• Tidak ada hasil yang ditemukan

TIT DUY LSGIC VA BAN CHAT CUA TU DUY KHOA HOC

N/A
N/A
Protected

Academic year: 2025

Membagikan "TIT DUY LSGIC VA BAN CHAT CUA TU DUY KHOA HOC"

Copied!
6
0
0

Teks penuh

(1)

TRIET HQC, SO 10 (317), THANG 10 - 2017

TIT DUY L S G I C VA BAN CHAT CUA TU DUY KHOA HOC

Vfl Vdn Vidn'

' Ph6 giio su, tiin sT, Vi§n Triit hpc, Vifn Hin lim Khoa hpc xi h§i Vi$t Nam.

Nh|n bii ngiy 15 fliing 8 nim 2017. ChJp nh§n ding ngiy 5 thing 9 nim 2017.

Tom tat: Tfl gdc dp nhgn thfle lugn, bdi viet phan tich mft each khai quat cae n^Ta khac nhau cua tu duy; tr6n co sd do, lam ro ban ehdt eua tu duy logic - tu duy theo tinh tdt ylu eua nd, la pham ehat Ioai, la cai chung vdn cd ciia mpi eon ngudi ey thd. Dong thdi, lugn giai dh Iam ro ban chdt ciia tu duy khoa hpe, do la sy thing nhat hiiu ea giu'a phucmg phap luan chi dgo va tu duy Idgie. Bai viet eiing phdn tieh edu true ciia tu duy khoa hpc, bao gom: 1/ Cau triic hpp: Phuang phdp ludn chi dgo + tu duy Idgic, ttong do tu duy Idgic Id ylu to cot ylu. In dinh; 2/ Cdu true rpng: Vdn tri thuc (dau vao) + phuang phdp lugn chi dgo + tu duy Idgic + kha nang vgn dyng tti thiic, long kit thyc tiin (ddu ra). Qua dd, bai viit cung ggi ra f nghia ciia each hilu nay trong viec ren luyf n, nang eao nSng lye tu duy khoa hpe.

TCr khda: Tu duy Idgie, tu duy khoa hpc, cdu tnic cua tu duy khoa hpc.

Ngdy nay, khi nhdn logi dang bude vdo ndn vdn minh tri tud vd kinh td tri thfle, vdn dl ndng cao ndng lyc tu duy, trong dd cd tu duy khoa hgc cd mft y nghia ddc bift quan ttgng. CJ nude ta hidn nay, do trinh do khoa hgc, cdng nghf edn thdp, nang lyc tu duy khoa hge chua cao nen vifc nang cao ndng lyc tu duy khoa hgc lai eang cd y nghia edp bach. Tuy nhidn, de ndng cao ndng lyc tu duy khoa hgc, trude hdt phdi ndm bdt dugc ban chdt ciia tu duy khoa hgc. Day Id mgt vdn dd phue tap, cdn nhidu khflc mdc.

Trong bai vidt nay, chflng tdi cd gdng gdp phdn lam sdng td vdn d l ndi ttdn.

l . T v duy yk tir duy logic Khdi ni$m tu duy.

Tu duy Id mft hidn tugng rdt phflc tgp.

Sy t i n tgi vd hogt dgng cfla tu duy dugc nhiiu khoa hgc quan tam, chdng hgn:

Sinh ly hgc than kinh cao cdp nghien ciiu hoat dgng ttao ddi ehdt cua hf than kinh tinng uong.

Tam I^ hgc nghidn cihi cdc hogt dgng tdm ly cfla tu duy.

Triet hpc nghidn eflu tu duy tfl khia cgnh quan hd gifta tu duy va tdn tgi; giua y thfle vd v | t chdt; giua tirdi thdn vd ty nhidn.

Ldgic hge nghidn cim tu duy vdi tu each Id qua trinh sdn xudt tri thfle.

Ngay nay, trong khoa hgc hifn dgi, xudt hipn cdc nghidn cuu lidn ngdnh vd tu duy, nhu didu khien hgc, phdng sinh hgc, ky thudt hgc..., eiing khai thde khia cgnh md hinh hda tu duy nhdm xdy dung tu duy nhdn tgo. Chflng ta cung cd thi cdn k l ra nhidu VI dy nfta.

Trong bdi vidt nay, chflng tdi gidi han cdeh tiip can ttong ludn ban cfla minh tfl gdc df n h ^ thfle luin. Tfl lap trudng duy v | t bifn chung vdi each tidp cln dd neu, chflng ta cd thd thdy thugt ngft tu duy Id thugt ngft da nghTa. Chi it cd ba nghta thudng dugc sfl dyng nhu sau:

1/ Theo nghia rfng nhdt (triet hge): Tu duy doi Igp vdi ton tgi gidng nhu f thue ddi lap vdi vgt chdt, tinh tiidn ddi lap vdi ty nhidn. Tfly theo Igp truang, quan diim (ggi chung Id cac quan (fidm) tiid gidi quan ma

(2)

TU DUY LOGIC VA BAN CHAT C O A TU DUY KHOA HQC

ban ehdt cfla tu duy dugc hidu khde nhau;

chdng hgn, vdi ehfl nghia duy tam thi tu duy la cdi sdng tgo, edn vdi chfl nghTa duy vdt thi tu duy Id cai phdn anh. Lap trudng the gidi quan v l tu duy se chi phdi (dinh hudng) boat ddng cfla con ngudi, trong do cd hogt ddng tu duy.

2/ La nhiing quan niem, chudn muc (ggi chung Id cdc chudn mye) duge hinh thanh ttong lich sfl hoge duge ehfl thd ty gide lya chgn vd chflng ed vi tti chi phdi boat dgng cfla con ngudi, ttong dd cd hogt dfng tu duy tgi mdt thdi dilm nhdt dinh, ttong mdt phgm vi nhat dinh.

Vi dy: Ndi ddn ddi mdi tu duy la dflng theo nghia ndy. D l i mdi tu duy thye chat Id thc^ ddi quan ni$m dang chi phdi hogt dgng nhgn thac vd th\ee tien cfla chflng ta (quan niem cu ve chfl nghta xd hdi) bang mgt quan nifm khdc (quan nidm mdi ve chfl nghta xd hdi). Quan nifm mdi ndy ciing cd vai ttd chi phoi mgi boat ddng cfla chflng ta ttong thdi ky ddi mdi. Cac chudn muc tu duy d ddy thudng ddng vai trd nhu nhiing nguyen tac dieu chlnh hogt dfng cfla con ngudi, trong dd cd hogt dfng ciia tu duy.

Cflng vdi cdc nhdn td thd gidi quan, cac chudn myc nay bidu hifn vdi tu each nhiing nguyen tdc phuang phdp ludn d cac cap df khdc nhau ttong vifc dieu chinh (dinh hudng) hogt dpng cua con ngudi.

Chang hgn, d cap do ttilt hge, khi cdc quan nidm sieu hinh dieu chinh (dinh hudng) cho boat dgng tu duy, chung ta cd tu duy sieu hinh, cdn khi cac quan nifm bifn chiing dieu chinh (dinh hudng) cho boat dfng tu duy se dan den hinh tiidnh tu duy bifn chiing.

d cap dg tam Iy - xd hgi, vdi sy dilu ehinh cfla cdc chudn myc tam ly - xd hgi phuang Ddng, cdc chudn myc tdm ly - xa hgi phuang Tdy sd dan ddn su hinh tiianh tu duy phuang Ddng, tu duy phuang Tdy, v.v..

3/ Xet tCr gdc df Ldgic hgc, tu duy vdi tu

cdeh hogt ddng cfla nao ngudi nhdm sdn xuat ra tri thfle, cdn ggi Id ttr dity dang nhgn thiic

Theo nghTa ddy dii, tu duy dang nhan thuc cd the dugc phdn ehia thdnh hai bf phan khdc nhau:

Thu nhdt, tu duy hogt ddng theo ti'nh tdt ylu cfla nd, tflc tir duy hogt ddng theo cdc nguydn tdc tdt ydu ma bdt ky mgt con ngudi cy thd, binh thudng nao cung cd ttong qua trinh hogt ddng sdn xudt tii thuc - do la tu duy ldgic (theo nghta hpp). Ldgic hge hinh thfle di sdu nghidn cflru ve bf phdn tu duy ndy [Xem: 4, tt.l03] vd cdng ngay eang nhgn thfle day dfl ban ve nd; ehinh vi vgy, ngudi ta dinh nghta: Ldgic hge Id khoa hgc vi tu duy dung ddn (boat dfng theo diing tinh tat ydu von ed cfla nd) hay la khoa hgc v l tu duy ldgic.

Thu hai, nhung boat ddng khdng theo tinh tat ydu, bao gdm nhung boat dgng theo nghia thfl nhat va thfl hai da ndi tten va nhiing ydu td true giac (cdn dugc ggi la ndng lyc sang tao cua chu the). True gide \k boat dgng cfla tu duy theo tinh ngau hiing phu thuge vao ndng lyc sdng tao cua mii ca nhan cu the ttong viec phat hifn tu tudng mdi - ede phdt minh. Nhiing hogt ddng nay khdng mang tinh tat yeu cho nen Logic hpc khdng thi xay dyng thdnh ede quy ludt, quy tdc ldgic nhu bg phan tu duy ldgic tiieo nghia hep. Vi vay, khdng thd xdy dyng duge Ldgic hgc phat minh.

Tuy khdng thd xdy dyng dugc Logic hoc phat minh, nhung Ldgic hgc cd vai trd bo ttg khong thi thiiu ddi vdi cdc phdt minh;

ehdng hgn, nhd phan tieh Idgie ede sy kien ma ngudi ta phat hifn ra tinh hudng co vdn di; nhd phan tich toan canh van de ma gen md cho chung ta hudng tim kiem gid thuyit mdi; nhd chung minh ldgic ma chiing ta thira nhgn hoge bde bo gid thuyit mdi. Lidn quan tdi vdn de nay, nhieu nhd khoa hpc da khdng dinh rdng, "khdng cd Ldgic hpe phdt minh, nhung eung khdng mgt phat minh

52

(3)

v u VAN VIEN ndo tiulu Logic hgc" [3, tt.6]. Do khdng thd

nhan thuc ddy dfl bf phgn ndy (phi ldgic, trye gide), dong thdi do vai ttd to ldn cfla Logic hgc d l i vdi phdt minh, ndn theo nghia rfng, tu duy dang nhdn thfle dugc quy gian ddng nhdt vdi tu duy ldgic.

Bdn chdt eua tu duy logic.

Qua sy phdn tich tren day, chung ta cd the nhgn thdy, trong hogt dgng sdn xudt tri thfle, tu duy Idgie ed vai trd hdt sue quan trgng, nd Id phdn cdt I5i cfla hogt dfng sdn xudt tri thfle cd nhiing ddc tnmg co bdn sau day: 1/

Nd bilu thi ddc tnmg Iodi mgt each cdn bdn nhdt - da la con ngudi thi phai cd tu duy logic; 2/ Nd mang tinh tat yeu vd pho bidn - nghia Id nhiing boat dgng cfla nd cd thd nhfn thfle vd xay dyng thanh cdc quy luat, quy tde dh van dung eho hoat dfng tu duy cfla mgi chu thd; 3/ Ddy la bf phdn hogt dfng bin vflng, chung nhdt giing nhau d mgi chfl thi.

Mgt edch khdi quat, chflng ta cd till dinh nghta.- Tu diry ldgic Id tu duy theo tinh tdt yiu cua nd, tac Id tu duy hogt d0ng theo cdc nguyin tdc, qtiy tdc tdt yiu nhdm ddm bdo diiu kiin cdn cho viie dgt tdi chdn ly khdeh quan trong qud trinh sdn xudt tri thac mdi.

CJuan nifm nay Id hgp 1^. Nd hodn toan tuong flng vdi quan nifm ve Logic hgc - khoa hgc ve tu duy Idgic md mgt sd tdc gia dd su dyng: "Ldgic hge la mdt khoa hgc nghiin ciiu nhihig tu tudng eua con ngudi vi mat hinh thuc logic cua chung vd xay dung nhiing qi^ lugt, quy tde, md viie tudn thu nhiing qt^ lugt, quy tdc dy la dieu ki^n edn di dgt tdi ehdn ly khdch quan trong qud trinh riit ra tri thuc suy dien " [2, tt. 19].

2/ Tu duy Idgic cd nhiing d§e diem sau:

- Tinh xac dinh;

- Tinh nhdt quan, phi mdu thuan;

- Tinh lidn tyc;

- Tinh cd cdn cfl viing ehdc;

- Tinh ehdt ch€, chinh xde.

Nhiing d§c dilm ndy dd duge khdi qudt thdnh cdc quy lu|t ca bdn cua Ldgic hge.

2. Ban chat cua tir duy khoa hgc Mye dich cfla nhgn thuc khoa hgc Id phdt hipn cdc thufc tinh, cdc quy lugt vdn ddng, phdt tridn ciia ddi tugng vd vdn dyng cae kdt qud da dugc nhgn thuc vdo hogt ddng thye tien vi nhung Igi ich cfla con ngudi.

Tu duy khoa hgc eiing khdng ndm ngodi mue dich dd. Dd lam ro bdn chat ciia tu duy khoa hge, chflng tdi tap trung vao hai nfi dung CO bdn: Khai nifm tu duy khoa hgc va cau trfle eua nd. Dd thye hien myc dich tidn, trude hdt, chflng ta hay xem xet nd ttong pham vi eua hogt dgng tu duy thuan tfly (hogt ddng thudn tfly cfla tu duy) - boat dfng ndi tai cfla tu duy ttong qua trinh sdn xuat tri thuc (chua cd y l u td bdn ngodi).

Mft nhifm vu quan ttgng cfla tu duy khoa hgc la sdn xudt ra tti thuc mdi. Vi vdy, chflng ta phai xem xet tu duy khoa hgc tu gdc do cua tu duy dang nhdn thfle. Nhu dd phdn tich d phan tten, tfl gdc do nay thi tu duy logic Id mgt bg phdn ca bdn. thiit yiu, khdng thi thiiu cfla tu duy khoa hgc. Sd dT nhu vgy, bdi vi tu duy logic la bd phgn sdn xuat tri thfle theo tinh tat yeu cfla nd, edn nhidm vy co bdn cfla tu duy khoa hpc cimg Id san xudt ra tri thfle mdi.

Tuy nhidn, boat ddng sdn xudt tri thfle mdi - tu duy ldgic cdn bi chi phdi (dinh hudng) bdi nhiing quan £ e m , ehuan myc duge xem xet Iheo nghia thu nhat vd ngMa thfl hai vd tu duy dd duge phdn tieh d phdn tren. Cac quan diem va chuan myc dieu chinh cdc hogt ddng cfla tu duy ndy tao thanh cdc nguydn tac phucmg phdp Iudn. Cae nguyen tde ndy khi ket hgp hiiu co vdi nhau tao thanh mdt logi hinh phuang phdp ludn chi dao va Id dau hifu co ban de phan bift cac logi hinh tu duy. Chinh vi vgy, ciing vdi tu duy ldgic, logi hinh phuang phdp ludn chi dgo dang djnh hudng cho hogt ddng tu duy eUng trd thdnh mgt bo phdn ca bdn cfla tu duy khoa hgc. Sy khde bift giiia hai bf phdn nay la: 1/ Ndu bg phan thfl nhat - tu duy

(4)

TU" DUY L6GiC VA B A N CHAT CUA TU DUY KHOA HQC

logic Id mang tinh tdt ylu, chung cho mgi ehfl thi (cfng ddng, cd nhan) till bd phgn thfl hai khdng mang tinh tdt ylu, chung cho mgi ngudi md phy thugc vdo tung cfng ddng ey till, flidm ehi tiing cd nhdn cy till; 2/ N I U bf phdn thfl nhdt thdng qua cac thao tdc tu duy (ldgic) dl sdn xudt tri thfle thi bd phgn thfl hai chi tham gia vao vifc djnh hudng eho hoat dgng san xudt tri thfle.

Tfl sy phan ti'eh trdn, chung ta cd thi dua ra dinh nghta ve khdi nifm tu duy khoa hge nhu sau: Tu duy khoa hgc Id logi hinh tu duy sa dung cdc thao tdc cua tu duy logic dudi su dfnh hudng eua mgt logi hinh phuang phdp ludn chi dgo nhdm sdn xudt ra tri thac mdi phdn dnh dudi dgng khdi qudt hoa. trim tugng hda vi ede thude tinh bdn chdt, cdc quy ludt van ddng, phdt trien cua ddi tugng dugc nghien euu vd vi$c vgn difng cae tri thuc cd dugc vdo ddi sdng vi nhiing lgi ich cua con ngudi.

Nhu tten da chi ro, khi phan chia ede logi hinh tu duy khoa hge, chiing ta edn cfl vdo logi hinh phuong phdp ludn ldm ddu hifu phdn chia. Vdi each tiip can nhu vdy, chflng ta cd thd phdn bidt cdc logi hinh tu duy khoa hgc khdc nhau; chdng hgn, tu duy bifn chung, tu duy sidu hinh; tu duy phuong Ddng, tu duy phuong Tdy; tu duy quy ngp - kinh ngifm, tu duy gid thuylt - diln dich, V.V.. Trong tdt cd ede logi hinh tu duy ndy cd mdt bd phdn chung, dd la tu duy ldgic, nhung ttong moi logi hinh Igi dugc dinh hudng bdi mft phuong phap lugn khdc nhau. Do pham vi bai viet, chflng tdi khdng di sdu vdo vdn d l phdn Ioai ndy.

D I ldm rd bdn ehdt ciia tu duy khoa hgc, ngodi vifc dua ra dinh nghta v l khai nifm ndy, chflng tdi mudn lam rd cdu trfle cfla nd.

Qua sy phdn ti'eh d cac phdn tten, nlu xet cdu true h?p - cdu trfle nfi tgi cfla hogt dgng ttong tu duy thi cdu trfle cfla tu duy khoa hgc gdm hai bg phgn: T u duy logic vd phuang phdp lugn chi dao.

Quan nifm tren ddy Id hodn toan hgp ly, bdi tu duy khoa hge vfla phM tuan thfl cdc quy Iuit, quy tdc logic ttong vifc sdn xuat tri thfle, vfla chiu sy chi phii (dilu chinh) cfla cdc quan dilm phuang phdp lugn nhdt dinh. Trong hai bf phgn nay, tu duy ldgic Id ylu td chung cho mgi chfl thi tu duy mang tinh I n dinh, tdt ylu, cdn phuang pl^p Iudn la ylu t l thay ddi tfly thufc vao lap trudng, quan dilm cua ehfl thd (cdng ding, trudng phdi, th|m ehi Id cd nhdn) tu duy. Vi dy, ttong cac logi hinh tu duy ndi tten thi tdt ed eac logi hinh ay deu cd bg phan ehung la tu duy ldgic, cdn bf phgn phucmg phdp lugn thi khdc nhau. Nhu vdy, cd thi ndi, tu duy khoa hgc Id su thdng nhdt hOu ca giiia tu duy logic vd phuang phdp lugn chi dgo.

Thyc tien phat trien cfla khoa hgc dd chi ra rdng, trong sy phat tridn cfla khoa hgc, kl cd triit hge dd xudt hifn nhiiu trudng phai, khuynh hudng khae nhau. Sy khac nhau dy chfl ylu Id do lap trudng, quan dilm phuong phdp Iudn khde nhau gdy ra, cdn tu duy logic la gidng nhau. Ciing tfl dd mdi thay rdng, tu duy ldgic Id ylu td cdt ylu eua tu duy khoa hgc. Tu duy logic la pham chdt chung cua Iodi ngudi, nd vua mang tinh bam sinh (Ioai), vfla dugc ren luyf n thdng qua hge tap vd ttong thyc tiin. Khi danh gia ve vai tro cfla tu duy Idgie, Ph.Angghen da viit: "NIU nhiing tien d l cfla chflng ta Id diing vd neu chflng ta vgn dyng mgt each ehinh xac nhiing quy luat cfla tu duy (tu duy ldgic - V.V.V.) d l i vdi nhung tiin d l dy tiii kit qua phdi phfl hgp vdi hifn thyc..." [I, tt.829].

Cflng vdi tu duy, vifc van dyng phuong phap luan chi dgo phfl hgp ciing cd f ngMa rdt quan ti^ng, nd anh hudng tdi vifc nang eao Mfu qud cfla hogt dfng tu duy; ngugc Igi, nlu lya chgn mft phuong phdp lu|n cW dao khdng phfl hgp, nd se Iam giam hifu qua cfla hogt dgng tu duy. Tfl phfl hgp d ddy dugc diing theo ngM rfng - phu hgp vdi myc dich, nhifm vy nghidn euu, vdi mdi trudng

54

(5)

VU VAN VIEN vdn hda - khoa hgc, phii hgp vdi phdm chdt

tam - smh ly cfla ehfl thi nghidn cfln.

Bdn eanh cdu tnic hpp, chung ta eung can Idm r6 cdu true rdng cfla tu duy khoa hgc. Dieu do Id edn thilt, vi tu duy khoa hgc khdng ddng kin ttong hogt dfng cfla nao ngudi md Iudn gdn ket vdi mdi trudng ben ngoai; ehdng ban, d l sdn xudt tri thuc phdi cd von ddu vdo, ding thdi d l van dyng tri thfle phdi cd ddu ra Id thyc tien xa hfi.

Tu each hilu ttdn ddy, nlu x^t todn bg qud trinh sdn xudt tri thuc, ttong dd cd quan hf cua tu duy vdi mdi trudng xung quanh, cdu trfle rgng ciia tu duy khoa hge cd eac bg ph|n sau:

- V i n tri thfle - ddu vdo (tu lifu cdn thilt cho qud trinh sdn xudt tri thuc);

- Phuong phdp lufn chi dgo (cac quan dilm, chudn mye phuong phdp lu|n dflng dl dilu ehinh hogt dfng sdn xudt tti thfle cfla chfl thi);

Tu duy Idgic (cac hogt dfng theo nguyen tdc, quy tdc khdch quan tdt ylu dd sdn xuat tri thuc);

- Kha ndng van dyng tri thfle vdo thfle tien, ting kit thyc tien - ddu ra. Khd ndng v|n dyng tti thfle vdo thyc tiin duong nhidn phdi Id mft ylu to cdu thdnh cfla tu duy khoa hgc, bdi vifc vgn dyng tri thuc da cd vdo thyc tien vi nhihig lgi ich cfla eon nguoi Id mft nhifm vy co ban cfla tu duy khoa hgc. Cdn vifc xIp kha ndng ting kdt thyc tien vdo ddu ra la cd cdn cfl d cho, van dyng thyc tiin la vifc ldm thudng xuydn, tong kit thyc tiin cd vai ttd quan ttgng d l rut kinh nghipm nhdm nang cao hifu qud cho sy v | n dyng d nhihig ldn tiep theo. Day Id myc dich chfl ylu cfla ting ket thyc tien.

Tuy nhien, tong kit thyc tiin cung dem Igi nhftng til lifu cdn thilt bS sung cho dau vao cfla tu duy khoa hgc.

Mgt cdeh khdi qudt, chflng ta cd thi md td cdu true ciia tu duy khoa hgc nhu sau:

- Cau trfle hpp: Phuong phdp lugn cM

dgo + tu duy Idgic.

- Cau trfle rgng: Von tri thfle + phucmg phdp ludn ehi dao + tu duy Idgic + khd ndng vdn dyng, ting kit thyc tien.

Vifc ldm ro khai nidm, cau true eiia tu duy khoa hgc cd y nghta hit sue quan ttgng, d ^ bidt Id ttong vifc nhgn didn dflng dan ban ehat cfla tu duy khoa hge, eiing nhu vifc ndng eao ndng lyc tu duy khoa hge d nude ta Wf n nay.

Ve nhgn thac vai trd cua tu duy logic.

Trong thdi gian qua, do nhdn thfle ehua ddy dfl vd tu duy khoa hgc dan din xem thudng tu duy ldgic, thdm ehi cd thdi ky (dde bidt Id trude ddi mdi) khdng it ngudi xem tu duy logic la tu duy sidu hinh. Ciing tfl dd, vifc hgc tgp mdn Logic hge (hinh thfle) ehua dugc coi ttgng. Trude thdi k^*

ddi mdi, mdn hge ndy ehi dugc gidng dgy d mdt so it khoa cua mdt vai trudng dgi hge. Bude vao thdi ky ddi mdi, mdn hgc nay dugc dua vao gidng dgy d tat ed ede trudng dai hgc. Song, sau vdi nam dugc xem Id mdn hgc bdt buf c thi nay la mdn ty chgn. Chflng tdi cho rdng ddy Id mft tMdu sdt ldn. Ldgic hgc la mdn hgc ve tu duy Idgic, y l u td co bdn nhat cua tu duy khoa hgc. Vifc khdng chu ttgng hgc tgp, ren luyf n nd Idm cho ky nang tu duy ldgic ydu kem; ttong khi do, theo y kidn ciia nhiiu nha nghidn ciiu, thi tu duy truyen thdng Vift Nam n ^ g vd kinh nghifm (ddi thudng - V.V.v.), y l u vd tu duy ldgic.

d mgt sd nude, mdn hgc nay (logic hgc truyin thing) duge hgc d bdc phd thdng.

Didu ndy giup cho thd hf trd dugc ren luyf n kf ndng tu duy logic tfl rat sdm. O bac dai hgc, sinh vien dugc hgc mdn logic hgc hifn dai, vi vay dilu kifn dd phdt ttiln tu duy logic se tot hon. Dd din Iflc chflng ta can nhgn thfle mft each diing ddn hon ve vifc giang day vd hgc tap mon Logic hgc.

Ve vdn de ndng cao ndng lire tu duy.

Trong thdi gian gdn d^y, cd nhiiu d l tai

(6)

TU DUY LOGIC VA B A N CHAT CUA TU DUY KHOA HQC

ngMdn eflu, luan dn, Iuan vdn v l nang eao ndng lye tu duy. Dilu nay chung td vdn d l ndng cao nang lyc tu duy dang trd thdnh nhu cdu cdp bach d nude ta hifn nay. Tuy nhidn, theo chflng tdi, khi giai quyit vdn d l eung cdn nhiiu bat c|p. Chdng ban, v l he vdn d l ndng cao nang lyc tu duy khoa hgc.

Hidn nay cd nhiiu dd tai vd ndng cao nang lyc tu duy khoa hgc, nang eao nang lyc tu duy bifn chflng, nang eao nang lyc tu duy if ludn, v.v. cho ede d l i tugng khdc nhau, d cac cdp dd khdc nhau. Cd mgt tinh hinh chung Id cac d l tdi ddu hudng den tinh khoa hgc ciia cac logi hinh tu duy duge ngMdn Cliu. Dieu dd hodn todn de hieu. Nd phan dnh mft thye td Id nhu cau vd vgn dyng tu duy khoa hgc vao gidi quyet nhiing vdn d l ciia cufc sdng dang ngdy edng duge y thfle rd. Chdng ban, khi ndi ve tu duy Iy Iuan thi dd phdi la tu duy ly Iuan khoa hgc mdi cd y ngMa, cdn tu duy I^ lugn tu bifn tM khdng ed gia tti, th|m ehi la cd hgi.

Cd mft thyc td niia la, phdn ldn cdc ngMdn cfln deu quy gidn tu duy khoa hgc v l tu duy bifn chflng duy vgt. Sy quy gidn ndy khdng sai. Trong thdi dgi Mfn nay, chung ta hodn todn cd co sd dl khdng dinh tu duy biin chung duy vdt Id tu duy khoa hgc hi?n dgi (hay cM it tM ve co bdn la gdn nhau).

Ndu quy gidn nhu vdy tM v l eau trfle hep, chflng ta cd the khdng dinh, tu duy khoa hgc la s^ thdng nhdt hOu ea giiia tu duy logic vd phuang phdp lugn bi^n ehung duy vgt.

^ Tuy nMdn, do khdng nhdn thfle ddy dii ve tu duy bifn chflng duy vat, nen phdn ldn eac nghidn eflu deu khdng thdy dugc tu duy logic la bd phdn hgp tiidnh cfla tu duy khoa hge, ciing tflc Id mft bf phgn cfla tu duy bien chflng duy vdt. Tfl dd dan din quan mfm rdng tu duy bifn chflng duy vgt ehi duy nhdt duge phdp bifn chflng duy vgt nghidn cim ma logi bd hodn todn tu duy logic. Cdc n ^ d n cflru chfl yeu xoay quanh cac nguyen tdc phuong phdp Iudn cfla ph^p

bifn chiing, cd till la cfla cd Ldgic bifn chflng (cung ehi la mft bilu hidn cua phdp bifn chiing) d l luan gidi, tfl khai mdm din thyc trgng vd gidi phdp. Nhin chung, nhihig n ^ i d n eflu nhu v | y khdng dd dfng gi, tiiam cM cdn logi bd tu duy ldgic.

Chflng tdi cho rdng, each ngMdn cfln nhu vgy la thieu thuylt phye. Cdn cfl vao cdu tnic (cung Id ndi dung) eua tu duy khoa hpc tin cdc nguyen tdc cfla phdp bifn chflng duy vdt cM ddng vai ttd Id phuang phdp luan cfla tu duy khoa hgc, ehfl chua phai la toan bf tu duy khoa hgc. Va, vl vdy, chang han, dd ndng eao ndng lyc tu duy khoa hpc, chung ta phai chfl y tdi vifc ndng cao nang lyc cfla tat cd cac yeu td eau thanh ndi tren, dge bidt la ndng eao nang lyc tu duy logic, chfl khdng ehi t | p trung vao ylu t l phuong phap ludn bien chflng duy vgt. Duong nhien, van d l ndng cao ndng lye tu duy khoa hgc khdng cM lidn quan den ede yeu td ttong cau tnic eiia nd md edn lien quan den cdc yeu td khac; chdng ban, thyc ttang tu duy, moi trudng kinh te - xd hdi, vdn hoa - cMnh tii V.V.. Trong phgm vi bai viit nay, chflng tdi khdng thd di sau hon nfla

Tu duy ndi chung, tu duy khoa hgc n6i rieng la linh vyc het sue quan trgng bdi mpi hogt ddng cfla con ngudi ddu phdi thong qua tu duy cfla hg. Tu duy nhu thi nao tM ket qud se nhu thi. Tuy nMdn, ddy cung Id dl tai hit sue phiic tap, cdn nMdu f kien khdc nhau.

Trong bdi viet nay, chflng tdi manh dan trinh bay mgt sd quan mfm rieng ciia minh, rat mong duge df e gia quan tdm tirao ddi.

Tai lieu tham khao

[1] C M i c v i Ph.Angghen (1994), Todn tgp, t.20.

Nxb Chinh trj Quoc gia, H i Nfi.

[2] D.P.Gorki (191A), Ldgic hgc, Nxb Giio due, HiN^i.

[3] P.V.Kopnhin (1985), Ldgic nghien cuu khoa hpc, Nxb Khoa hpc, Mitxccrva (tieng Nga).

[4] V.I.Lenin (1981), Todn tgp, t.29, Nxb Tiin b$, Mitxcova.

Referensi

Dokumen terkait