HUCNG DAN QUAN LI SUDUNG
Sljr DUNG Sd DO TU DUY Oi DAY HOC CAC BAI THUC HANH HOA HOC H O U CO l 6 P 11
ThS. L^ Huy Hodng; ThS. Trdn Thj Ngpc Anh Truang Dgi hgc Dong Thdp
S
o dd Ur duy (SDTD) cdn ggi la ban do tu duy, luge dd tu duy ... la mpt hinh thdc ghi chep su dyng mau sac, hinh anh de md rpng va dao sau cac y tudng, dugc xay dyng va phat triln bdi tdc gid Tony Buzan. Sir dyng SDTD ttong day hgc la mpt ky thugt day hgc tich cue giup giao vien (GV) chu dpng, Imh hoat, tiet kiem thdi gian ttong vifc thiet ke bai day, truyen dat kien thiic mdi, cimg cd kien thiic bai hpc, tdng hgp kien thuc chuang, cau tnic va phan loai cac y tudng..., hinh thanh cho hpc sinh (HS) phuong phap ty hgc hifu qua, phat huy toi da tinh sang tgo,^ kha nang tu duy, nang Idiieu hpi hga, ddng thdi tgo tam li thoai mai, kich thich hiing thli hgc tap cua HS.Hda hgc la mdn khoa hgc vda ly thuyet vua thyc nghifm, do dd cdc gid thuc hanh cd mpt vi tri dac biet quan ttgng ttong chuang trinh phd thdng. Hien nay, chuang trinh sach giao khoa mdi da chii ttpng va tang cudng gid thyc hanh cho HS. De cac gid hoc thyc hanh dat ket qua tdt, vifc chuan bj d nha cua HS la rat cdn thilt. GV yeu cdu HS thilt kl SDTD cho bai thyc hanh trudc khi len ldp. Khi thyc hanh, HS diln hien tugng va giai thich vao SDTD, sir dung SDTD
dd ldm ban tudng trirdi thi nghifm. GV sii dyng SDTD de minh hpa va tdng kit ket qud thyc hanh.
1. Vai trd cua stf do tir duy trong d^y hgc hoa hpc
SDTD giup cho GV hpa hoc thiet ke bai giang, sap xep cac y tudng theo mgt tririh ty logic, tryc quan, hf thpng fren ca sd myc tieu, kien thiic frgng tam cua bdi hgc. Giiip GV cdp nhat kidn thuc mpt each de dang vd nhanh chdng.
Npi dung bai hpc fren ldp dugc td chirc thyc hien qua SDTD khdng nhung the hifn kien thuc hda hgc ma cdn cho thay mdi quan he giua cac kien thiic. Do la mpt cdng cu ghi nhd tdi uu, giup trinh bay bdi giang mpt each he thdng.
Giiip HS cd cdi nhin tdng quat ve npi dung bai hgc.
SDTD tang cudng hoat dpng tich cyc cua moi HS thdng qua sy hudng dan ciia GV cho HS tir hpc theo SDTD va d miic dp cao han nlia, HS cd the til lyc xdy dung SDTD theo cac muc tieu ciia bai hgc da dugc vach san.
2. Quy trinh lap SDTD trong day hoc cdc bai thvc hanh hoa hgc
- Buac 1: Xac dinh tii khda cua SDTD, cd the la ten bai thyc hanh.
- Buac 2: Xdc dinh cac nhanh chinh cua SDTD, la cdc phdn kiln thiic chmh, cd
the Id: hda chat, dyng cu, sa do thi nghiem each tien hanh, hifn tugng, giai thich,.. .Mdi mpt ddng ciia SDTD tuang ling vdi mpt tii khda. Trong timg nhdnh chinh cd the chia thdnh timg nhanh nhd hon. _ - Buac 3: Thiet lap mdi lien hf giiia cac nhanh.
Chu y: Ludn su dung cac mdu sac vi mau sac cd tac dung kich thich nao nhu hinh anh; Dimg cachinhdnh hda hgc xuyen sudt dd tgo hiing thii cho HS ttong qua trinh hpc tap nhu hinh ve cau tnic phan tii, thi nghidm, iing dung,...
3. Hoat dpng day va hoc vdi SDTD cdc bai thyc hanh hda hgc hun co
Buac L Chudn bi Chudn bi cua GV yd HS la yeu td quyet dinh den chat lugng va sy thanh cdng cua tiet thyc hanh.
* Chuan bi ciia GV GV xac dinh muc tieu bdi hpc, lua chgn phuang phap va phuofng tifn dgy hpc phil hgp vdi npi dung cua bai, sau do thiet ke ^iao an bang SDTD vdi sy hd ttg cua cdc phan mem tin hgc nhu Mindjet MindManager, Concept Draw.Mindmap.
Pro.v5.2.2, e'MindMap_4.0.
(Hinh 1) ,
* Chudn bi cua HS:
Trudc cac budi thuc hanh, GV yeu cau cac nhdm HS (mdi nhdm tir 6-8 em) lap
Ngdy nhgn bdi 23/01/2013; N^Ay duvp.t ddnp 25/02/2013
TAP CHITHIFT 81 GIAO DUC-SO 91-03/2013 • 3 1
HUONG DAN QUAN LI SUDUNG
Hinh 1. Cdu true chimg ticn lrinh day hgc hdi thuc hdnh hdng SDTD
m
Hinh 2. Sa do tu duy bdi 28 - Hoa hgc lap 11 mpt SDTD bai thuc hanh cho
tiet hgc thyc hanh do, vdi tu khda la npi dung^ chinh ciia bai thuc hanh. Moi HS trong nhdm se phu trach mpt mang ciia npi dung chinh tuang ling vdi mpt nhanh chinh cua SDTD, thiet lap moi lien he cua npi dung kien thuc minh phu trach vdi cac nhanh npi dung kien thuc khac trong SDTD.
GV khuyin khich HS phat huy _tdi da su san^ tao, nang khieu hpi hga, ket hop sir dung nhieu mau sac^ hinh anh minh hpa lam ndi bat kiln thijc trgng tam, thu hut dugc sy chii j , giiip ngudi dgc di nhd, de lien tudng.
Buac 2. To chirc hogt dong dgy vd hoc tren l&p
Mpt tiet thyc hanh hda hgc thong thudng cd mgt sd hoat dpng nhu sau:
Hoat dpng 1: Hoat dpng khdi dpng
GV neu muc tieu cua gid thyc hanh, npi dtmg cac thi nghifm, phan chia cac nhdm thyc hanh (mdi nhdm ttr 6 den 8 HS) va yeu cau HS thyc hien gid hpc nghiem tlic, tuan thti cac npi qui phdng thi nghiem, dam bao tuyet ddi an toan, ty giac lam viec ca nhan va ttao ddi phdi hgp frong nhdm.
HS nghe, hieu muc dich, cac yeu cau ciia gid hgc va nhan cac nhdm hgc tap ciia minh.
Hoat dpng 2: Kiem fra su chuan bi cua HS.
GV ggi tiing nhdm HS len trinh bay klt_qud ve SDTD da chudn bi sin d nha.
Hoat dpng 3: Hoat dpng tien hanh thi nghiem
Cdc nhdm HS tien hanh thi nghifm va hoan thien SDTD cua timg nhdm.
Hoat dgng 4: Hogt dpng ket thuc gid thyc hanh
GV cho tirng nhdm bdo cao ngan ggn ve ket qud hogt dpng cua nhdm qua SDTD.
Cac nhdm nhan xet lln nhau.
GV nhgn xet qua SDTD ma GV da chuan hi tnrdc.
Vi du: day bai thyc hanh 3
"Phan tich dinh tinh nguyen td, dieu che va tinh chat oia metan" (SGK Hda hoc ldp 11).
Hoat dpng 1: Hogt dpng khdi dpng.
GV neu muc tieu bai thi nghiem: HS can dat dugc cac muc tieu sau khi hodn thanh thi nghiem:
- Phan tich dinh tinh cdc nguyen to C vaH.
- Dieu che va thu khi metan.
- Dot chay khi metan.
- Dan khi metan vao dung dich thudc tim.
GV: chia ldp thanh cac nhdm nhu da phan cdng trudc.
Hoat dpng 2: Kilm tta sir chuan bj cua HS.
Cac nhdm HS tiln hdnh thi nghiem vd hoan tiiien SDTD ciia tiing nhdm.
Hoat dpng 3: Hoat dpng tien hanh thi nghifm.
Cac nhdm HS tiln hanh thi nghiem va hoan thifn SDTD ciia tumg nhdm.
Hoat dpng 4: Hoat ddng kit thuc gid thyc hanh.
3 2 • TAP CHI THIFFBI GIAO DUC-SO 91-03/2013
HUONG DAN QUAN LI SU DUNG Cac nhdm lan lugt bao
cao ket qud thi nghifm qua SDTD, GV tdng kit thdng qua SDTD da thiet kl sin Ien man chilu.
4. Kit lu^n
GV su dyng SDTD trong day hpc se cung cap cho HS cd cai nhin tdng quat vl vdn dl dang hgc t£^. Thdng qua SDTD do cdc em ty thilt kd cd the danh gid dugc iniic dp ty hoc tap, mure dp hieu biet va nam b^t van de d mdc dp nao, GV cd die nhanh chdng dieu chinh cho phu hgp.
Ngoai vifc diilt ke SDTD cho cac bai 1hi^ hanh, GV cdn cd the thilt ke cac Mi luyfn t ^ . GV cd the hirdng ddn HS 1^
SDTD eho bai mdi, ghi chep kien ihiic tren ldp, dn tap khi thi cir, ^ ke hoach ca n h ^ minh hga cac y tirdng cua ca nhan. Sii
dung SDTD ttong day hgc that sy la ddi mdi phuong p h ^ day hgc, gdp phan nang cao hifu qud dgy hgc hda hgc ndi rieng va cac mdn hgc khac, gdp phan nang cao nang lyc nhan thiic cuaHS.
Tdi lifu tham khao 1. Tran Dinh Chau, Dgng Thi Thu Thiiy Dgy lot - hgc tot cdc mdn hgc bdng bdn do tu duy, NXB Giao dye Vift Nam, 2011.
2. Nguyen Xudn Trudng, tdng chil bien, Sdch gido khoa Hoa hgc II, NXB Gido due 2007.
3. PGS.TS. Nguyin Thj Sim (Chu bien), TS. Le Van Nam, Phuang phdp dgy hgc hoa hgc, NXB Khoa hoc va ky thuat, 2009.
4. Tony Buzan, Sa do tu duy, NXB Tong hgp TP Hd Chi Minh, 2008.
Summary IMindMap huge role in teaching chemistry, especially the exercises. IMindMap in teaching chemistry to help lectures become more intuitive, more scientific and logic. Instmctional practices to help students IMindMap to maximize the ability to think, to create, and stimulate the imagination, inspire students to bring positive results in teaching chemistry. In this article we introduce you how to build and use IMindMap from advanced exercise class taught organic chemistry 11.
KHAM PHA DirdNG CYCLOID..,
3. Mpt s6 tinh chdt cua dvdng cycloid \k astroid
Vi dv 1 ^
Chi ra rang difn tich xdc dinh bdi mdt cung ciia dudng cycloid bang ba ldn difn tich cua dudng ttdn lan.
That vdy, mpt cung dugc xdc dinh khi dudng ttdn chuyen dpng dung mpt vdng trdn xoay. Vi vgy sit dung tich phdn tinh dif n tich vdi tham sd 6 la tham sd bifn lay tich phdn
A=Jydx = J y 2 | i 9 = Ja(l-cos6) aO - cosewe = J a^a - cose)^de
= a^ J a - 2cose + cos^ e)de
2Jt 1 =
= a ^ J O + cos^e>de = a^J"d6 + 1 ° ° a^ J - (1 + cos 2e)de ^ 3jta^.
Vi du 2
Xet dudng thang tiep xuc vdi dudng asttoid tgi diem P ttong gde phan tu thii nhat.
Chi ra rang dogn thang dugc tgo bdi khi tiep tuyen nay cat bdi cdc true tga dp cd dp ddi khdng ddi, khdng phy thupc vao vi tri cua P.
That vdy, tu phuang trinh x
= acos^G, y = asin^9, hf so gde cua tilp tuyen Id
y' = -i- = = - tan6 dx -3asinecos^ede Nen phuomg trinh ciia tilp tuyin Id y - asin^G = -tan9(x- acos^O).
Chiing ta tun giao vdi ttyc Ox bdng each cho y = 0 va tim X x = acos'6 + asm^ecos9 = acos9.
Tuong ty, giao vdi ti-yc Oy Id y = asinG. Vi vay dogn tiidng dugc tgo bdi khi tiep tuyen cat
(liep trang 30) bdi cac tryc tga do cd dp ddi la V^cos^ + a^sin^ ^ a la hang sd.
Tren day la mdt sd khdm phd xoay quanh cdc dudng cycloid vd hypocycloid. Bdi viet ndy can trao ddi gi thera?
Mong dugc su chia se ciia cdc ban.
Tai lifu t h a m khao 1. George F. Simmons, Gidi tich mgt bien so, Gido trinh trudng Dai hpc Thiiy lpi.
2. Phgm Thanh Phuong, Dgy vd hgc todn vai phdn mem Cabri, tdpl Hinh hoc phang, NXBGD, 2006.
S u m m a r y This article will explore to the cycloid, hypocycloid curves and some their properties by the aid of Cabri interactive software.
TAP CHI THIET BI GIAO DUC-SO 91-03/2013 • 3 3