M O T S O L U U Y K H I DAY HOG P H A N " M A N G H A I C H I E U " ( T i n h o c 11]
O TS. TRAN DOAN VINH*
T
rong chuang trinh Tin hoc 11, hoc sinh (HS) eta dugc Idm quen vdi kieu dd lieu mang mdt chieu. Vdi kieu du lieu ndy dd dap ung dugc nhung yeu cdu khi bieu dien du lieu cua cdc bdi todn trong thuc te. Tuy nhien, con cd mdt kieu du lieu md chung ta khdng the khdng gidi thieu cho HS trong hgc tap ngdn ngu lap trinh Pascal, dd Id «mdng hai chieu".1. Nhung kien thuc ca bdn HS can dgt dugc trong hgc tap phdn «mdng hai chieu"
Mang hai chieu la bdng cdc phdn tu cung kieu, Id mang mdt chieu md mdi phan tu cua nd Igi Id mdt mang mdt chieu. Cd hai cdch khai bdo kieu du lieu mang hai chieu:
khai bdo gian tiep bien mang qua kieu mang hai chieu vd khai bdo gian tiep bien mang hai chieu.
Gidng nhu khi khai bdo kieu du lieu mang mdt chieu, ngudi lap trinh can phdi xdc djnh kieu cua cdc phdn tu tgo nen mang vd kieu chi sd. Cdch xdc djnh kieu chi sd van nhu dd biet d kieu mang mdt chieu, chi khdc Id d mang hai chieu can xdc dinh hai chi sd, hai chi sd dd ddc lap vdi nhau. Cung nhu d mang mdt chieu, trong mang hai chieu, cdc thao tdc nhdp, xudt hay xu li mdi phdn tu cua mang phdi tudn theo quy dinh kieu phdn tu cua mang. Viec thuc hien cdc thao tdc ndo dd (nhdp, xudt hay xu li) Idn luat tren cdc phdn tu cua mang hai chieu thudng gdn vdi hai cdu lenh f o r - d o long nhau.
2. «Mdng hai chieu" vd mdt sd luu y trong qua trinh dgy hgc
1) Khai bdo mang hai chieu. Khai bdo mang hai chieu cd dgng tdng qudt nhu sau:
Cdch /: Khai bdo true tiep bien mang hai chieu: var<ten bien mdng>: a r r a y [kieu chi sd ddng, kieu chi sd cdt] of <kieu phdn tu>.
Cdch 2: Khai bdo gian tiep bien mdng qua kieu mdng hai chieu: T y p e <ten kieu Tap chi Giao due so 260 (k. 2.4/2011)
mdng>=array [kieu chi sd ddng, kieu chi sd cdt] o f <kieu phdn tu>; v a r <ten bien mdng>:
<ten kieu mdng>;
Tham chieu tdi phdn tu cua mdng hai chieu duac xdc djnh bdi ten mdng cung vdi hai chi sd dugc cdch nhau bdi ddu phdy vd viet trong cap dd'u ngogc [vd]. Vi dy, cdc khai bdo sau day Id hap le:
type
ArrayReal = array[-100 . . 200,100 . . 200] of r e a l ;
ArrayBoolean = array[-n+1..n+1,n..2*n]
of boolean;
v a r
Arraylnt: array[1..10 , 1. . 15 ] of integer;
ArrayLong: array[0..3 *(n+1) , O..n]of longint;
2) Mot so vi dy vd nhung van de can luu y Vi dy 1: Tinh vd dua ra mdn hinh bdng cuu chuang.
Chuang trinh tinh vd dua ra mdn hinh bdng cuu chuang:
program Bangcuuchuong;
uses c r t ; var
B: array[1..9, 1..10] of integer;
{B: bien mang hai chieu luu bang cuu chuong}
I , j : integer;
Begin clrscr;
for i : = l to 9 do for j : = 1 to 10 do
B [ i , j ] : = i * j ; for i:=1 to 9 do
begin
for j : = 1 to 10 do w r i t e ( B [ i , j ] ; 4 ) ; wr i t e1n;
end;
readln End.
Khi chpy chuang trinh, ket qua cd dgng nhu hinh 7 dudi day [xem hinh I j.
Tu chuang trinh tren, rut ra mdt sd luu y:
- GV cd the ggi y vd hudng ddn HS tham gia viet dugc chuang trinh cho bdi todn ddt ra;
* Truong Dai hoc sit pham Ha Noi
#
1 2 3 4 5 6 7 8 9 18 2 4 6 8 18 12 14 16 11 28 3 6 9 12 15 11 21 24 27 38 4 8 12 It 28 24 28 32 36 48 5 18 15 28 25 38 35 48 45 58 6 12 1« 24 38 36 42 48 54 68 7 14 21 28 35 42 49 56 63 - 78 8 16 24 32 48 48 56 64 72 88 9 18 27364SS4 63 72 81 98
Hinh 1. Ket qua chuang trinh tinh va dua ra man hinh bang cuu chuang
- Bien mang hai chieu 3 ILTU tru bdng nhdn cd the dugc khai bdo nhu- sau:
var 3: a r r a y ] ! . .31 of a r r a y ' l . .10]integer;
hodc cd the khai bdo ngdn ggn hon:
v a r 3 : a r r a y[ 1 . . 3 , ! . . 12jof i n t e g e r ; Gid tri phdn tu cua hai ch! sd dugc tinh theo cdng thuc: 3 [ i , j ] : = i * j . Trong chuang trinh dd su dung hai cdu lenh for-do long nhau vdi hai bien trong mdng hai chieu 3 dd Id: i , ; trong do: i :— > 5; ; : 2 —> 12 ;
Vi dy 2: Lap chuang trinh nhdp vdo tu bdn phim cdc phdn tu cua mdng hai chieu 3 gdm 5 ddng, 7 cdt vdi cdc phdn tu Id cdc so nguyen vd so nguyen k. Sau dd, dua ra mdn hinh cdc phdn tu cua mdng cd gid tri nhd han k.
Chuang trinh:
program rr>anghaichieu_l ; uses c r t ;
var 3: a r r a y [ 1 . d, i , j , k:
Begin clrscr;
writeln('Nhap cac j theo dong:');
for i : = 1 to 5 do begin
for : = 1 to w r i t e l n ; end;
write('Nhap vao gia t r i k = ' ) ; readln(k);d:=0;
hon', k, ' : ' ) ;
for i : = l to 5 do for j : = 1 to 1 do
i f B [ i , j ] < k then begin -.•••rite (B [ i , j ] , ' ' ) ;
d:= d + of ir.teaer ;
do r e a d ( B [ i , j ] ) ;
- ' ; end ; i f d=
End .
then :z cr.ar
Sau khi chgy chuang trinh, nhdp du lieu vdi gid tri cdc phdn tu cua mdng vd gid tri k = 7, khi dd danh sdeh cdc phdn tu nhd han 7 dugc in ra mdn hinh vd ket qua cua chuang trinh nhu hinh 2:
Hinh 2
Nhung khi nhdp vdo mdt gid tri k = 3 nhd han cdc phdn tu cua mdng dd nhdp vdo thi chuang trinh se in ra thdng bdo: «khong co phdn tu ndo nhd han 3" (hinh 3).
Hinh 3. Ket qua chuang trinh vai k=3 (nhd han cac phdn tu cua mang) Dd'i vdi chuang trinh tren, ta cd the thay ddi hinh thuc nhdp cdc phdn tu cua mdng vdo tu ban phim. Khi dd, chuang trinh se duac chinh sua nhu sau:
program manghaichieu_2 ,- uses c r t ;
var 3: array ; 1. . 5 , I . . - " of ir.teger;
d , i , j , k : integer;
Begin clrs Z-;
writeln('Nhap cac phan tu cua mang theo dong:');
for i : = 1 to 3 do begin
for j : = 1 to 7 do begin
w r i t e ( ' B [ ' , i , ' , ' , j , ' ] = ' ) ; read(B[.i, j ] ) ,-
end ; readin(k) ,
write ('Nhap vao gia t r i k = end d:=0;
writeln('DS cac phan tu mang nho hon', k, ' : ' ) ;
for i : = l to 3 do for : = 1 to " do
i f 3 [ i , j ] < k then begin d:='d+l;'
end ;
i f d=0 then writeln('khong co phan tu End. (Xem tiep trang 59)
Tap chi Giao due so 260 tk. a. 4/2011,
bdi duang ve CNTT cho GV, can bo QL nhd trudng; cd ke hoach ddo tgo GV phy trdch ve CNTT dap ung vdi yeu cdu ddi hdi ngdy cdng cao cua cdng viec trong thdi gian tdi.
Tang cudng ddu tu hg tdng ca sd CNTT trong trudng hgc nhu: thiet bi CNTT phyc vy cho ung dung CNTT vd day mdn Tin hoc; Tap trung ngudn nhdn luc, kinh phi ddu tu trang thiet bi CNTT thiet yeu (may tinh, may in, may chieu) cho phdng vi tinh, phdng gido an dien tu vd phdng Hi class V; Tao dieu kien cho GV khai thdc vd su dung phdng thu vien de lay thdng tin qua mang internet, phdng gido an dien tu vd phdng Hi class V vdo gidng dgy;
Tdng cudng trang bi cdc phdn mem QL con thieu nhu phdn mem QL phdng thiet bi, phdn mem xdy dung ngdn hang de, phdn mem QL HS, sd lien Igc dien tu,... vd mdt sd phdn mem dgy hgc cua cdc mdn hgc.
Thdi gian tdi, Trudng THCS Trdn Phu con nhieu viec can phdi thuc hien de viec ung dung Mot so luu y...
(Tiep theo trang 56)
Khi chgy chuang trinh dd chinh sua, ket qua chuang trinh cd dgng nhu hinh 4 dudi day:
Hinh 4
Tu chuang trinh tren, rut ra dugc mdt so luu y: - De Idn lugt cd dugc gid tri cdc phdn tu tgo nen mdng hai chieu B, thudng dung hai vdng lap f o r - d o long nhau. Cdu lenh viet trong hai vdng lap ndy Idm viec vdi mdt phdn tu cua mdng cd hai chi sd tuang ung Id hai bien dieu khien cua hai vdng f o r - d o ; - Mudn dua ra mdn hinh tdt cd cdc phdn tu cua mdng cd gid tri Idn han mdt gid tri ndo dd, can phdi duyet qua tdt cd cdc phdn tu cua mdng, cd the dung mdt so cdu gai y de HS tham gia viet chuang trinh. Chdng han, mdt phuong an gai y cho Tap chi Giao due so 260 <k. 2 - 4/201n
CNTT sdu rdng hon nua vdo QL vd chi dgo ddi mdi PPDH, phdn ddu trd thdnh mdt trudng hoc dien tu tien tien (e-school), theo kip vdi su phdt trien cua CNTT, gdp phdn vdo thdnh cdng chung cua su nghiep GD-DT Hdi Phdng, phyc vy su nghiep CNH, HDH ddt nude, xung ddng vdi danh hieu «Dan vi anh hung lao ddng thdi ki ddi mdi».Q
Tai lieu tham khao
1. Hoang Kiem - Quach Tuan Ngoc. Ung dung cong nghe thong tin trong quan li giao due va dao tao.
NXB Thong ke.
2. NguySn Van Khiem. Ung dung cdng nghe thdng tin trong cdng tdc qudn li ddo tao d trudng Ki thudt nghiep vu cdng an. Luan van thac si quan li giao due.
Truang Dai hoc Vinh, thang 1 1/2010.
3. Chi thi so 55/2008/CT-BGDDTngdy 30/9/2008 ciia Bo truang Bo GD-DT ve tang cuang giang day, dao tao va ung dung cong nghe thong tin trong nganh giao due giai doan 2008-2012 va Huang ddn ciia Bd GD-DT \i viec trien khai nhiem vu cong nghe thong tin nam hoc 2010-2011.
HS nhu sau: Chuang trinh 6 vidy 1 cung phai duyet qua tdt ca cac phdn tu cua mot mang hai chieu de in ra cac phdn tu. Trong trudng hgp nay, khong phai phdn tu nao cung dugc dua ra, ma chi dua ra nhung phdn tu thoa man dieu kien Ion hon gia tri cua bien k. Vqy can sua ddi doan chuang trinh trong vi dy 1 nhu the nao de dap ung dugc yeu cdu dgt ra?
***
Khi can to chuc du lieu cd cdu true bang, ngudi ta nghT den viec dung mdng hai chieu.
Mdi bien mdng gdm nhieu phdn tuvd mdi phdn tu cd hai chi so. Mdi phdn tu cua mdng hai chieu duac tham chieu qua ten mdng vd hai chi so.
Ddc biet, thdng qua cdc ket qua cua cdc chuang trinh de gidi cdc bdi todn, GV can dua ra cdc van de luu y cho HS sat vdi tung bdi todn. Chi khi dd, HS mdi tiep thu bdi hgc mdt cdch tdt nhdt, thuc day hogt ddng nhdn thuc cua HS vd ndng cao chdt lugng dgy hgc tin hgc. • Tai lieu tham khao
1.1. F. Kharlamov. Phat huy tinh tich cue hoc tap cua hoc sinh nhirthe nao. NXB Gido due. H. 1978'.
2. A. P. Escov - V. M. Monakhov - S. A. Besencov. Co so" Tin hgc va ki thuat tinh. NXB Gido due, H. 1988.
3. Ho ST Dam (chu bien). Tin hoc 11. NXB Gido due, H. 2006.
#