V N U . JOURNAL OF SCIENCE. M athem atics - Physics. T .X V IIỊ N()3 - 2002
T H E C O N T R O L L A B I L I T Y O F D E G E N E R A T E S Y S T E M D E S C R I B E D B Y R I G H T I N V E R T I B L E O P E R A T O R S
N g u y e n D in h Q u y e t, H o a n g V an T h i
H a n o i U niversity o f P edagogyA b s tr a c t .
T h e co n tro lla b ility o f a linear s y s te m described by light, invertible opera-
to rs was stu d ie d by m a n y a u th o rs. H ow ever, fo r the degenerate syste m , the problem ha s n o t been so fa r considered. In this paper, the co n tro llability o f these syste m s is studied.0. I n t r o d u c t io n
T he theory of right invertible operators was sta rte d in 1972 w ith works of I).
Przeworska- Rolewicz and then has been developed by M. Tasche, II. veil Trotha, z.
Binderm an and m any other M athem aticians (see [7]). W ith the appearing of this theory, the initial, boundary arid m ixed boundary value problems have been considered. Since 1977- 1978, Nguyen Dinh Q uyet, in series of articles, has introduced the controllability of linear system s described by right invertible operators in the case of a resolving operator being invertible (see[2, 3]). T he results related to the controllability of linear systems were generalized by Pogorzelec for the case of one-sized invertible resolving operarors. In 1992, Nguyen Van Man, in his study, introduced the controllability of general system and stu d ied the controllability of linear system s described by generalized invertible operators (see [5]). However, for the degenerate systems, the problem has not been so far investigated.
In this paper, the controllability of the degenerate system described by right, invertible operators is studied.
1. S o m e f u n d a m e n ta l n o tio n s
L et
Xbe a linear space over a field
Tof scalars
[ T= M or C).
Denote by
l j ( X)the set of all linear operators w ith dom ains and ranges contained in X and
L 0( X ) ={A €
L ( X ): donii4 =
X }.
D e fin itio n 1.1. [7]
A n o p e ra to r D£
L ( X ) is said to bea
rig h t in v e r tib le o p era to r i f there is an o p e ra to r R€
Lq( X ) su ch th a t I m Rc
d o m D a n dD R = I
, (1.1)
w here I is id e n tity o p era to r. In th is ease
,
R is calleda
rig h t in verse o p c tã lo r o f D. T h e se t o f all rig h t in v e r tib le o p e ra to rs b e lo n g in g to L { X ) will be d e n o te d b y R ( X ) . I f D £ R { X ) , we d e n o te7
Z p=
{ I i£
Lq{ X ):
D R= /} .
'Fypeset by
0 * 7
38 N g u y e n D i n h Q u y e t , H o a n g V a n T h i
P r o p o s i t i o n 1 .2 . [7] I f D € R { X ) , th e n fo r e v e r y R £ 7Z p we h a v e
d o m D
=R X
© kerD.
(1-2)D e f i n i t i o n 1 .2 . [7]
All operator F
€L q ( X ) is said to be an in itia l operator for D corresponding to R
67ZI) i f F
2 == jP,F X
= kerD a n d F R
= 0OĨ
1doinH . T h e set o f all initial operators for D will be den o ted by Tj j .
D e f i n i t i o n 1 .3 . [7]
Suppose th a i D
£R ( X ) and R
€TZ
d- A n operator A
EL o ( X ) is said to be sta tio n a ry if D A
—A D
= 0on cIomD and R A — A R
= 0.T h e o r e m 1 .1 . [7]
Suppose th a t D
€R ( X ) . A necessary and sufficient condition for
an o p e r a to r F € Lo (X ) to b e a n in itia l o p e r a to r for D c o r r e s p o n d in g to R € is th a tF = I - RD. (1.3)
D e f i n i t i o n 1 .4 . [7]
An operator V
£L o ( X ) is said to be
aleft in vertible operator i f there
is an o p e r a to r L € L { X ) s u c h th a t I m V c d o m L } L V = I . W e d e n o t e A ( X ) th e s e t o fall left invertible operators belonging to L ( X ) and by C y the set o f all left inverses o f
v e A ( x ) .
D e f i n i t i o n 1 .5 . |5j
All operator V
€L ( X ) is said to be generalized invertible i f there is an operator w £ L ( X ) ( called a generalized inverse o f V ) such that:
ImV c domW y Im W c domV and v w v = V on domV.
T h e s e t o f all g e n e r a liz e d in v e r tib le o p e r a to r s in L ( X ) w ill b e d e n o t e d b y W ( X ) . I f
V
€W ( X )
,we den ote by
w vth e set o f all generalized inverses o f V
.P r o p o s i t i o n 1.2. (5j S u p p o s e t h a t V Ç W ( X ) a n d w G vvv , th e n
d o m K = M/ y ( d o in K ) © k e r V (1*4)
T h e o r e m 1 .2 . [5] S u p p o s e t h a t A , B € L ( X ) , I m A c d o m B a n d I m B c ( lo m A, th e n I - A B is r ig h t in v e r tib le ( le ft in v e r tib le ' in v e r tib le , g e n e r a liz e d in v e r tib le ) i f cind o n ly i f
so
is I —B A .
M oreover,i f we d en ote by R
a b{ L
a b> w
a b) &
r ig h tinverse ( left inverse
,generalized inverse ) o f I
—A B
,then there exists R
b a €^
i-
i ì a{ ^
b a €£ j - B A ) W
b a € W /- /M , r e s p e c tiv e ly s u c h th a t:(i) R
a b— I + A R
b aR
b a = / + B R a b A ,(iij Lj\
h = J + A Lb aB y L
b A = I + B L
a bA ,
B y L
bA = I + B L
a bA ,
(in ) ( I - A B
) - 1
= I + A ( I - B A ) - ' B } ( I - B A) - 1
= I + t ì ự - A B ) ~ l A , fiv j VVUb = / + j W î m B , ^ > 1 =I
+ .T h e th eo ry o f right in v ertib le o p era to r s and th ie r a p p lic a tio n s ca n b e seen in [5,7].
T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y... 39
2. D e g e n e r a t e s y s t e m s
D e f i n i t i o n 2 .1 .
Suppose th a t D
€R ( X ) }d i mk e T D ý-
0and A, B
€L o ( X )
,with A
^ 0non-invertiblc. T hen
alinear s y s te m o f the form
is said to be
adegenerate system .
P r o p o s i t i o n 2 .1 .
Suppose th a i I)
€R ( X ) , d i m
k erD
7^ 0;F is an initial operator for D corresponding to R
€TZ
jja n d A y B
€L
q( X
),with A Ỷ
0non-invertibie. Then the following id en tities hold on d o m ü :
F roof, (i) O n (loin D we have
D { I - R [ ( I - A ) D + B ] } = D - D R [ Ự - A ) D + B} = D - Ự - A ) D - tì
= I ) - D + AD - H = AD - t ì .
T h e p ro o fs o f (2.3) a n d (2 .4 ) a re co m p letely sim ilar.
P r o p o s i t i o n 2 . 2 .
Sup p ose th a t
a11 th e assum ptions o f P roposition 2.1 arc satisfied. I f A — H R is righ t invertible ( leit in v ertib le
,invertible, generalized invertible), then so is I — R[(I — A ) D + tì]. M oreover
,i f R
a b(J'AJJ) {A
—B R ) ~ l , w A
b) is right inverse ( left inverse,
in v e rs e, g e n e r a liz e d in v e r s e ) o f A — B R , th e n th e r e e x is ts R q € 'R 'Ị - R \ụ - A ) D + iì\ỤJ0 ££ i - R [ ( i - A ) n + B } , W Q
€V\>Ị-R \ ụ - A)D+B] respectively
, su chthat:
(i) Ro = I + R R
a bHI - A ) p + B] ,
(ii) Lo = / + 7 ỈL ^ Ị(/-i4 )D + fi) ,
(iỉi) { I - R [ ự - A ) ỏ +
ổ ] } “ 1 = s / + « ( i 4 - B / ĩ ) - l ị ( / - i 4 ) D + B l ,(ỉv) IVo = I + R W a M V - A ) D + fl] •
Proof.
W e w ill prove th e ca se ( iv ) . W e h ave / — [ ( / — i4)/J) -f /? ] /ỉ = y4 —B R .
S u p p oseth a t /1 - B R € W (X ) and € W /I-B * . T hen / - /ĩ[ ( / - i4)D + 0 | G W (X ) (by
T h eo rem 1.2 ). M oreover, th ere e x is t s
Wq = I + R W A b \ { I
“ >4)/) + # ] is a generalized inverse o fI — R [ ( I
— >4)D + # ] .A n o p e r a to r -
B R
is sa id to b e aresolving operator
for th e s y ste m (2 .1 ), if>4 —
R R
is in v er tib le, th en th e s y s te m (2 .1 ) is said to b e w ell-d e te rm in e d . O th erw ise, it is ill-d ete rm in ed .T h e o r e m 2 . 1 .
Supp ose th a t all a ssu m p tio n s o f Proposition 2.1
arcsatisfied. Then, we
have:(i) I f A — B R
ÇJl { X)
a n d /Ỉ,4/J €T^A- BR Ì then all solutions o f th e s y ste m (2.1)
areA D x
=B x + y
,y € X
(2.1)A D - t ì =
D ự- R [ ự - A )D
+ £ ] } , (i4 D -t ì ) R = A - B R .
A D - B = ( A - B R )D - B F .
(2.2)
(2.3)
(2.4)g i v e n b y
X =
= {/ + RR a b \Ự — A )D + B } } ( R y + z) + z,
(2.5)40 N g u y e n D i n h Q u y e t, H o a n g V a n T h i
where z
€ kerD } z
€ k er{ / — / ỉ [ ( / — v4)D 4- # ] } , (ii) I f A — # / ? € A ( X ) a n d Zvy\# € C a - b h , th e n a ll s o lu tio n s o f th e s y s te m (2 .1 ) a regiven by
X
= { / 4- /Ỉ L v4/ j [ ( / — /1 )D + £?]}(/£?/ + 2) , 2 G k erD , (2 .6 )(Hi) I f A
—B R is invertible, th en
a11 solutions o f th e s y ste m (2.1 )
aregiven by
X
= { / + / Ỉ( i4 - f í / ỉ ) “ l í ơ - i4 )D + £ ] } ( i ỉ y + í ) , 2 € k e rD , . (2 .7 )(iv) I f A
—B R
€ IV' (X
)rUìd W A Ịì
£ VV/t- Ị ĩ Ị{
,then all solutions o f the system (2.1)
a re g i veil b yX = { I + R W AtB[(I - A ) D + tì]}ự ỉy + z) + z, (2.8) where z
€ kerI
) , £ € k e r {J — /-?.[(/ — j4 ) D + Ổ ]}.P ro o f. S in ce b o th o n e -sid e d in v e rtib le a n d in v e rtib le o p e r a to r s axe g en eralized in v e rtib le , it is su fficien t t o co n sid er th e ca se (2?;). A ccord in g to e q u a lity th e (2 .2 ) ill P ro p o sitio n 2.1, w e see t h a t (2 .1 ) is e q u iv a le n t to D { I — / ĩ [ ( / — A )D + B ) } x = y . H ence,
{ / - I i [ { I - A ) D + £ ] } * = « y + ỉ , 2 e k er £>, (2.9) B y th e a s s u m p tio n , /1 — B R € i y ( X ) a n d W/ \ n € VVU-/3/*. T h u s , P ro p o s itio n 2.2 im p lies th a t
I
— / { [ ( / - / 4 ) D + f í | G VV'(X) an d th ere e x is ts a gen era lized in v er tib leoperator W
q= I + /?[(/ — i4)D + B\. Therefore, (2.9) obtaines that all solutions of
(2 .1 ) axe g iv e n b y
X
= { J + /ỈM^ì4, b [ ( / - -4)-D + f t Ị } ( / t y 4- z ) + 5.3 . T h e i n i t i a l v a l u e p r o b l e m
S u p p o s e t h a t 1) £ I Ỉ ( X ) , d im k e rD ^ 0; -F is a n in itia l o p e r a to r for D c o rre sp o n d in g to I t £ 1Z ị)\ a n d A , B £ L o ( X ) , w ith A Ỷ 0 n o n -in v e rtib le . In th is sec tio n , w e co n sid er th e in itia l v a lu e p ro b le m fo r d e g e n e ra te s y s te m ( D S) 0 o f th e form :
A D x = B x + y , y € X (3.1)
F x = .To J Æ0 € k e r D . (3.2)
T h e o r e m 3 . 1 .
S u p p o se th a t oil th e assum p tio ns o f P roposition 2.1
aresatisfied and R y
+ X'o E { / - / ? [ ( / — y4)D + B ] } d o m D .T hen, we have:
(i) I f A — B R G I Ì { X ) a n d Ra b € TZa- b r y th e n a ll s o lu tio n s o f t h e p r o b le m (3 .1 )-(3 .2 )
axe given by
x = { ỉ + H Ra b ỉ ơ - A ) D + B } } ( R y + x 0 ) + z , (3.3)
where z
€ k e r { / — / ? [ ( / — A ) D + 5 ] } . (ii) I f A - B R € /1(X ) a n d L a b € C a - b r , th e n a /i s o lu tio n s o f th e p r o b le m (3 .1 )-(3 .2 )are
given by
X
= { / + /Ỉ L ^ B Í Ơ - i4 )D + « ị } ( i ỉ y + x o ). (3.4)(Hi) I f A
—H R is invertible, th en solution o f th e p ro b lem (3.1)-(3.2) arc given by
X = { I + R(A - i4)/J + B ]}(/ỉy + x 0). (3.5)
(iv) I f A — B l i
(EW ( X ) and wy\ ỊỊ
£y^A -B R
Ĩthen all solutions o f the problem (3.1)-(3.2) cue given by
X
= { / +Ỉ I W
a j ỉ[Ự - A ) D
4-B ] } ( R y
4* Xo) 4-z
, (3 .6 )Ì where z
€ kcr{7 - / ỉ [ ( / — .4 )D +B]}.
Proof.
According; to the p r o o f o f T h e o r e m 2.1, fro m (3 .1 ) w e h a v e{ / —
lì.ịự
-A )D
+B ] } x
=R y + z
,z
G k e r /J . (3 .7 )Thus, acting on b o th sides of t his equality by o p erator F , we find th a t F x — F H [ ( I —
,4 )/J + Bịa: = F R y + F z . Ile n c c XQ = F x = /*2 = 2 . T h e re fo re ,{ / - / ỉ | ( / - A ) D + B ) } x = R y + *0 . (3.8)
By our assum ption, A - H R € implies th a t I — /£[(/ — A )D + B] € w p o
an d th ere e x is ts i t ’s g en e r a lise d in verse
Wo = I + R W A
/* [ ( / —A ) D
+B]
, w ith co n d itio nR y
-fXo
€{ I — R[ ( I — A) I)
+B ] } d o m D
, w e h a v e a ll s o lu tio n s o f th e p r o b lem (3 .1 )-(3 .2 )is given by
X = { I + R W AtR[{I - A ) D + B \ } ( R y + Xo)
+z
,z
€ k e r { / - / ỉ [ ( / - / ! ) / ; + / * ] } . T h e o r e m 3 .2 . S u p p o s e t h a t A. B a r e s ta tio n a r y o p e r a to r s a n d A — f t / ỉ is in v e r tib le .T h e n , th e in itia l va lu e p r o b le m ( 3 .1 )-(3 .2 ) h a s a u n iq u e s o lu tio n
x = ( A - B R ) - \ R y + x 0) . (3.9)
P ro of. By th e a s s u m p tio n /1, ft a re s ta tio n a r y o p e ra to rs , A D — B = D ( A — f t / i ) a n d (3.1)
becomes D(A — B R )x = ty , this implies th at (/1 —
H I Ỉ ) x= /fy -f £ € k e r/J . The
co n d itio n (3.2) fin d s th a t 2 = XQ . M oreover, /t — is in v e rtib le . T h u s , th e s o lu tio n o fthe problem (3.1)-(3.2) is unique and given by
X = {A — B R ) ~ l (R y + z 0) .
E x a m p l e 3 . 1 .
Suppo se th a t X is the
.space («)o f all real sequences
{ x n } ,n —
0 , 1 , 2 , ■ • ■with addition and m ultiplication by scalars defined as follows: I f X
= { i n } ,y =
{j/n }> A <E Rthen X
+y
— { x n 4-y n } , Ằ x
= {Ằ.T„},71 = 0 , 1 , 2 , -- W riteD { x n } =
{ i n+1 - £ « } ,R { x n} =
{ y n } ,y
0 = 0, y „ =Y,kZo
n ^ 1HI1(I F {x n} =
{ ^ n } ,z n - XQ, n
= 0 , 1 , 2 , —It is easy to verify th a t D
€R ( X ) , R
€ 7Zp, F is an in itia l op erato r for Ỉ) corresponding to R and
kerD
={z = {Zn}, ZTX
= c , n € N ,c G R } .C onsider th e degenerate sy ste m ( D S
)0o f th e form :
A D x = B x + y , y € X (3.10)
jPx = Xo , Xo € ker D , (3-11)
where A ) B are defined b y A { x n } —
{&’n + i } , B { x n } = {a:n + 2 — ^ n }nn d y
= {?/„} G X , x 0 = { x 0 } G kerD arc given. Wc conclude th a t
. 4 ^ 0 is Đon-invertible, the resolving operator A
-B R is invertible, A - B l l = (A — = —I . B y T h eo rem 3.1, the solution o f th e s y ste m ( D S
) 0 iso f the form :
X = { / + fì(i4 - B /Ĩ ) “ l [(/ - / 1 )D + « ] } ( % + 5?o)
= {/ - -Rí(/ — i4)£> + B]}{Ry + x0)
= {^ 0 , ^0 - yo> Zo - Vo - Vì, ^0 - 2/0 - 2/1 - 2 / 2 , • • • }•
T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y...
41
42 N g u y e n D i n h Q u y e t y H o a n g V a n T h i
E x a m p l e 3 .2 .
Suppose th a t
X ,Dy R an d F are defined as in E xam ple 3.1; W rite
i4 { x n } = {2 z o + x i , 0 ,X
2+ X
3}X
3+ X
4>
• • • }, B { x n } ={ x
2 -Xo,
0,X
4 - X2, S5 -x
3)
• • • }• Clear,A ^ o and is non-invertible
, sin c e ker i4 = {x o , —2 x o ,x
2) —X
2,
X2, —£2, • • • } 7^ { 0 } a n d ,4 XỶ X
L et y
= {?/„} €X and XQ
= { x o } € ker D .N ow
we consider th e degenerate sy ste m ( D S
) 0o f th e form:
A D x = B x + y ( 3 1 2 )
F x = Xo , Xo € ker
D
(3 .1 3 )It is easy to verify
th a tth e resolving operator A
—B R is generalized invertible,
in d e e d ,(A
-B R ) I ( A - B R ) { x n }
= (i4 - ổ / ỉ ) { x n } , i.e.A - B R £ W { X ) a n d I
€ W a - b k .Moreover,
ker{ / — -R [(/ — j4 )D + f i] } = { { 0 , 0 , X'2, X3, x 4 , • • • },x n
€ R , n = 2, 3, 4, • • • }. B y (3.Ổ) ,the solution o f the problem ( D S
) 0 is g ive nby
X = { / + / ĩ [ ( / - A ) D + ổ ] } ( i ? y + x o ) 4- 2 , Ỉ 6 k e r { / - f i[ ( J - i4 ) D + B ] }
= {xo , x 0 + yo , 20 + yo + 2yi + x2,x0 + yo + 2t/i +2y2 + ®3»"* }•
4. C o n tr o lla b ility o f t h e d e g e n e r a te s y s te m
Let X and u be linear spaces over the same field T [ T = R or C ). Suppose th at D
€R ( X ) }
d im k e r ữ ^ 0] F e T o
is an in itia l o p era to r forD
c o r r esp o n d in g toR
€ 7Zd\
and
A, R
€ L ()(X ), w ithA Ỷ
0 n o il-in v ertib le a n dc
€Lo( U} X
). W e c o n sid er th e p ro b lem (£>S)o:f A D x = B x + Cîz , w ith c o n d itio n JĨC Ơ © {xo} c { / — / ỉ [ ( / — >4)D + B )} d o m D (4 .1 )
\ F x = Xo ,
x
0 € kerD.
(4 .2 )T he spaces X and [/ are called the space of states and the space o f controls, re
spectively. Elements X £ X and u £ u are called states and controls, respectively. The
elem en t Xo G ker
D
is called an in itia l s ta te . A pair ( x o , u ) G (kerD)
Xu
is ca lled an in p u t.In se c tio n 3, w e have proved th a t th e p ro b lem (4 .1 )-(4 .2 ) is e q u iv a le n t to th e e q u a tion
{ / -
R[ ( I - A ) D
+B ] } x = R C u
+ xo . (4 .3 )Hence, the inclution R C U © {xo} c { / — R [ (I — A )D + B ]} dom D is a necessary
and su fficien t co n d itio n for th e p ro b lem (4 .1 )-(4 .2 ) h ave s o lu tio n for ev ery
u
GV .
D en o te by<px(i
= 1 , 2 , 3 , 4 ) th e fo llo w in g se ts, d efin ed for ev eryXo
€ kerDy u £ Ư:
(i) If A — B R G R (X ) and R
a sg T^
a-
b r} then:
# i(x o , u) = {x = T \(R C u + Xo) + z , z € ker { I — R [ (I — A )D + B]} ,
Tx = I + R R
a b[{I - A )D + B] }. (4.4)
(ii) If
A — H R G Ả ( X )
a n dL
a b ^£
a-
b r ) then:0 2(xo,îi) = {x = T2( R C u + x q ) , T2 = / + /Ỉ L
a b[(/ - + 5 ) }. (4.5)
(iii) If A — t ìỉỉ is invertible, then:
* 3 (x o ,u ) = {x = 73 (R C u + xo) ,7 3 = / + R (A - B R ) - ' [ { I - A )D + H\ }. (4.6)
T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y... 43
(iv) If A - B R e w ( x ) and W^,B e , then:
i>4(xo, u) = {x = T4( R C
u+ Xo) + z , z € ker{7 — / ỉ[ ( / - A )D + Ổ]} ,
n = I + R W A,B[ ( I - A ) D + H \}. (4.7)
N o t e that. = 1 , 2 , 3 , 4 ) are s e ts o f all so lu tio n s o f th e p ro b lem (4 .1 )-(4 .2 ) in th e c o rr esp o n d in g ca se.
D e f i n i t i o n 4 .1 .
S up pose that. wc
are given a s y ste m( D S ) o
a n d file s e ts<pị
(.'Co,u) o f the form s (4.4)-(4.7) . A sta te X € X is said to be (i)- reachable (i
= 1 , 2 , 3 . 4 )from an initial s ta te XQ
€ kcrD i f for every TìỰTị = I + R R AB[(I - A) D + B ] , T
2 = J + / Ỉ Í M B | ( / - / 1 ) 0 + Ã ] . 73 = 7 + / ỉ ( / l - B f í ) - l [(J -A ) D
+B), T a = I
+ - i4 ) D + e ] ) there e x ists acontrol u
€u such that X
G '■/•>, (xn , u ).W rite Rangi/.xo^i = ( J u) J ^0 € ker D , (2 = 1 , 2 ,3 ,4 ).
u€ ơ
It is easy to see th a t Rangy is ( 2 )- reachable from x *0 6 k e rD by m eans of controls u £ IJ , and
th esesets are
co n ta in ed indom D .
L e m m a 4 . 1 .
S u p p o se th a t T i(i
= 1 ,2 , 3 ,4 ) aredefined as in (4.4)-(4.7)
, then:r t ( / ì ơ ơ © {z0} )+ k e r{ / - /ỉ[ ( / - 4 ) /J + £]}
= TaR C U © {TiXo} © k er{ / - / ỉ( ( / - ,4)1) + B]}. (4.8) Proof.
It is su fficien t to p rove th e ca se 2 = 4.By our assum ption, I — R [(I — A)D + B] € W (X ) and T 4 G
Therefore, Proposition 1.2 implies th a t X = 7 4 { / — jR((J — A )D 4- B ] } x © k e r { I — R [(I - A )D + B)}. On th e other hand R C U © {
xq} c { / — R [ (I - A )D + B}} dom D, there exists E C dom D such th a t R C U © {x 0} = { / - R [(I - A)D + B ] } E c { / - / ỉ ị ( / - i4)D +
# ]} đom /). Hence,
r 4(/?ct/ © {.T0})+ ker{/ - R[(I - yl)D + B]}
= T4{ I - R [(I - i4)D + JB]}E + ker{J - /ỉ[ ( / - A )D + B}}
= T4{7 - R [(I - ^ ) D + B ] } E e k er{ / - R [ (I - yl)D + B]}
= r A{R C U © {a?Q}) © ker{7 - /ỉ[ ( / - i4)D + /?]} .
W e w ill p rove th e e q u a lity
T ^ (R C U
© { ^0} ) =T
4R C U
@ {T4X0} . Indeed, let æ €(T
4R C U )
n {T4X0}, i.e . th ere e x is tsu € U , t € T
su ch th a t X =T ^ R C u
=T Ạ xo
, orT n (R C u
— £xo) = 0 . B y our a ssu m p tio n /ỈC Ỉ7 © { z o } c { / — / ỉ [ ( / — ^4)D + B ]} d o m D ,th ere e x is t s
V
€ đ o m D s u c h th a tR C u — t x
0= { I — R [ ( I — A ) D
+B] } v
, th is im p lies th a t 0 =T
a( R C
u- t x
o) = r 4{ / -R [ ( I - A ) D + B) } v
, or0 = { / -
R[ { I - A ) Ü + B \} T a{ I - R [ ( I
-A ) D + B ) } v
= { I - R [ ( I - A ) D + B }}v = R C u - t x 0 .
Ilence, 0 = Dtx 0 = D R C u = Cu, tx 0 = 0 and X = T4R C u — T 4 Í 10 = 0 .
R e m a r k If eith er A — B R Ç: A ( x ) or A — B R is an invertible operator, then
k e r { / -
R{ ( I
—A ) D
- f # ] } = { 0 } . T h u s th e fo rm u la (4 .8 ) ta k es th e form:TịỤlCU © {xo}) = TtRCƯ ® {TiX0 } , (t = 1,2,3,4). (4.9)
C o r o l l a r y 4 . 1 .
Rangự)Xo<Pl = Tị R C U © {TịX 0 } © k e r{ / - R[ự - A) D + BỊ}. (4.10)
C o r o l l a r y 4 .2 .
A
s ta teX is (i)- reachable from a given initial sta te XQ
€ kerD if and only if X e T iR C U © {Ttxo} ® ker{7 - R [(I - yl)D + B}} , (i = 1 ,2 ,3 ,4 ).
D e f i n i t i o n 4 . 2 . L et
be given a degenerate sy ste m ( D S ) o o f th e form (4.1)-(4.2) and let F,
GT u ụ
— 1,2, 3 , 4 )be arbitrary initial operators (not necessarily different).
(i) A s ta te X
I € ker D is s a id to b e F t-reachable from an initial s ta te XQ
€ ker D i f th e re e x i s t s a c o n tr o l u € u su ch t h a t Xị £ F ị $ i ( x o , u ) . T h e s t a t e Xi is c a lle d afinal sta te.
(ii) T h e s y s te m ( D S ) o is s a id t o b e F ị- c o n tr o lla b le i f fo r e v e r y in itia l s t a t e x o 6 k er D,
F i( RangU 'X
0
4>i) = k e r D . (4.11)(Hi) T h e s y ste m ( D S
) 0is said to be Ỉ ) - controllable to XI
€ kerD i f
Xi
6F i(R a n g UtXo<Pi)
(4 .1 2 )for every initial s ta te XQ
E k e rD.
L e m m a 4 . 2 .
L et be given
adegenerate s y ste m ( O S
)0 a n d aninitial operator 1\
£ J 7/; .S u ppo se th a t th e s y ste m { O S
)0 is F i-controllable to zero and th a t
Fi{Ti
k e r D + k e r { / - / ỉ [ ( / - y l) D + £ ] } ) = ke r D . (4 .1 3 )T h en every s ta le Xị
€ ker D is F t-controllable to zero.
Proof. It is sufficient to prove th e case 2 = 4 . Let Xi € ker D , since the assum ption ( DS)o is
F4- c o n tro lla b le to zero. T h u s , 0 € F t ( R a n g ỉ /x0^4) for ev ery Xo € ker D , i.e. th e re e x ists a c o n tro l Uo € u a n d 20 ^ k e r { / — /Ỉ[ (Z — A ) D 4- B ]} su c h t h a t F ^ [ T ^ { R C u q + Xo) + 20] = 0, orF 4(T
aR C
uo+ 20 ) = - f \ T AXQ. (4.14)
44 N g u y e n D i n k Q u y e t , H o a n g V a n T h i
T h e c o n d itio n (4 .1 3 ) im p lies t hat for ev ery
X\ £
kerDy
th e r e e x is t sX
2 € kerD
andZ\ £
k e r { / —ft[(I
—A) I)
-fH]}
s u c h th a tF a ( T * x2
+
Z\ ) =
X ]. (415)
O n th e o th e r h a n d , by form u la (4 .1 4 ). for ev ery
X
'2 £ ker Ü , th e r e e x is t suQ
€u
an d 2q € k(*r{/ — / ỉ [ ( / — .4 )/J 4-H]}
su c h thatP<
i( 1 \ R C
uq 4-Z
q 4* 2 i) = Kị ( A x 2 + 2 i) . (4 .1 6 ) S o th a t (4 .1 5 ) and (4 .1 6 ) im p lyF'k( 7 \ R C u
'0+ z[) = X\
, w ith = 2q -f- 2i € k er{J - /£ [ ( / — / l ) / J + ft]} • This p roves th a t every s t a t eX\
G kerI)
is i*4- rea ch a b le from /,oro.T h e o r e m 4 . 1 .
Suppose that- nil a ssu m p tio n s o f L em m a 4/2 arc satisfied. Then th e
d e-ircncrnt.fi s y ste m ( D S
)0 is -controllable.
Proof. Suppose; that /1 — B Ji € li7(X ). By our assum ption there exists Uo € u and
2<) £ k e r { / — /? [ ( / —
A )D
+ w ]} su c h th a t^ [ ' A Í / Ỉ C i i o + .To) + *o] = 0. (4 .1 7 )
On th e o th e r h a n d , by Lerm na 4 .2 , for ev ery
X\
€ kcrD
th e r e e x is t sU
q €u
andZ\
€ k e r { / —I i \ ( I
— y t)/} + # ] } su c h th a t\ F4(T4/ỈCui + «i) = xi. (4.18)
T h e re fo re , (4 .1 7 ) a n d (4 .1 8 ) im p ly th a t
F
a{T/[[RC(
uo+
Uq) + Xo) +(zo
+Z\
) } =X\y
i.(\ the sta te
X\
isFi\-
re ach ab le fro m in it ia l stateXQ.
T h e th e o re m h a s b e en proved.T h e o r e m 4 .2 . L e t b e g iv e n a d e g e n e r a te s y s te m ( D S ) o o f th e fo r m (4 .1 )-(4 .2 ) a n d ail in itia l o p e r a to r F t € T o (i = 1 ,2 ,3 ,4 ) a n d le t T \ = / 4- R I Ỉ A t ì [ ( ỉ — A ) D + B \ i f A — B R €
ï l { X
) 9 7 2 =i f A - B R
€ y l(X ) , 7 3 = J + / ỉ ( / i - B / ỉ ) - l [ ( / - y l ) D + « l i/\4 - / Í / Ỉ is in v e r tib le a n d 1 \ = 7 + /ỈW 0\,£*[(J - / I ) /-> + /í) i / '/ i - H R € W ( X ) . S u p p o s ethat c e L
q(U X , X ' -> u % D € X')> and A, B , R € L0( X , X ' ) . Then , the
s y s te m ( P S) 0 is i s - c o n tr o lla b le i f a n d o n ly i f
k er C * R * T * F * = {()}. (4.19)
Proof.
It is sufficient, to co n sid er th e c a se 2 = 4 . N o te th a t in a ll th e c a s e s con sid er,F / l ) l i e
m a p s Ơ in to k erD . T h e c o n d itio n (4 .1 9 ) is e q u iv a le n t t oF i T J i C U = k e r D . (4.20)
T h e a s s u m p tio n R C U © {xo} c { / — / ỉ [ ( / — i4 )D + /^1} d o i n ơ , im p lie s th a t
F
aT4RCƯ = F M R C U © {x*o}) - {F 4 T 4 X 0 }
c F4T4{/ - /i[(/ - /1)0 + B]}domD ~ {F4T4®o}
c F 4 {T 4 {7 - /ỈỊ(/ - /i)D + B]}dọm D © k e r{ / - /ỉ[(J - i4)jD + B]}}
- {F 4 T 4 X 0 } - F 4 ker{/ - /?[(/ - A )D + tì}}
= / ‘4d o m /) ~ { ^474^0} - F4 k e r { / - / i [ ( / - /1) / ; + /ỉ]} c k e r D .
T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y...
45
46 N g u y e n D i n h Q u y e t f H o a n g V a n T h i
B y (4 .2 0 ), w e h a v e
F
4T
4R C U
=r ^ d o m D —ịr^ T /iX o } —
F4 k e r { 7 —/ ? [ ( / —A ) D + B]}
= k e r D . T h u s, /V A / ĩ C Ơ 4 - { K t T4x o H F4 k e r { / - i l [ ( / - i 4 ) j D + B ] } = A d o m D = ker D . T h is m ea n s th a t for e v e ryX\
€ kerD i
th e re e x is ts V G d o m D ,u £ Ư
a n d 2 0 € k e r { 7 — / ? [ ( / — i 4 ) D 4- B ] } su ch th a t Xi =F
4V
=F
4T
4R C U
4-F
4T
4XQ
4- -£4*0 = 4- Xo) + 20], i.e.X\
is F4- rea ch a b le from Xo. T h e a rb itra r in ess o f Xo,X\
€ kerD
im p lie s th a tF 4( R an gt/,Xo$ 4) = ker£>.
C o n v ersely , su p p o se th a t F 4( Range; Xo^4) = k e r D . C h o o sin g £0 = 0 ,z o = 0, we g e t t h a t F
4
T4
R C U = ker D . T h e p ro o f is co m p leted .C o r o l l a r y 4 . 3 .
S u pp o se th a t A
, 2? aresta tio nary operators. T h en th e system ( D S
)0 isF 3 - controllable if and only if
ker c * R * ( A - B R
) * ~ ' = { 0 } . (4 .2 1 ) T h e o r e m 4 . 3 .S u p po se th a t th e
s y s te m ( D 5 ) o is F i-controllable. T h e n
, it is jF/- con-trollable for every initial o p era to r F[ G T o -
Proof.
L et F i b e a n in itia l o p e r a to r forD
co rresp o n d in g t o jR € 7^ 0 , i-e -Ỉ*\ỈU =
0 . O n th e o th e r h a n d , for ev er y £1 € k e r D a n dV £ X ,
th e re e x is t sX
2 £ ker D su ch th a tx x
= .T'2 B y our a s s u m p tio n th e s y ste m( D S
)0 is F t- co n tro lla b le. T h u s, for everyx 0i
%2 € kerD ị
th e r e e x is ts a co n tro l U G Í / an dZo
€ k e r { 7 — jR [(/ — A ) D + J5]} su c h th a tF i[T i(R C u
+xq)
+Zo]
=x
2 , or Fi[T t ( / ỉ ơ u + æ0) + Zo] = F t ( x2 +Rị v ) ,
for so m eV € X . Hence, F '[T i(R C u + xo) +
zq] = F '( x 2 + jRiv) = £2 + F 'R iV = X\ . T he arbitrariness of
3?0, Xi € ker Đ , th e p ro o f is c o m p le te d .
T h e o r e m 4 . 4 . L et
he g iven
adegenerate system ( D S
) 0 a n d anin itial operator 1 \ £ T p . T h e n
,th e s y ste m ( D S
)0 is F t-controllable i f and o nly i f it is Fi- controllable to every element v' e F jT i R X .
Proof.
F ir s t, w e p rove th e eq u a lity :F4{ T 4( i ỉ X © ker D ) + k e r { I - / ì ị ( / -
A ) D
+ £f]>> = kerD .
(4 .2 2 ) In d eed , sin c e { / - / ? [ ( / — Ẩ ) D + ổ ] } d o m D c d o m ơ =R X
© ker D , th ere e x istsE
c X a n d c kerD
su c h t h a t f t # © z ' = { / - ./?[(/ - ,4 ) D +B] } d o mD.
T h is im p lies th a tTa( R E ® z ' ) + ker ự - R [ ự - A ) D + B}}
= 1 \ { I - / i [ ( / - A ) D + B ]} d o m D © k e r { / - R [ { I - /1)1) + B } } = d o m D . H en ce,
ker
D
=F td o m D
= F4{ T 4( / Ỉ E © z ' ) + k er{7 - / ĩ [ ( / - >1)D + B ] } }c F 4 {T4(f lX © ker D) + k e r{ / - / ỉ[ ( / - Ấ )D + B]}} c ker Ơ,
i.e. th e form u la (4 .2 2 ) is h a s b e e n proved.
S u p p o se that, the s y ste m
( DS ) o
is F4-c o n tro lla b le to e v e ry elem entv'
GF
4T
4RV, V £ X
, i.e. th e re e x is t s a co n tro lUQ € u
a n d 2 0 € k e r { I — / ỉ [ ( / —A ) D
+ J5]} su ch th a ti*4[ T ^ R Ouq 4* xq
)
4* zq]
= F4T4/ÎV.T h i s im p lie s t h a t
f
4A
{ A[noUo
X0 + X2Ị 4-ZQ
4"Z \}
= { /4( ỈỈV 4*X
2)
4- }, (4 .2 3 ) w here G k e r { / — /i![(/ — /4 )/J 4- ft]} a n d X2 € kerD
are arbitrary.B y form ula (4 .2 2 ), for ev er y
X\
G kerD
, th ere e x is t s 2j € k e r { 7 - / < [ ( / - / l ) D + / i ] } ,v' G X
a n d x*2 € kerD
such t h a tX\
= /^4(7^4 +x f2)
4-z[]
. T h is e q u a lity an d (4 .2 3 )I‘\[T /[(R C a
'0 +XQ
+x l2)
+Zo
+z[}
=X\.
(4 .2 4 ) O n th e o th er hand, th e c o n d itio n 0 €F
4T
4R X
a n d ou r a s s u m p tio n im p ly th a t( l ) S
)0 is F4- co n tro lla b le to zero , i.e. 0 €Fi
i( R a n g (;To0 4) for ev e r yXQ £
kerD.
T h e r e fore, th e r e e x istsU\
€u
and Z2 £ k o r { / — / ỉ [ ( / — i4 )D + ft]} su c h th a tF 4 ị7 ,4 ( / Ỉ C u 1 - 4 ) + *2} = 0- ( 4 / 5)
I f w e a d d (4 .2 4 ) and (4 .2 5 ), th e n
F^[T^(RC u
2 +Xo)
4* 2 3} =X\
, w h e re ,3 =ZQ
-fz[
-f 22 r u 3 — W() 4- U i. T h e a rb it ra rin e s s o f Xo, X j g ive s Jp4( R a n g í/ xo$4) = ker /J . E x a m p l e 4 . 1 .Suppose that X is th e space (s) o f all real sequences
{.Tn } , n = 0 , 1 , 2 , • • •W rite D { x n }
= {•/'T1+1 - # n } , / ỉ { x n } = { y n } ,yo
= 0, y n = n r =0 ^ 1 ajld /•’{.7V,} = {<Zn}j 2n = X'o, /4 = 0 , 1 , 2, • • ■ ÍÍ,is
ea sy tocheck th a t D
€ / Ỉ ( X ) , /{ 6 7£/> a /id F is ailinitial operator for I) corresponding to R . Moreover,
ker
D = {z
= { * n }>2n = c , n € N , c € R } # { 0 } .S u p p o se th a t u —
{ { u n } :u n
6 R, u n = 0, Vn ^ 1} , anop era to r c
£ /vq(ơ, X ) isdefined by c = ( ì l ( I is an id en tity
o p era to r, a € R ) an dXo
= {® o} £ k e r D . Weconsider the degenerate system ( l ) S
)0o f th e form
A D x = B x + C u , 71 € Ơ (4.26)
F x = x0 , (4 .2 7 )
where A
, ft aredefined as follows A { x n }
= {x 'n + i}, = { x„-*-2 — ^ n }- inE xam ple 3.1, we see th a t A Ỷ-
0non-invertible, th e resolving operator A — B R is invertible a n d A
-H R — (A - B i t
) " 1 =T herefore
,by form ula (4.6), th e solu tion o f ( D S
) 0 isgiven
<P3(xo ,tt) = T3( R a I u +$o), Ï3 = / - /ỈỊ(/ - >4)D + B]
= {a^Or 3^0 - û u q . ^0 — ûrUo, Xo — atfco, • • • } . (4 .2 8 ) L et /Ỉ3 G 7 Ỉ/) b e
defined b y R z { x n }
= { —Xo, 0, X*1, Xị 4- X2, X] -f X2 + X3, • • • }. T hus, Jp;i{xn } = ( / - /Ĩ3 0 ) { x n } = {x*!} .Therefore, for every XQ
= {a*o} G kerD, there ex ists
So = { ^ ,0,0,0, . . - } €u such th a t
F3#3($o»5 o) — Jp3{® O )0 |0>0 > • ’ • } ” {0} , i.e.the sy ste m ( D S
) 0is l
43-controllable to zero. Moreover, F s T ^ k e r D )
= k e r D .B v Theorem
4.1, th e s y s t e m ( D S) 0 is F3- c o n tr o lla b le .E x a m p l e 4 . 2 .
Sup pose tha t X is th e spac:e (s) o f all real sequcncc
{ x n } . L et ơ , / ỉ , F , i4,B £ L
q{ X ) be
d efin ed b y £> {xn } = {^ n+1 - £ n } , = {j/n}» yo = 0,?/r* ^ ^ 1) ^ {^’n} = {* 0 }, = {^ ‘^0 “i“ “t” ^ 3 ) H“ # 4 ) *^4 4"
x 5, • • • }
and B { x n }
= {0:2 - Xo, 0, x4 - X’2, ^5 — ®3i ®6 ““ ®4» • • • }• ^ JS e a s y to seeth a t I)
€R { X ) , R
€TZ-Ü f kcrD
= {2 = {2n } ,2n = c, n € N , c € K } 7^ { 0 } a jïd i 5' is aninitial
o p er a to r forI) corresponding to R. T h e operator A ^
0 a n dnon-invertible, since kerA =
{x o , - 2x0, ^2, —x2) • • • } 7^ { 0 } a n d 7^ X .T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y. . . . . . 47
L e t u = { { u n } : u n € R , u n = 0 ,V n ^ 2} a n d c = I e L o ( U > X ) . C o n s id e r th e
degenerate sy ste m ( DS) o o f th e form :
A D x
=B x
4-C u
, u € Ỉ / (4 .2 9 )F x = Zo , x0 € ker
D
(4 .3 0 )We
have A - H R
€ i y ( x ) , / € W ^ f l /2, sin c e(A
- # / ỉ ) i ( / l - £ / ỉ ) { x n } =(A - B R ) { x n }.
M oreover
, k e r { / - / ỉ [ ( / - i4 )D + £ ] } = { {0,0,a;2,a:3,X4,* • • } ,X n € R , n = 2 , 3 ,4 , • • • } •Therefore, by the form ula (4.7), th e solution o f the problem ( D S
) 0 is g iv e n by0 4 (2 0 , w) = { / + / ỉ ị ( / — / i ) D +
B ] } ( R C u
+Xo)
+ i , £ € k e r { / - / ỉ [ ( / - / l ) D + ỡ ] }= {
Xo
, Xo + Uo,Xo + TX0 + 2 tii +X
2,XQ
+ u0 4- 2ìXi + Ỉ3 > • • • }• ( 4 . 3 1 ) Let í 4 6be defined by
F4{ x n } = {a?i}. T h en for everyX()
= { x o } € k e r D ,there exists ũ
0 = { - X o ,U ị
, 0 . 0 ,0 , • • • } €ư such th a t F /ị^ ( x Q }ĩio)
= { 0 ,0 , 0, • • • } .T h u s
,the system ( D S
)0 is / '4-controllable to zero. M oreover
,/ '4(T4 ker
I)
+ k c r { 7 - « [ ( / - i 4 ) ü + £ ] } ) = ke r D , w it h r4 = / + 7 iỊ( 7 - 4 ) D + fí).H
ythe Theorem 4.1. the s y ste m ( f ) S
)0 is i*4-controllable.
R e f e r e n c e s
1. N g u y e n D in h Q u y et, O n linear s y ste m s d esc rib ed by right in v e r tib le o p era to rs a c tin g in a linear space,
Control and Cybernetics
7 (1 9 7 8 ), 33 - 45.2. N g u y en D in h Q-uyet, C o n tr o lla b ility a n d o b serv a b ility o f lin ear s y s te m s d escrib ed by th e right in v ertib le o p era to rs in lin ea r sp a ce, P rep r in t N o . 113,
In stitu te o f M athem atics, Polish Acad. Sci. y Warszawa,
1977.3. N g u y e n D in h Q u y et,
On the F \- controllability o f the system described by the right invertible operators in linear spaces
, M e th o d s o f M a th e m a tic a l P ro g ra m m in g , S y stem R esearch I n s titu te , P o lish A cad. Sci., P W N - P o lish S cien tific P u b lish e r, W arszaw a 1981, 223- 226.1. N g u y eii Van M ail, C o n tr o lla b ility o f g en era l linear s y ste m s w ith rig h t in v ertib le o p erators, p re p rin t N o. 472 .
Institute o f M athem atics y
P o lis hAcad.
S c i.jW arszawa,
1990.5. N g u y e n Van M au, B o u n d a ry v a lu e p ro b lem s an d c o n tr o lla b ility o f linear s y ste m s w ith rig h t in v e rtib le o p e ra to rs ,
D issertationes M ath.,
C C C X V I jWarszawa,
1992 .6 . A.Pogorzelec, ” Solvability and controllability of ill-determ ined system s w ith right invertible operators” , Ph.D.Diss., Institute of Mathematics, Technical University of
Warsaw, W arszawa
, 1983.7. D .P rezew o rsk a - R o lew icz,
Algebraic A n a lysis
, P W N a n d R eid el, W arszaw a- D ordrecht, 1988.
'IN N g u y e n D i r ứ i Q u y e t y H o a n g V a n T h i