• Tidak ada hasil yang ditemukan

tdng cua cac day so' Ren luyen kT nang trong giai toan cho hpc sinh thong qua cac bai toan tmh

N/A
N/A
Protected

Academic year: 2025

Membagikan "tdng cua cac day so' Ren luyen kT nang trong giai toan cho hpc sinh thong qua cac bai toan tmh"

Copied!
4
0
0

Teks penuh

(1)

48 i^

- £ | SO 8-2011

DauvoHpc

DiKyyk HOC

SANG TAO

Ren luyen kT nang trong giai toan

cho hpc sinh thong qua cac bai toan tmh tdng cua cac day so'

I. DAT VAN DE

Toan hoc la mpt mon hoc ca ban trong chuang trinh pho thong, la nen mong cho nhieu nganh hpc khac. Hpc toan hay giai toan la yeu cau thuang xuyen trong mpi hoat dpng va suy nghT. De co the hpc tot mon toan hay giai dupe cac bai toan doi hoi ta phai co cai nhin he thong ve mat kien thiic va ap dung viec phan loai cac dang kien thuc va ap dung vao cac bai toan vai lai giai dep tranh nhung sai lam, thieu sot. Han niia de van dung giai dupe nhanh ta phai huy dpng dupe ngay cac kien thiic lien quan den dang bai toan. Tu do khong nhirng gitip ta giai quyet tot bai toan ma ta con co the phat trien sang tao them cac bai toan mai ma phuang phap giai hoan toan tuang tu. Do la cong cu sac ben nhat cho nguai hpc toan.

La nguai nhieu nam true tiep giang day mon toan THCS, toi luon tran tra lam the nao de cho hpc sinh mam dupe cac phuang phap giai toan co he thong va van dung sac ben cac kien thiic vao giai cac bai toan de co ket qua cao trong cac ki thi.

Bai vay toi luon thay dupe trach nhiem cua minh la khong ngimg hpc hoi, tim toi a dong nghiep, tai lieu tham khao de huang dan hpc sinh bilt huy dpng nhanh kien thiic lien quan khi nhan ra dang bai toan giai dupe nhanh nhit, hpp ly nhat. Khi giang toi thiet nghi lam each nao de hpc sinh nam dugc phuang phap giai t6i uu nhat, gpn nhe nhdt, do la dieu toi hSng suy nghT nheu trong qua trinh giang day. Toi nghT den viec " Ren luyen kl nang trong giai toan cho hpc sinh thong qua cac bai toan

BUI HOANG ANH TrQdng THCS Cam Hda, Cam Xuyen, Ha TTnh tinh tong cua cac day so" la mpt each lam hay giiip hpc sinh nam vung co he thong canh giai cac bai toan nhanh nhat ma cac em con liing tiing trong khi giai cac bai toan.

II. NOI DUNG

Nam trong khuon kho ciia van de neu tren trong pham vi bai viet nay toi chi xin neu mpt so kien thiic ca ban co su dung trong cac bai toan cu the cua phan ap dung giai toan, nhung kien thiic neu ra a day chi giai han nhiing dinh nghia, nhiing tinh chat ca ban quan trpng, khong de cap doi voi nhiing kien thiic ly thuyet ti mi va cac bai tap ap dung cho tung phan do.

Trong qua trinh day hpc sinh khoi 6, 7 toi nhan thay CO nhieu bai toan tinh tong, lien quan den tinh tong cua day so ma hpc sinh rat liing tiing, lam mot each may moc, rap khuon, thilu su sang tao.

Hau het cac em chi biet sii dung hau het cac phep tinh de tinh ket qua trong viec giai cac bai toan tren, nhung chua phan tich nim cac dang de tinh, chua biet dupe dac trung ciia tung bai. Tir thuc te do toi da chpn mpt so bai toan cu thi quen thupc ve day so dl di den nhung bai toan tong quat phuc vu giang day eho hpc sinh, nhiing dang nay khong chi giup cho hpc sinh tiep thu nhanh va giao vien ciing co mpt he thong kien thiic. De nim ro vin de neu tren toi xin di vao mpt so bai toan cu the.

V i d u l ;

Bai 1: Tinht6ng:

Si = l + 2 + . . . + 9 9 + 100

(2)

DaijvaHcc soa^ZOVi

43

Cdch sidi 1:

Cap hai so dau va cuoi, cung nhu tung cap hai so each deu so dau va s6 cu6i diu co ting 101.

S] CO 50 cap nhu the, do do kit qua:

S, = 101 .50 = 5050 Cdch gidi 2:

Si= 1 + 2 + ...+ 99 + 100

Si = 100 + 99 + ...+ 2 + 1

Nen: Si = 101 + 101 + ...+ 101 + 101

(co 100 hang so) 101.100

Do do: Si = = 5050

Tii hai each giai 1,2 a SGK, cac em lam dupc bai tong quat sau:

Bai 2: Tfnh tong:

S 2 = l + 2 + ...+ (n l) + n De dang tinh dupe:

_ in + \).n Bai tap ren luyen:

Ti= 2 + 4 + ... + 2n T2= 1 + 3 + ... + ( 2 n + l )

Tu cac bai tap tren ta co bai tinh tong. tong quat cua mpt day cac so each deu nhau.

Bai 3: Tinh ting:

S3 = ai + a2 + ... + an-I + an vai a2 ai = a3 ai = ... = Sii dung 2 each giai ta tfnh dupc:

_ ( f l | + a 2 ) - »

^'^ 2

Vay khi tinh mpt day co dang each diu ta phai xac dinh s6 hang diu va s6 cu6i tim so hang ciia day.

Bai 4: Tim tong cua cac s6 tu nhien chia hit cho 4 du 1 va nho han 2003.

Giai:

S6 hang diu la 1 va so hang culi la 2001 2001-1

so so hang la: • -h 1 = 505 so hang Den day hpc sinh de danh tfnh dupc ting nha ap dung cong thiic tren, hoac hpc sinh ap dung hai each giai 1 va 2 cflng tfnh dupc.

Neu bai toan tren chi dung lai a hai each giai da trinh bay thi chua dii ma phai tim toi, phat hien each giai khac niia.

Cdch gidi 3: Co the hpc sinh du doan sau do dung phuang phap quy nap de chiing minh cac cong thiic tong quat.

Cdch gidi 4: Bai 1 va bai 2 khong phan tfeh giai nua, ta giai bai tap tong quat bang phuang phap khii lien tiep.

Cac so hang chi eo mpt thua so moi so lien tiep each nhau K dan vi. Vay ta nhan hai ve vai 2K.

Ta co: a2 - ai = as - a2 = ... = an - ap -1 = K Ton tai so T, M sao cho a2 T = 33 - ai = ... = an -an.2 = M - a n - i

Nhan hai ve vai 2K ta dupc:

2K S3 = 2 K . a i + 2 K . a 2 + . . . + 2 K an.i + 2K. an.

2K S3 = (a2 - T) ai +(a3 - a,) a2 + ... + (an-

an-2).an.i ( M - a n - l ) . An.

2K S3 = ai. a2 - ai T + a2 a3 ai a2 +•...+

an-i. an - an-2 . an-1 + an M - an-1 an

2K.S3 = an.M T.ai a...M -T.a,

83 = Cong thiic nay chinh la 2K

cong thiic a bai 3.

Tu each giai tren diu co mpt muc dfch la de tfnh tong cac day nhu neu a tren, rieng each giai 4 CO mpt muc dfch lan han nua dl giai cac bai toan khong theo quy luat tren.

Vi du 2;

Bai 1: Tfnh ting S4 = 1 2 . 3 + ....+ n . (n 1)

(3)

50

SO 8-2011 ./SGAY SAY

DaijvaHpc

Neu nhu giai bai toan nay theo each 1, 2 a vf du 1 thi khong bao giof giai dupe nhung phan tfeh each giai 4 thi viec giai bai toan nay rat don gian.

0 vf du 1 ta nhan 2 ve vai 2K nhung a bai nay ta nhan 2 ve vai 3K con truang hop bai toan nay vai K = 1.

Tac6:3S4 =1.2.3 +2.3.3+ .... + n(n+l).3 3S4 = 1.2.3 + 2.3.(4 1) + .... + n(n + 1) {(n + 2)-(n 1)}

3S4 = 1.2.3 + 2.3.4 1.2.3 + ....+ n(n + l)(n + 2)-(n l ) ( n + l )

3S4 = n(n+l)(n + 2)

n(n

+

l)(n

+ 2) S4= - -

Tii bai toan nay hudng dan hpe sinh di tim bai toan tong quat han.

Bai 2: Tfnh tong

S5 = aia2 + a2a3 + .... + anan+i Vai a2- ai = a3 - a2 = .... = an+i - an Ton tai hai so T, M sao cho

a3 - T = a4 ai = .... = an+i an-2 = M an-i = 3K

Ta nhan hai ve vai 3K:

3K. S5 = 3Kaia2 + 3Ka2a3 + .... + 3Kanan +1 3K.S3 = (a3 T)aia2 + (a4 - ai)a2a3 + . . . . + (M an-i)anan+i

3K.S5 = aia2a3 aia2 + a2a3a4 aia2a3 + + anan+iM-an-i.an+i

3K.S5 = an.an+iM Taia2 c _ an-an^,.M T.a,.a2

3K Bai 3: Tfnh tong

S6 = 1.2.3 + 2.3.3 + .... + n.(n+l).(n+2)

Tuang tu nhu bai tap 1 ta nhan hai ve vai 4, de dang bien doi dupc

n.(n + l).(n + 2).(n + 3) S6 =

4K

Bai 4: Tinh tong:

S7 = aia2a3 + a2a3a4 + + an an +1 an+2 Vaia2-ai = 33-32= = an+2-an+i =K Ton tai M va T sao cho

a4 T = a5 ai = = an+2 - an.2 = - M - a„.i

= 4K

Bang each nhan 2 ve voi 4K, dung cac phep biln doi nhu tren ta tfnh dupc:

^ 7 - 4 K

Tuang tu ta tfnh dupc tong cua day cac s6 hang CO nhieu thira so theo quy luat tren bang each tuang tu.

Vi du 3:

.+ 1 Bai 1: Tfnh tong

1.2 2.3 n(n + l) O bac Tieu hpe da giai dupc:

1 1 1 S s - l ^ -1

« + l Bai 2: Tinh tong

s,= ±.±...

+

-f 1 n

1 n + 1

1 ' 1.3 3.5 (2n + l)(2n + 3) Ta biet a bai 1 hai thira s6 a mlu each nhau mpt dan vi con bai nay hai thua s6 a ciing mot mlu each nhau hai don vi. Vay ta nhan hai vl v6i 2:

2SQ = — + — +

1.3 3.5

.+

2S9=1

SQ = 1-

1 1 1 - + + . 3 3 5

1

(2n + l)(2n + 3)

. + • 1 1

2« + l 2« + 3

Tuang tu ta giai bai tong quat.

2« + 3,

Tu bai toan tren ta co bai toan tong quat sau:

(4)

DaUvaHpc so 8-2Q^^ m 2 * 1 - ' - • • - r

51

Bai 3: Tinh tong Sio

1 1

— + + , . + •

a^a2 «2«3 ««««+!

V a i a 2 - a i = a 3 - a 2 = = an+i = K

Dung phuang phap giai nhu bai 1, bai 2 ta eo:

/

>io

1 1 a, <3„

:K

V."i "/7+iy

Tuang tu ta tfnh dupe vai cae so co mau la tfeh 3 thira so theo quy luat tren.

Bai 4:

Sii = 1

2S,, 1 1

1 1 + + . 1.2.3 2.3.4

. + -

• + •

1 1

• + •

1

n{n + l)(n + 2)

1 1.2 2.3 2.3 3.4 n(n + l) (n + l)(« + 2)

1 2Sn = T ^

1 1.2 (n + l)(« + 2)

Su =

1 1 \

^1.2 (« + l)(« + 2) :2

Tu bai nay ta thay rang cac thua so lien tiep a cung mpt miu each nhau mpt dan vi, tu day ta co thi ting quat hoa bai toan.

Bai 5: Tfnh tong S.2

1 1 1

• + •

+

n n+\ n+2

Vai a2 - ai = 33 - a2 = = an+2 - an+i = K ;^ 0 Bing each tuang tu nhu tren ta nhan vai 2K a hai vl dl dang tfnh dupc:

2 K . S i 2 =

1 1 \

V^1^2 ^n+l'^n+2 y

:2K

Tuang tu ta giai dupe cae day so eae so co miu la tfeh ciia nhilu thua s6 theo quy luat tren.

Nhan xet: 6 hai vi du 2, 3 cac bai toan diu dung phuang phap khii lien tilp. vi du 1 ta biln

doi lupng nhan vao con a vf du 3 ta biln dii cac so da cho.

Ta xet sang mpt loai toan mai:

Vi du 4:

Bai 1: Tfnh tong

S i 2 = l + 2 + 22 + + 2 " , n e N

Nhan xet: Bai toan nay quy luat khong giing nhung bai toan tren, ma cac so lien tiep each nhau 2 lan. Vi the ta nhan hai ve vai 2

2Si3 = 2 + 2^ +2^ + + 2" + 2 n+l

2Si3 = Si3 + 2"*' 1 Si3 = 2"^' 1

Tir bai toan tren ta giai dupc bai toan tong quat sau bang each phan tfeh tir bai toan tren.

Bai 2: Tfnh tong

Si4 = ai +32 + 33+ + an

Vai 32 : ai = 33 : 32 = = an: an-i Giai:

T 3 CO 32 = a i K , 33 = 32K, 3n = a(n-l)K

Nhan hai ve ciia tong tren vai K

K. Si4 = ai.K + a2.K + 33.K+ + 3n.K K.Si4 = 32 + 33+ +3nK (K l)Si4 = K.3n-a,

>14

K-a„-a, K 1

Cac vf du tren, cac bai toan deu co quy luat giai, nhung mpt so bai tosn muon gisi dupc gpn, nhanh ta phai dua vao dang giai tren.

III. KET LUAN

Tren day la mpt so vi du ma bsn thsn toi dS ap dung trong giang day hpc sinh nham giiip hpc sinh hiing thii, say me han trong viec hpe Toan, dac biet la giiip phat trien tu duy Tosn hpc.

Chic chin ring vai kha nang co hsn trong khi trinh b3y khong tranh khoi con nhieu dieu thieu sot, rit mong nhan dupc sir quan tam va gop y cua ban dpc dl giiip cho kinh nghiem cu3 toi dupc ho3n thien V3 co dieu kien dupc iing dung rpng rai./.

Referensi

Dokumen terkait