VNU. JOURNAL OF SCIENCE. Mathematics - Physics. T . XVIII, N()3 - 2002
ON T H E LO CAL DIM EN SIO N S OF F R A C T A L M EASU RES
Le V an T h a n h , N g u y e n V an Q u a n g
D e p a r tm e n t o f M a th e m a tic s , U n iv e r s ity o f V in h, V ie tn a m
A b s t r a c t .
Let
X o , X i , - - -be a sequence o f independent, identically distributed random variables each taking values
r o , r j , • • • , r mw ith equal probability p =
Lei Ị
1be the probability measure induced by s
=Y ^ t o P lX i . The aim of this paper is to stu d y som e properties o f support o f ịi and the local d im en sio n o f ỊJL at elem ents s
€supp/u in the case:
ro = 0,7*! < 7*2 < • • • <rrn and q are integers such that
< q < m + 1, rm- i | e i J = {r0,r1,...,r ra); p -
1. I n t r o d u c t i o n a n d n o t a t i o n s
B y a
probabilistic system
w e m ean a seq u en ceX
q, X I
, • • o f in d e p e n d e n t, id en tic a lly d istr ib u te d ra n d o m variables c a d i ta k in g valu es ro ,r \
, • • • , r m w ith re sp e c tiv e probabilit iesPOiPi
) • • • .Pm- W e say th a t th e s y s te m is u n iform ly d istr ib u te d i f Pi = For 0 <p
< 1, p u too n
s = £ > ■ * , Sn = Y > %
1=0 t=0
Let // an d /in d e n o te the p ro b a b ility d istr ib u tio n s o f 5 an d
S n)
resp ectiv ely . T h en /i is ca lled th efractal measure
a sso c ia te d w ith th e p r o b a b ili s t i c sy ste m .R eca ll th a t for
s
Ç su p /I, th elower local dim ension
a * (.s) o fụ,
at .s is defin ed bya * ( s ) = lim i n f ~ ~ ~ ~ ~ ——, w h e re J3(s, /i) = [5 — h f s + h],
/1-+0+ log
h
W e sim ila rly d ifin e th e
upper local dim ension
u sin g the u p p er lim it a n d d e n o te it bya*
(5).If th e tw o lim its are eq u al, th en th e coriim on v a lu e is ca lled th e
local dim ension
o fỊ
1 a ts
an d is d e n o te d bya( s) .
R ou gh ly sp ea k in g , if a (.s) e x its, th en ,h))
is a p p ro x im a tely p ro p o rtio n a l toh a ^
for sm a llh.
T h u s /J. can b e v iew ed a s a p ro b a b ility m ea su re o f degree o f sin g u la rity a ( s ) . In th is sen se, th e local d im en sio n m e a siư e s th e d egree o f sin g u la rities o f\x
locally.In [4], T . H u con sid ered th e local d im en sio n s o f fractal m ea su re /X in th e case
m
= 1 ro = 0,r\
= 1 andp ~ l
= (th is n u m ber is sa id t o b e th e g o ld e n n u m ber).Ill [5], T . H u a n d N . N g u y en stu d ie d th e p rob lem in th e ca se ro = 0, r j = 1, • • * , r m = 771, Po =
Pi
= . . . = p m =— Ị^ì p
= “ » 2 <q
< m ,q
is an integer. It is v e ry d ifficu ltto stu d y th e a b o v e p rob lem in th e c a se th at th e d ista n c e s b e tw e e n n , 7*2, • • • , T r a are n o t eq u al. In [6] o n lv co n sid ered th e p rob lem in sp ecia l case: 771 = 2, ro = 0 , r i = 1,T2 = 3;
Po — P\ — P
2—
3 a n dp
=ị
=ỵ.
' t y p e s e t b y
49
T h e a im o f th is p a p er is t o s t u d y so m e p r o p e r tie s o f su p p /i a n d th e lo c a l d im en sio n o f /2 a t e le m e n ts
s G
su p p /i in m ore gen eral case. T h e m a in re su lts o f th is p ap er are thetheorem s 2.7 and 3.1. O ur results here extent some results in [5] and [ 6 ] (see proposition 2.4
in [5],
proposition 2.1
an dM ain Theorem in
[6]).A ll n o ta tio n s an d d e fin itio n s o f th is p ap er w e refer to [2], [4] an d [5]
2 . S o m e p r o p e r t i e s o f f r a c t a l m e a s u r e
T h r o u g h o u t o f th is p a p er th e fo llo w in g a s su m p tio n s are m ade: r0 = 0,1"! < r-2 <
• • < r m are in te g e r s su ch th a t ^ < 9 < 771 + 1, r m - g € D = { r o , r i , • • • , r m } and
p
= T h e fo llo w in g p r o p o sitio n w a s proved in [5].P r o p o s i t i o n s 2 . 1 .
L et s n (
0) <s n ( l )
< • • • <s n ( kn ) d en o te the se t o f all d istin ct values of suppfin. Then we have
1
. s n (
0) = 0 and
s n+ i( f c n + i) =s n (kn ) + m q
~ n~ 1for every
n €N 2 The distiince between two consecutive points in
su pỊ
1is
a tleast q~n 3. suppfXn
csuppfj
.n+ 1 a n dsuppụ,
= U^L0s u PP^n-P r o p o s itio n 2.2. Let
n
<c
sn
> = I (.To, J ■ }•Eji)
^ ^ ^ 9 ,5n i=0T hen we have
ụ-n(Sn) =
# < Sn > (m + l) - " ” 1 ,where
# < 5n >d en o tes th e card inality o f s n .
Proof.
For x ( n ) = ( æ o ,£ i, • • •>x n)
£ < 5n > , p u tn
Ạr(r.) = p |{ w :
X i ( u ) = X, }.
1=1
It is e a s y t o se e th a t if
x ( n ) , y ( n )
€ <s n
> , x ( n )Ỷ
y ( n ) th e n / l x(n) n ^ly(n) = 0 a n d nMn(lSn ) “ : *5(o;) =
s n
} =P {iJ
: g = 5n i=0n
= p{u> : Xi(uj) = Xi
Vi = 0 ,n ; yq~i x i = s n
} } i= i= i > ( u ^ w ) = E ^ . w ) = £ i ’ ( r > : * < ( " ) = * < )
i(n )€ < s „ > x (n )€ < sn > :r(n)€<arl> »=1
= E ( n ^ :
x (n )£ < s n > 1 = 1
= L i m + V - 1 = # < S n > . ( m + l ) - n - 1 x(n )€< s(n )>
O n t h e l o c a l d i m e n s i o n s o f f r a c t a l m e a s u r e s 51
D e f i n i t i o n 2 .3 . L et
$n
€ s u p p /i,S
n+1 € su p p /zn+ i , w e sa y th a t «n + i isrepresented through sn if there exists x n+\ € Dm such th a t $n+i = sn 4 - ợ - 11"*1 .Xn+ 1 .
I t is easy to see th a t if s n r i is re p re s e n te d th ro u g h 5n , th e n
# < «n > < # < Sf» + 1 > .
L e m m a 2 .4 .
I f
.svi-t-1 €s uppf i p
+1th en there is s n
e\ i n such th a t
5n + i isrepresented through sn and
0 < .Sn +1 — s n <2q~n .
Proof.
I f Sn + 1 € supPM n- 1 th e n th ere e x is tsx ( n
+ 1 ) = (xo,X
\ , • • • , x n+ i ) G Dn 4 *2 su ch th atn-M
Sn + 1 =
'S j T q ~ i x i = Y j
= 0 ) n g ~ ’ z , + 7- n - l a;„ +1 = .s„ + 7 _n_1izcO (
and
0 < Sn+J - Sn = 9 _ n _ 1 ^ n + i < 9~ n - 1 r m
< q ~ n~ l2q = 2 q ~ n .
L e m m a 2 .5 .
I f s n+\
€suppUn-*.
1then there arc at m o st tw o p o in ts s n a n d s'n in suppfxn such th a t S
n+1is represented thro ug h them . In this case s n > s'n
a retw o consecutive p o in ts in su p p /in .
P roof. S u p p o se th a t th e re a re th re e p o in ts t n < l'n < t ” in s u p pfx a n d th re e e le m e n ts Xrx5x'n) x'n in D m su ch th a t
~ 9 ®n-M
Sn+l = t ’n + i g_n_l< +l
s n + l = c + 9 " 1 a'n+ 1 • T h e n
$ n + l ^ in in + n .
T h u s
8n+l - c > 2 g “ n ,
w h ich is im p o s ib le (b y Le m m a 2.4 ) a n d the first p a rt o f the le m m a is p ro ved . N ow , su p p o se th a t
S
n + 1 is re p re se n te d th ro u g h s n a n d 5^, .sn <s'n)
we haveq~n < |Sfi - *nl < 5 n-t-l - «n < 2 ợ“n
w h ich follow s th a t I
s n
- 5^1 =q ~ n
a n d 5n,s'n
are tw o c o n s e c u tiv e p o in ts in support- L e m m a 2 .6 .I f S
n + 1 €suppfJi
n + 1 isrepresented through Sn
£suppfin
a n d £n €suppfjin such that s n
<tn
< Sn+ 1then tn
= 5n + <7- n .Proof.
W e h ave2 ç “ n > Sn+1
- s n > t n - s n
> 0.T h is im plies
‘^71 =
Q
Ĩ w hich c o m p le tes th e proof.T h e m a in re s u lt o f th is s e c tio n is follow ing th e o re m .
T h e o r e m 2.7 . If sn)$'n are two consecutive points in $uppfjLn then
Mn(«n)
< n + 1
Proof.
W e prove th e in eq u a lity by in d u ctio n . C learly th e in e q u a lity h o ld s for n = 0.S u p p o se th a t it is true for
Ti < k.
L etSk
-f i >s'k^ l
b e tw o arb itra ry c o n s e c u ta tiv e p o in tsin supp/ifc+i
s - k + l = s k + q ~ k~ l x k+
!s' - k
+ 1 = Sk + q~k ~ l x'k+i,w h e re Sfc, s'k e sup p^fci xfc+ 1 )x'fc+1 € D m . T h e n
4 < 4 + 1 < ® f c + i -
Wo con sid er th ree case:
a. If s'k > Sfc then > s'k > Sk' Using lemma 2.6 we get
Sfc = Sfc + 9 -fc
My lem m a 2.5, Sfc+ 1 has a t m o s t tw o rep resen ta tio n s th ro u g h Sk a n d s'k . It follow s that,
# < Sfc+l > < # < Sfe > + # < Sfc > • T h u s
W c + i j s k + i ) _ # < S k + I > < # < Sfc > + # < 4 >
M fc+IK+I) ~~ # 4 + 1 # < s k >
= 1 + = 1 + < 1 + ( * + 1) = fc + 2.
# < 4 > AifcVfc)
b. If.s'k = Sjfc th en by le m m a 2 .5 , th ere e x ists a t m o st o n e p o in t
tfc
€ supp/ifc, Ể/c 7^ Sfc su ch that .Sfc+ 1 is represented th ro u g htị
c (s/fc a n d are two co n se cu tiv e p o in ts ). It follow s th a t# < Sjb+1 > < # < > + # < 4 > . T h u s
Ị i k + [ ( S k
+ l) _
# < Sfc+1 ><
# < Sfc > + # < £fc >_
Mfc+l ( 5fc-fl ) MJc+l(5fc4-i) $ < t k >
= 1 + < 1 + (fc + 1) = * + 2.
c. If Sfc < 5it th en w e co n sid er tw o cases.
O n t h e l o c a l d i m e n s i o n s o f f r a c t a l m e a s u r e s 53
C\.
I f th ere e x is t st'k
€ su p pfik
su ch th a ts'k < L'k < Sk
th en from th e in eq u alitys'k + l ~~ s 'k < - sk - s'kf
w e have
4 + 1 <
s k <
8k+1
-O n th e o th e r h a n d , sin ce
Sk+\
an dSk
are tw o c o n secu tiv e p o in ts, w e h aveSfc+\
= .SitSfcH-1 = ^ 4 + 2(7 >
s'k
+q k
1 >,SK-f 1 = s /c +
(i
1 4 + 1 > £ •U sin g le m m a 2 .6 w e g e t + ợ*”*.
T h is im p lies
4-1
= 4 + < r f c _ l 7 ' m = ifc - <7_fe + < / _ f c _1
r m = ifc + g - fc- ' ( r m -7
) .Since r m — r/ € D m y we hav e is re p re se n te d th ro u g h £'fc. I t follows t h a t
# < 4 + 1 > > # < i f c > .
We now prove th a t
^and 5
/eare consecutive points in
s u p p /Z f c .S u p p o se t h a t th ere e x is ts € supp/Zfc su ch th a t <
Sky
th en sjp+j >(b e c a u se
s'k
J a n d Sfc+1 are tw o c o n secu tiv e p o in ts in supp/ijfc+i). It fo llo w s th a t J t V* lit J \ «/ , — / _ o —ikSfc+1 *“ ^ ^ic - 5fc > + 9 — 2ọ .
It is im p o s ib le (b y L e m m a 2.4). H e n ce ^ a n d SA: are two co n se cu tiv e p o in ts.
B y le m m a 2 .5 ,
Sk+i (= Sk)
h a s a t m o st tw o r e p re se n ta tio n s th ro u g hSk
ands'k
.It follow s that.# <
Sk+1 > < # <
s k> + # <
t ’k >and
S k >
M fc±i(ffc±il < # < > < ^ > = 1 4- # < f*
Mfc+i(5fc+i) # < ^
< L'k
< l + fc + l = f c +2.
>
C2. If d o es n o t e x is t s ^ G supp/Zfc su ch th a t s* < < Sjfc, th e n Sfc an d Sjfc are tw o co n se c u tiv e p o in ts in fik- B y le m m a 2 .5 , Sfc+ 1 h a s a t m o st tw o r e p r e se n ta tio n s th rou gh Sk and Sfc. It fo llo w s th a t
# < Sfc+1 > < # < Sfc > # < 4 >
and
< jfc + 2 l (5fc+l)
T b e th eo rem is proved .
C o r o l l a r y 2.8. € s u p p f i n
a n d Ịsn
—s'n \ < cq~n then
< ( n + 1)‘ .
Proof.
L e ts'n
= ÍQ < 11 < • • • < £jfc = b e k + 1 c o n s e c u tiv e p o in ts in su p p /in T h e n b y P r o p o s itio n 2.1 w e h a v ek < c
and_ /^n(^Ảr) _
i^n{^k) Unfak—
l ) /^n(^l)Mn(^o) — l)
H'Txi't'k—
2) 0)< ( n + l ) ( n + 1) • • • ( n + 1) < ( n + l ) c .
3 . L o c a l d i m e n s i o n s o f f r a c t a l
T h e fo llo w in g th e o r e m
is
an e x te n s io n o f P r o p o s itio n 2.1 in [6].T h e o r e m 3 . 1 .
For
.S’ €s u p p n , we have
log /z„(an )
a ( . s ) = l i m
n l o g g
provided that th e limit, exists. O therw ise, by ta kin g th e upper a n d low er lim its
,respec
tively, we g et the form ulas for a*( s) a n d
a * ( s ) .Proof.
S u p p o s e th a t th e r e e x is t s th e lim itat.) = .lim.
AI-ÍÕ+ log /l
w h e re /i) = [ 5 — ft, .s 4*
h].
For /1 > 0. ta k e II su c h th a t
n —1
< h < q
T h en
S in ce
w e havr
j i ( H{ s . q n
' ) ) <n ( B ( s , h)) < ị.i(B (s, q
n )) logq~n ~~ log h
~log q
~ n~ 1s -
8n\ <
i= n + l
o o *—71
V - , r n ợ
>
q r n = ■■
0 — 1
f i ( B ( s , q - n )) < ftn ( B( s , cq~n )) < ụ ( B ( S>2 c q - n )),
where c = - + 1 is a constant, depending only on IĨ 1 and q. Similarly, we have
n { B { s , q~ n )) > f i n { B ( s , c ' q ~ n )).
T hus
ụ n(B (s,c 'q- n) ) < ị i { B { s, q - n)) < fj.n(B(s, cq~n)).
Tliis implies
" /" " ) )
< log ỊJ.(B(s,q~n )) <
l o gịin { f í ( s , c ' q - n ))
- n lo g < / " - n l o g ç “ - n lo gq
For
t
€B ( s } cq)
n su pp /j, w e h aveI i n -
sn \
< 2cq~n
.By corollary 2.8, we have
M n(tn) < ( n + l )2c//n (S n ).
T h is im p lies
Hn(B (s ,c q ~n )) < (2c + l)(n + l)2c/in(sn),
and
lim j g j O f W f l g l Z ) ) ) > lim i g g M f n ) = lirn | l o g ^ n ( * n ) | n-4oo — n l o g
q
n->oo —71 lo g <7 n-+oo —n l o g r /Similarly, we have
lim < lim l lo g M n (a" ) l
n-i<x> —n log q n-4-oo — n log q
T his completes the proof.
T h e follow ing c o ro lla rie s c a n b e p ro v e d by th e s a m e te c h n iq u e a s th o s e in [6] (b y
using theorem a 3.1 and proposition 2.2).
C o r o l l a r y 3 .2 . For s = € SUPPM> we ftave
lo g (m + 1) lo g # < * • „ >
q(,s) = — --- + lim --- ' — — ,
lo g
q
n-»oo n l o g ọprovided th a t the lim it exists. O therw ise, by ta kin g th e upp er a n d lower lim its respectively wc g et th e form ulas for
a*(s) a n d
a * ( s ) .O n t h e l o c a l d i m e n s i o n s o f f r a c t a l m e a s u r e s 55
C o r o lla r y 3.3
lo g
q, where
a = su p { a(â) : s € supp/i} a* = sup{a*(.s) : s €
s u p p f . i } .C o r o l l a r y 3 .4 . (see [6] M a in T h e o re m ). F or m = 2, ro = 0, r j = 1,7"2 = 3, q = rn + 1 = 3, we have
ã = a * = 1 .
A c k n o w l e d g e m e n t s . T h e a u th o rs are gratefu l to P rofessor N g u y e n T o N h u o f N ew M ex ico U n iv ersity an d P rofessor N g u y e n N h u y o f V in h U n iv ersity for th eir h elp fu l su g g estio n s and valu ab le d iscu ssio n s d u rin g th e p rep aration o f th is paper.
R e f e r e n c e s
1. K .J.F alcon er,
Techniques in Fractal G eom etry
, J o h n W ile y a n d S o n s, 1997.2. K .J .F a lco n er,
Fractal G eom etry, M athem atical Foundations and A pplications
, J o h n W iley a n d Sons. 1993.3. N.T.Nliu, Fractal and Non-Fractal D im ensions , S tatistic Seminar, P a rt 3, New Mex
ico S ta te U n iversity, U S A , 2000.
4. T . H u,
The Local D im ensions o f the B ernoulli convolution associated w ith the
G o ld e n n u m b e r, T ra n s . A m er. M a th . Soc. 349 (1997),2917-2940.5. T . H u an d N .T . N h u ,
Local D im ensions o f Fractal M easures A ssociated w ith Uni
fo rm ly D istributed Probabilistic S ystem s
, to ap p ea r in th e A M S P ro c eed in g s, 2001.6. T . H u, N . N g u y en a n d T .W a iig ,