VNU. JOURNAL O F S C IE N C E . Mathematics - Physics, T.X X i, N02, 2006
ANH ARM ONIC CO R R E LA TE D DEBYE MODEL DEBYE-W ALLER F A C T O R CO M PA R ED TO EINSTEIN MODEL RESULT
N g u y en Van H ung, N gu yen Bao T rung D ep a rtm en t o f Physics, College o f Science, VNU.
Abstract. An anharmonic correlated Debye model has been derived for vibrational amplitudes in the X-ray Absorption Fine Structure (XAFS). The model includes anharmonic effects based on Morse potential parameters. Analytical expression for Debye-Waller factor or second cumulant for different atomic shells has been derived. Numerical results for Cu approach those obtained by the anharmonic Einstein model. Both they contain zero-point contribution at low temperatures and linearly depend on the temperature at high temperatures as the classical limit values. They reflect the experimental results.
1. I n tr o d u c tio n
T h e D ebye-W aller (DW) facto r e~W(<p) accounts for th e effects of th e th e rm a l v ib ratio n of ato m in th e th e o ry of XAFS. T he d o m in a n t te rm W(p) = l p 2ơ 2 d ep en d s on th e m ean s q u a re re la tiv d e d isp lac em e n t (MSRD) [1-4], w here p is p h o to electro n wave n u m b er. A n h arm o n ic c o n trib u tio n included in th e p o ten tial yields a d d itio n a l term s in th e DW facto rs w hich if ignored can lead to non-negligible e rro rs in s tr u c tu r a l p a ra m e te r s [4-11] e x tra c te d from XAFS sp e ctra . The form alism for in clu d in g a n h a rm o n ic effects in XAFS is often b ased on c u m u la n t ex p an sio n ap p ro ach [4, 5]. M an y effo rts h av e been m ade [4-17] to include th ese an h arm o n ic c o n trib u tio n s, am o n g th em th e an h arm o n ic co rre lated E in ste in model [16] avoids com plicated c a lc u la tio n s y e t provides rea so n a b le a g re em e n t w ith experim ent.
T h is w ork is th e n e x t ste p of [15] to d erive an a n h arm o n ic c o rrelated Debye model for v ib ra tio n a l a m p litu d e s in XAFS u sin g q u a n tu m s ta tis tic a l th eo ry . The model in clu d es a n h a rm o n ic effects b ased on th e M orse p o ten tial p a ra m e te rs . A nalytical ex p ressio n s for DW factor or second c u m u lan t for different atom ic shells have been derived. N u m erical re s u lts for Cu a re com pared to those obtained by the an h arm o n ic E in ste in m odel. B oth they co n tain zero-point energy contribution a t low te m p e ra tu re s an d lin e arly depend on th e te m p e ra tu re a t high te m p e ra tu re s as the classical lim it v alu es, th u s reflectin g th e ir ex p erim en tal re s u lt behaviors [3, 6, 10].
2. Formalism
2.1. A n h a r m o n i c E in s te i n m o d e l fo r m o n a to m ic c h a in :
In th is case we u se th e M orse p o te n tia l expanded to th e 3rd order ab o u t its eq u ilib riu m
V (x ) = D ( e - 2ax - 2 e -ax) « Z) ( - 1 + a V - a3* 3 + . . . ) , (1) 40
A n h a r m o n ic C o r r e la te d D e b ye M o d e l D e b y e -W a ller F a c t o r... 41 where X is scaled relative deviation defined by X = (I - a ) I a , I is in stan tan eou s bond length between /1th and th atoms and a is the equilibrium bond len gth between these two atom s. The M orse p o ten tial p a ra m e te r a d escrib es th e w id th of the p o ten tial a n d D m ea su re s th e dissociation energy.
T ak in g in to account up to th e 3rd o rd er we o b ta in th e p o te n tia l
V(x) = - D + D a 2x 2 - D a 3Xs. (2)
U sing th e d efin itio n y = x - a or x = y + a w ith a = (X) Eq. (2) is re s u lte d as V (x) = - D + D a 2 ( y 2 +2ay + a 2)j - D a 3ị y 3 + 3a y 2 + 3 a 2y + a3 j
= ỊD a2 - 3 a D a 3 j y 2 - D a 3y3 + 2aD a2ị l - —a a j y + Ị -D + D a 2a 2 - D a 3a3 j. (3) In th e an h arm o n ic E in ste in m odel th e in te ra c tio n p o te n tia l is g iven by
v (y) = ^A s y2- *3y3 + v ,(a ). (4)
Com paring Eq. (3) to Eq. (4) we obtain the spring c o n sta n t k s, cubic p a ra m e te r k 3 ks = 2( D a 2 - 3 a D a 3 j » 2D a 2 = M o )\\ = Z)a3, (5) E in ste in frequency a n d te m p e ra tu re
(6) w here M is m ass of v ib ra tin g atom .
Atom ic v ib ratio n is q u a n tize d as phonon a n d a n h a rm o n ic ity is th e re s u lt of phonon- phonon in te ra c tio n th a t is w hy we d escrib e y by a n ih ila tio n à an d creatio n â + o p e ra to rs
(7) U sing th e c alcu latio n procedure as in [16] we o b ta in DW fa c to r or second c u m u la n t
2 2 1 + 2 2
ơ ° * = a (8)
w here 2 = e~°E' T is te m p e ra tu re v ariab le.
2.2. A n h a rm o n ic c o r r e la te d Debye m odel fo r m o n a to m ic chain:
In th is case th e M orse p o te n tia l Eq. (2) h a s th e form
V (x) = Dcc2x2 - D a 3x 3 =V0 +VC, (9) w h ere the h arm o n ic co n trib u tio n
42 Nguyen Van H u n g y Nguyen B ao T r u n g
V0 = D a * x > = D a > ỵ (u n+l- u ny , (10)
an d th e a n h a rm o n ic one
( 11) a re d escrib ed in te rm s of th e d isp lac em e n t un of n th atom . T hese d isp lac em e n ts a re re la te d to ph o n o n d isp la c e m e n t o p e ra to rs Ak as show n by [18, 19]
ikd n
A k , (12)
U n = * I 6'
2-NM k Jco{k) w h e re Ak sa tis fie s th e follow ing re la tio n
A k = A*k; [Aa ,A4. ] = 0 , (13)
a n d M is m ass of com posite ato m s, ũ)(k) is th e phonon sp ectru m of cry stal m o m en ta k, a n d N is th e n u m b e r of u n it cells in th e chain.
B ased on th e c alcu latio n pro ced u re p resen te d in [20, 21] we o b tain ed th e d isp e rsio n re la tio n co(k) as
c o (k ) = 2, 2D à
M sin \k d \ < n (14)
T he s u b s titu tio n of Eq. (12) in to Eq. (10) yields V0 = D a 2Y - ? — Y
„ 2 N M Ỷ
f ikd (n +1) p ik d n N A
f ikd(n+1) p ik d n N
e A
+
v \ l o ( k ) * y[ VSw
D a 2h Y 2JV M à D a 2h
— (el
( b \ \
ikd (n +1) _ 0 ikd n j Ịg-iA < i(7 i+ l) _ 0 ~ ikdn c o (k )
- e )A A * (15)
2 N M
N ^ 2- -. e-.. - e~ikd A kA k A la
c o (k ) M co (k) k^-k
Now we calculate DW factor for the nearest neighbor correlation denoted by index 1
f f i = ( ^ ) o =((“■•' - “- O o A pplying th e above re s u lts to Eq. (16) we obtain
w h ere [19]
(16)
(17)
A n h a r m o n ic C o r r e la te d D ebye M odel D e b y e -W a lle r F a c to r .. 43 (AkAk.)o = ( A k(0)Ak.(0)) = -G°k r (0), Ah(t) = etH°Ake-tH\
G°*.(r) =
(Ak(r)Ak,(0))0= - < w { K + + (nt )e ^ < * )Ị,
(n*) = eh<o(k)lkBT _ J ’ and is B o ltzm an n c o n stan t.
S u b s itu tin g Eqs. (19, 20) in to Eq. (18) we o b ta in (AkAk')o = {(nA + 1) + ("*)}
(18) (19) (
20
)+ 1 +
húỉ(k) e - 1>
= -<?
1 + e
hgj(k)
kaT (21)
SO th a t th e DW facto r is given by
/ ihrt w \
(e
- 1 )(e ~ 1) 1 + e
k“T _ hv 1 - cos
kd1 +
e*®T
hũỉ(k) knT h
— ỵ
2 N M Ỵ J a t k ) M - k )
2 sin2
h y
N M Ỷ
k d { 2
l - e B hứỉ(k)
N M Ỷ co(k)
knT 1 - e
„ Ỉ2D a 2 ( k d \ ho){k)
H u Sin
to1 l - e k*T
l + e
*®r ft v .
( k d ) - ^ = N ^ Ĩ 5 ^ Ỷ S m { 2 Ì1 -
e Bho)(k) l + e
*ar
(22)
hp)(k) 1 - e *B
w hich is d escribed in te rm s of U)(k) as
« * - ị i
hta(k) 2
_ J_ y
hco(k)1 + e *®r
~
N k 4 D a 2-ísíiì
1- e *-r
(23)
For th e lim it of larg e N th e su m m atio n o v er k can be rep la ce d by th e co rresp o n d in g in te rg ra l
_ ho>(k) n hcu(k)
hd ... ..
a2 = (24)
£ haỉ(k) X
dỊ . ( A c O l + e *flT JL d df
s in r ^ r — ; 7ĨT d k = — . \ _ ,
0
I
2J
1 _ “B1*•
0J
4 0«
X r~hú)(k)1 - e "fli 1 - e
T his expression for DW factor approaches Eq. (8) obtained by th e anharm onic E instein model if all atom s v ib rate by th e sam e frequency , i., e., Ct)(k) = 0)E = co n st.
I t is u su a lly to co n sid er th e high te m p e ra tu re (HT) a n d low te m p e ra tu re (LT) lim it u sin g ou r d eriv ed Debye te m p e ra tu re
44 Nguyen Van H ung, Nguyen B ao T ru n g
h(ú{k)
In th e HT lim it ( T » 0 D) sin ce e we o b tain from
kBT .. hco(k)
kBT (26)
Ơ
, hcojk) 1
2 - Ểl k g T ^ _ dr d k BT
~ 1Ĩ 54Z)a2 fico(k) ~ J ị n D a 2 k BT
kBT
2D a 2 . Í k d --- sin
M
dife, (27)
th e HT lim it e q u atio n , d k BT
Ơ H T -
2 n D a 2 k
7 d + to
0 7 ĨC C \] 2 M D
COS k d
T Vd= kB T _____2h —
0 2 D a 2 7rayj2MD
(28) 'B
2Z)a
'B 2 D a
w hich is lin e a rly p ro p o rtio n a l to th e te m p e ra tu re T.
In th e LT lim it ( r « 0 ) i t is ap p ro x im ate d e~hứ)(k)ỉkBT« 0 so t h a t DW factor is given by
/T *
_ 2 d 5f /j<y(/e) _ dr
°7T * — _ „ d k =
* 4 D a 0J
dh 2D a
4 x D a 2 V M
sin M
V 2 , d k
2 n D a 2
*0. (29) w hich c o n ta in s zero -p o in t e n e ry c o n trib u tio n .
T he d eriv ed m odel c an be g en eralized to c a lc u la te DW facto rs including co rrelatio n w ith o th e r a to m ic sh e lls p = 2, 3, 4, 5,...
(âỉ)o
(30)A pplying ex p ressio n for unto Eq. (17) we o b tain Mk+k^dn
\ 2N M f t . Jco(k)M k')
i(k+k' )an
2 N M f t , Ja>(k)Mk') h
= [ e ipkd - l ) ( e ipk'd - 1
)A*AẲ
l ) { A k A k ' ) o i p k ' d
(31)
y N M Ỷ
ho)(k)
1 - COS p k d 1 + e *flT
C ứ ( k )
1 - e
hũ)(k)
koT
w hich is rep laced by th e co rre sp o n d in g in te rg ra l for th e lim it of la rg e N
n hoj(k)
2 / 2 \ _ hd dr L - C O S p k d 1 + e ksT ơp \ p / o ~ n M J co(k) hcủ(k)
d k . (32)
1- e
A n h a r m o n ic C o r r e l a t e d D e b y e M o d e l D e b ye -W a ller F a c t o r.. 45 3. N u m e r ic a l r e s u lt s a n d d is c u s s io n
Now we a p p ly th e e x p re ssio n s derived in p rev io u s sectio n to n u m erical calcu latio n for Cu. M orse p o te n tia l p a ra m e te rs h a v e b e e n ta k e n from [22, 23].
F igure 1 show s t h a t th e second c u m u la n t or DW facto r of Cu c a lc u la te d by p re se n t an h arm o n ic c o rre la te d D ebye m odel an d by a n h a rm o n ic E in s te in m odel contain zero-point e n e rg y c o n trib u tio n a t low te m p e ra tu re s a n d lin e a rly d e p e n d s on th e te m p e ra tu re a t h ig h te m p e r a tu re as th e cla asic al lim it v a lu e s. T hey reflect fu n d a m e n ta l th e o re tic a l [4, 24] a n d e x p erim e n tal [3, 6, 10] re s u lt.
0.026
002
«*-t—
M
Ĩ 0015 4
n = 1 n « 2 n = 3 n = 4
/
F i g u r e 1: C o m p ariso n of DW factors for Cu c a lc u la te d by an h arm o n ic c o rre la te d D ebye, E in ste in m odels a n d by c la ssic a l m ethod.
F ig u re 2 illu s tr a te s th e te m p e ra tu re d e p en d e n ce of DW facto r of Cu c a lc u la te d by p re s e n t an h arm o n ic c o rre la te d D ebye m odel for different atom ic sh ells. I t is show n th a t th e DW facto r in clu d in g co rrelatio n w ith th e ato m s located fa r from th e absorbing atom in c re a se s as th e shell n u m b er n = p in c re a se s. B u t in th is case the term containing COS( p k d )
becomes a fa s tly o sc illatin g fu n ctio n of k so th a t its c o n trib u tio n to c o rre latio n effect d iscreases. I t is also c le ar th a t
ơ ị will be divergent w hen p -> 00 so that it is red u ced to th e one for vib ratio n w ith o u t c o rre latio n , th a t is why we often ta k e th e c o rre latio n only w ith n eig h b o rin g a to m s in a ‘sm all c lu ste r as in th e a n h a rm o n ic co rre lated E in stein m odel [16].
001
0 006
/ :
/ : ys
/ y
y •
0 100 203 300 400 500 600 700
T(K)
F ig u re 2: T e m p e r a tu r e dep en d en ce of DW factors ơ 2p (T) of C u c alcu late d by p re s e n t a n h a rm o n ic c o rre la te d Debye model for d iffe re n t ato m ic sh e lls
rt = p = l,2,3,4.
46 N guyen Van Hungy Nguyen B ao T ru n g 4. C o n c lu sio n s
In th is w ork a n a n h a rm o n ic c o rre la te d Debye m odel h a s b een developed in clu d in g d isp e rsio n c o n sid eratio n . A n aly tical ex p ressio n for th e DW facto r h as been derived w hich reflects b e h av io rs of fu n d a m e n ta l th e o re tic a l a n d e x p e rim e n ta l re s u lts of th is q u a n tity .
N um erical resu lts for Cu approach those obtained by th e anharm onic E instein model containing zero-point energy contribution a t low tem p eratu re, a n d a t high tem p eratu res both they linearly depend on th e tem p eratu re as th e classical lim it results.
A n h arm o n ic c o rre la te d D ebye m odel is m ore co m p licated th a n th e E in ste in one due to d isp e rsio n c o n sid era tio n , b u t i t h a s th e a d v a n ta g e for re s e a rc h w hen ato m s in th e su b s ta n c e v ib ra te by d ifferen t frequencies.
A c k n o w le d g e m e n t: T h is w ork is su p p o rte d in p a r t by th e basic science re se a rc h project No. 4 058 06.
R e fe r e n c e s
1. G. Beni and p. M. Pltzman, Phys. Rcư. B 14(1976) 1514.
2. E. Sevillano, H. Meuth, and J. J. Rehr, Phys. Rev. B 20(1979) 4902.
3. R. B. Greegor and F. w . Lytle, Phys. Rev. B 20(1979) 4902.
4. E. D. Crozier, J. J. Rehr, R. Ingalls, in X-ray Absorption, edited by D. c . Koningsberger and R. Prins (Wiley, New York, 1988).
5. Bunker, Nucl.&Instrum. Methods 207(1983) 437.
6. L. Wenzel, D. Arvanitis, H. Rabus, T. Lederer, L. Baberschke, Phys. Rev. Lett. 64(1990)1765.
7. E. A. Stern, p. Livins, and Zhe Zhang, Phys. Rev. B 43, 8850 (1991).
8. E. Burattini, G. Dalba, D. Diop, p. Fornasini, F. Rocca, Jpn. J. Appl. Phys. 32(1993) 90.
9. P. Fornasini, F. Monti, A. Sanson, J. Synchrotron Rad. 8(2001) 1214.
10. L. Trổger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, and K. Baberschke, Phys.
Rev. B 49(1994) 888.
11. N. V. Hung, R. Frahm , Physica B 208 & 209(1995) 91.
12. N. V. Hung, R. Frahm, and H. Kamitsubo, J. Phys. Soc. Jpn. 65(1996) 3571.
13. N. V. Hung, J. de Physique IV(1997) C2 : 279.
14. A.I. Frenkel and J. J. Rehr, Phys. Rev. B 48(1993) 583.
15. T. Miyanaga and T. Fujikawa, J. Phys. Soc. Jpn. 63(1994) 1036, 3683.
16. N. V. Hung and J. J. Rehr, Phys. Rev. B 56(1997) 43.
17. T. Yokoyama, Phys. Rev. B 57(1998) 3423.
18. T. Yokoyama, T. Sasukawa, and T. Ohta, Jpn. J. Appl. Phys. 28(1989) 1905.
19. A.A. Maradudin, Dy nami cal Properties o f S o l i d, ed. G. K. Horton, A. A. Maradudin (North Holland, Amsterdam, 1974) Vol. 1, p. 1.
20. Charles Kittel: Introduction to Solid State Physics, John Wiley & Sons, Inc., NewYork, Chichester, Brisbane, Toronto, Singapore (1986).
21. N. V. Hung, S o l i d St a t e Theory, VNU Hanoi Publishing House (1999).
22. L. A. Girifalco and V. G. Weizer, Phys. Rev. 114(1959) 678.
23. T. Yokoyama, T. Satsukawa, T. Ohta, Jpn. J. Appl. Phys. 29(1990) 2052.
24. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. by Cambrige University Press, 1972.