctap, dinh hudng ngudi hge vao hoat dgng tim tdi, suy ngam, chu dgng khai thac, tiep nhan, danh gia thdng tin va xuli cae su kien, tinh huong, tugiac vdiquatrinh hgc tap cua minh.
BIHKT ddng nghTa vdi bai hgc tich cue hda ngucfl hgc vatich cue hda bang con dudng khuyen khich ngudi hgc ndlue tim tdi bdi ehinh hoat dgng eua minh.
2.2. Nhung nguyen tic cua BHKT:
• Dam bao tap trung vao hoatdgng ciia ngudi hgc.
BHKT thuc chat la bai hgc tich ci/c hda ngudi hgc, phat huy tinh tich ciJC hgc tap, lam cho ngudi hgc hoatdgng chu dgng hon, suy nghT nhieu hon. Vi the, loan bg nhung ye'u to cua BHKT deu tap trung vao hoat dgng eua ngudi hgc, xem dd la ddng lire cua day hgc. Mat khac, trong BHKT, nhung hanh ddng day hge eua nha giaodeuphaidLiavao hoatddng cua ngudi hgcvi chi cd duynhatngudi hgc mdihgcdugc nhung gihgmudnva hgean, khdng ai hgc thay hgdugc.
- Dim bao dinh hudng viec hgc vao tim toi, phat hien, suy ngim: BHKT day ngudi ta each tu minh gianh lay hge van minh can. Cach do ehinh la tim tdi, phathien.suyngam trudc mgi sucan hgc theo phong each khoa hgc. Ban chat eua hge tap la tim tdi, phat hien thegidi thdng qua the gidi quan eua minh. Nguyen tac hudng viec hgc vao tim tdi, phat hien la nguyen tic sdng cdn cua BHKT, vi nddam bao tinh sang tao eua hge tap, chd khdng phai la lap lai kinh nghiem va tien le, tdc la phat trien kinh nghiem theo Idi eua minh (Dewey).
- Dim bao phathuy tinh chu dgng cOa ngudi hgc.
Nguyen tac nay ddi hdi nhung gi HS thi/c hien la chu 34 Tap chi Gido due so 380
dgng, ti/giac vdi nhu cau va khatvgng ben trong elf kliong do ap li/c tuben ngoai. Tdc ia, BHKT phaic#
sde cuon hut, khien cho HS muon hgc, hge tugiac vS say me, vdi ddng co la linh hgi ngi dung hgc tap mpi each tdt nhat, Vi the, hgctap kie'n tao eung la kieu hpc hieu quanhat dephat trien kTnang hgcte^vanangte ti/hgc.
- Dim bio khuyen khich tuduy phan ki (tuduy 6s p/jt/ongan/.Nguydn tic nay dcHhdlBHKTuu tien cho viecphattrien tuduy da phuong an dehuy dgng tSiSa hoatdgngtritue,khaithacmgiphonge&h hge t ^ khac nhau (vi dy: 8 phong each hgc tap tuong iing vol 8 dang trituemaH.Gardnerde nghi la tri tuehudng npi,;
tri tuehudng ngoai, tri tuetunhien, tri tue ngdn ngff,f' tueam nhac, tri tuelogic-toan,tri tue khdng gian,tii tug' van ddng). Tuduy da phuong an cddacfrung la khong duy nhat thda nhan ehi mgt each ngtiT.nidt each lain,- mgt each earn nhan ma ludn hudng den nhdng g i phapdadang.giautinhsangtao. ^ r^'
- Dan bio viectdn trgngnhOngsuk^ vab^gdiiing ff?(/c/e:Nguyentienayxac nhan hgc tip k i ^ tao kh'ongi khac gi nghien cdu khoa hgc, ludn dua vaosi/klai, bang Chung thiiC te va nhijng Igp luan logic bang tu duy bieh chung. BHKT han ehe Id'i '^gc vef, each nghTfrieola mdn.fiieotiai levaft/bien, khuyen khich tinh sangtaova khai thac nhdng bang chung tht/c chung, huong'dln each hoc tap theo cac ehien lucte nghien cuU vagiSqu|f|i"
van de, Do dd, trong giao due khoa hoc, BHKTthucM|^' diia vao thiic nghiem khoa hge.
- Dim bio tao ra duac moiWdng hgc tap kin tao: BHKT cudi cung phai dam bao tao ra mditn/dng hgc tap kie'n tao la cai nen chung dien ra quatrinh hpc tap. Nhdng dae tn/ng eua mdltrudng hgctap kien tao gom:+ Cd tinhmdva linh hoat ve khdng gian vaquan li; -I- Co quan he tham gia va hgp tac manh me;
+ Giau thdng tin vada tuong tac; + Cdtinh nhan van va giau cam xuc; -i- Cd tinh van de va khuyen khicli hgetapehudgng,
2.3. Nhirng quy tic cua BHKT trong day hgc:
• Giao vien (G V) khong lam thay HS: Trong day hgc, GV khong dugc phep "lam hg" HS machico trach nhiem ^iup dd, khuyen khich cac em tulam.Do la quy tae de dan tao ra tam the chu dgng, phathuy tinh tich cue vay thdc trach nhiem cua HS,dong Sidi labien phap thehien sujdn trgng HS.
- Huy dgng dua: nd It/c cua ci ca nhan lan cua nhom hay Idp: Quy tac nay ddi hdi can bing giifei ca nhan hda,phan hda va chi dan ddng loattrongdayhpc, khdng coi nhe ben nao, G V phai thdng qua ndlLECcua HS ma khuyen khich ca nhdm hay ea Idp, Ngugc lai,
(kl 2-4/2016)
GV phai thdng c^ua anh hudng cua ca nhdm hoae Idp matae ddng den tdng HS trong qua trinh day hge.
•Tao nhieu ca hgi boat dgnp cho HS:Qwy)kc nky dugc thut hien ngay tCrthiet ke bai hge, dac biet khau ttii^klhoat dgng cua ngudihgc, phuong pliap, phuong ten dgy hgeva hgc lieu.Khiednhieu cohdi hoat dgngthi HS deluaehgn each lam, khdng lam each nayfiiilam each kia,each nay khdng h t ^ thi lam each khae, khdng lam dugc vide nay thi iam viec kia. Nhuvay, cae em khong coco ha nga yen mgt each thLi ddng ma ludn cd thetham gia vao quatrinh tigc tap.
- Tien trinh day hgc linh hoat Quy t i c nay tranh viec hgc bj gd ep vao mdt khudn kho hay hinh mau nhatdjnh ma khuyen khich nhung ytudng hay each lam mdi; khdng lap lai tien [evathdiquen;phat trien kT nang hgc t ^ hieu qua theo hudng tim tdi, phat hien, nghien edu va sang tao. Khi tien trinh day hgc linh hoatthi viec hgc tap cung linh hoat, nhay ben va cac hinh tilde hgc tap se da dang.
^ - Danh gia tap tmng vao qua trinh: Sd m enh cdt Idi cua BHKT la lam cho ngudi hgc tien hanh hge tap theo kieu tim tdi, phat hien va nghien cdu, Dd ia day each hge, day khat vgng hgc tap. Cdn tihi hay phat hien ra eai gi cu the khdng phai la quan trgng nhatvi eai can tim do dacd trong sach.Dieu can nhat la qua trinh hgc tap didn ra the nao. Theo triet li kien tao, nd phai la qua trinh nanp ddng, chu dgng, tich cue, tap tiungvaosuynghTdetim tdi, phathienvanghien edu.
Oanh gia can t§p trung vao nhung dae di§'m eua qua trinh hgctap.
Trong li luan, BHKT khdng phai la van de mdi ma la van de ddi hoi each hieu m di, day dd hon va g i n vdi nhiem vg day hgc hang ngay cua nha giao, nhiem vu hgc tgp eua ngudi hgc. Da cd nhieu nghien ctJXJ ve li tiiuyet kien tao nhung cai cu frie la BHKT\h\ ehua dugc quan tam, trong khiday la dieu ma nhatn/dng, nha giao v a H S e l n . Q
Tdi li^u tham khdo
[. Brooks, Jacqueline Grennon and Brooks, Mardn G, The case for constructivist classrooms. Alexandria, VA:ASCD. 1993.
2. Dewey, John. John Dewey on education; Selected writings. Chicago: University of Chicago Press, 1964.
3. Duffy, T. and others. Constructivism and the technology of instruction; a conversation, Hillsdale, N.J.: Lawrence Erlbaum Associates Publishers, 1992.
4. George W. Gagnon, Jr. Michelle Collay. Constructivist learning design. Corwin press asage publication company. Thousand Oaks, California. 2006.
5. John A. Malone and Peter C.S. Taylor.
Constructivist interpretations of learning mathematics. Curtin. 1993.
6. Nerida R Ellerton and M.A. Clements. Some pluses and minuses of radical constructivism in mathematics education. Mathematic education research journal, Vol,4.No 2, 1992.
7. Piaget. Jean. Equilibration of cognitive structures.
New York: Vikmg Press. 1977.
8. Priver R, Asoko H, Leach J, Motimer E, Scott P."Constructing scientific knowledge in the classroom". Educational researcher, Vol.23.No 7, PP, 5-12. 1994,
9. Rogers, CR, Freedom to Learn. Columbus, OH:
Merrill. 1969.
10. Vygotsky. L. S. Mind in society; The development of higher psychological processes. Cambridge. MA:
Harvard University Press, p. 86. 1978.
Giao due lianh Vl dao dO)!...
(Tiep liieo Irang 38}
tudng tugng, ngon ngu, dac biet la ngon ngd nghe thuat, pham chattri tue, sutap trung ehu y, kTnang nghe am sac bieu cam eua ngdn ngfl nghe thuat, nang khieu van hgc nghe thuat... T u d d , nay sinh a tre y thich tham gia vao cac hoat dgng van hgc nghe thuat.
GD HVDD eho tre mau giao qua VHTNcd hieu qua rat cao. Mdi tac pham van hgc deu mang d&'n cho tre mdt bai hgc dao due sau s i c , khoi ggi trong tam hon tinh cam tre nhdng xuc eani tinh cam manh lidt, tre biet yeu thuong, nhan ai, biet cam thdng chia se, biet g i n bd yeu con ngudi que huong dajnude, biet dungeamvugtquakhdkhan bdi trong mdi tac pham van hgc deu chda dinig, phan anh mdt gdc thue eua cugc sdng xa hgi. •
(ki2-4/2016)
Tai lieu tham khao
1. M. K Bogoliupxkaia - V.V Septsenko. Doc v^ ke chuyfin v3n hpc & va&n tre. NXB Gido due, H. 1976.
2. Ha Nguyfin Kim Giang. Cho tre Iam quen vffi t^c pham v^n hpc - Mdt sd* v^n de li luSn vi thuc tien.
NXB Dai hgc QuSc gia Hd Ndi, 2002.
3. D3ng Thinh Hung. "Quan niem dao diic va giao due dao diic trong nha trudng hien dai". T^pchi Khoa
hoc gido due, s6 84 (thang 9/2012), tr 12.4. Le Thi Anh Tuy^t - La Thj Bic Ly. Giio trinh Phinmg phdp doc, ke dien cam tho", truydn cho tre mim non, NXB Gido due, H. 2006.
5. Le Thj Anh Tuy^ - Homing Minh Va, Nhung vdn thffcho thieu nhi. NXB Gidoduc, H. 2006,
Tap chi Gido due so 380 I 35