• Tidak ada hasil yang ditemukan

Variation of Constant Formulas of Linear Autonomous Grünwald-Letnikov-type Fractional Difference

N/A
N/A
Nguyễn Gia Hào

Academic year: 2023

Membagikan "Variation of Constant Formulas of Linear Autonomous Grünwald-Letnikov-type Fractional Difference "

Copied!
5
0
0

Teks penuh

(1)

AIP Conference Proceedings 2116, 450082 (2019); https://doi.org/10.1063/1.5114549 2116, 450082

© 2019 Author(s).

Variation of constant formulas of linear autonomous Grünwald-Letnikov-type fractional difference equations

Cite as: AIP Conference Proceedings 2116, 450082 (2019); https://doi.org/10.1063/1.5114549 Published Online: 24 July 2019

Anh Pham The, Piotr Jurgás, Michał Niezabitowski, and Stefan Siegmund

ARTICLES YOU MAY BE INTERESTED IN

A lower bound on the separation between two solutions of a scalar Riemann-Liouville fractional differential equation

AIP Conference Proceedings 2116, 450095 (2019); https://doi.org/10.1063/1.5114562

(2)

Variation of Constant Formulas of Linear Autonomous Grünwald-Letnikov-type Fractional Difference

Equations

Anh Pham The

1,b)

, 3LRWU-XUJiV

2

, Michał Niezabitowski

2,D)

and Stefan Siegmund

3,c)

1Faculty of Information Technology, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha noi, Viet nam

2InstituteofAutomaticControl,SilesianUniversityofTechnology,Akademicka16,44-100Gliwice,Poland

3Technische Universit¨at Dresden, Faculty of Mathematics, Center for Dynamics, Zellescher Weg 12-14, 01069 Dresden, Germany

a)Corresponding author: [email protected]

b)[email protected]

c)[email protected]

Abstract.In this paper, the variation of constant formulas for Gr¨unwald-Letnikov-type fractional difference equations are estab- lished. As an application, we prove a stability result for solutions of a class of autonomous scalar fractional difference equations.

Introduction

It is well-known that the Laplace transform method can be utilized to derive a variation of constants formula for linear fractional differential equations [1]. In this paper we use theZ-transform to establish variation of constant formulas for Gr¨unwald-Letnikov-type fractional difference equations in Section 2. In Section 3 we prove some stability results for solutions of a class of autonomous scalar fractional difference equations.

Letα∈(0,1),h>0. Consider a fractional difference equation of the form

(0Δαhx)(t+h)=A(t)x(t)+f(t) (thN), (1) wherex: hN→Rd,0Δαh is the Gr¨unwald-Letnikov-type fractionalh-difference operator of orderα, f:hN→Rdand A:hN→Rd×d. For an initial valuex0∈Rn, (1) has a unique solutionx:hN→Rdwhich satisfies the initial condition x(0)=x0. We denotexbyϕG-L(·,x0).

Remark 1(Solving linear homogeneous fractional difference equations (1)). The linear homogeneous initial value problem,(0Δαhx)(t+h) =Ax(t),x(0) =x0 ∈Rd, thN, A∈ Rd×d, has a unique solution given by the formula (see e.g. [2, Proposition 32])

ϕG-L(t,x0)=E(α,α)

Ahα,ht

x0 (thN).

(3)

A reader who is familiar with fractional difference equations may very well skip the remainder of the introduction in which we recall notation to keep the paper self-contained. Denote byRthe set of real numbers, byZthe set of integers, byN Z0 the set{0,1,2, . . .}of natural numbers including 0, and byZ0 {0,−1,−2, . . .}the set of non-positive integers. Fora∈R,h>0, we denote by (hN)athe sethN+a={a,a+h, . . .}. We writehNinstead of (hN)0. ByΓ:R\Z≤0→Rwe denote the Euler Gamma function defined by

Γ(α) lim

n→∞

nαn!

α(α+1)· · ·(α+n) (α∈R\Z≤0). (2) Note that

Γ(α)=⎧⎪⎪⎨

⎪⎪⎩

0 xα−1exdx ifα >0,

Γ(α+1)

α ifα <0 andα∈R\Z0. (3)

Binomial coefficientsr

m

can be defined for anyr,m∈Cas described in [3, Section 5.5, formula (5.90)]. Forr ∈R andm∈Zthe binomial coefficient satisfies [3, Section 5.1, formula (5.1)]

r m

=⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r(r−1)···(rm+1)

m! ifm∈Z≥1,

1 ifm=0,

0 ifm∈Z≤−1.

Definition 2. [2, Definition 27] Letα,a∈R. The Gr¨unwald-Letnikov-type h-dierence operatoraΔαhof orderαfor a function x: (hN)a→Ris defined by

(aΔαhx)(t)=

ta

h

k=0

a(α)k x(tkh) (t∈(hN)a),

where a(α)k =(−1)kα

k

1 hα.

Forβ∈C, we define a discrete-time Mittag-Leffler functionE(α,β)(A,·) by E(α,β)(A,n)=

k=0

Ak

nk+kα+β−1 nk

(n∈Z), (4)

see [2, 4, 5] for this and similar definitions.

Proposition 3. [2, Proposition 9] Letα ∈ (0,1],λ, β ∈ Randβ < α+1. If all solutions z ∈ Cof the equation (z−1)αzα−1satisfy|z|<1, thenlimn→∞E(α,β)(λ,n)=0.

Corollary 4. [2, Corollary 10] Letα∈(0,1],λ, β∈Randβ < α+1. All solutions z∈Cof the equation(z−1)α = λzα−1satisfy|z|<1if and only if−2α< λ <0.

Variation of constants formulas

Theorem 5(Variation of constant formulas for Gr¨unwald-Letnikov-type fractional difference equations). Letα ∈ (0,1), A∈Rd×dand f:hN→Rd. The solution of (1),(0Δαhx)(t+h)=Ax(t)+f(t), x(0)=x0∈Rnis given by

ϕG-L(t,x0)=E(α,α)(Ahα,ht)x0+

t

h

k=0

E(α,α)(Ahα,htk)f(k) (thN). (5)

(4)

Remark 6 (Variation of constants formula applied to nonlinear equation). Let α ∈ (0,1) and x: hN → Rd be a solution of the nonlinear fractional dierence equation (0Δαhx)(t+h)=Ax(t)+g(x(t)), where0Δαh is the Gr¨unwald- Letnikov-type dierence operator of orderα, g:Rd → Rd and A∈ Rd×d. Then x is also a solution of the (nonau- tonomous) linear fractional dierence equation(1)with f: hN → Rd, tg(x(t)). By Theorem 5, x satisfies the implicit equation

x(t)=E(α,α)(Ahα,ht)x0+

t

h

k=0

E(α,α)(A,htk)g(x(k)) (thN).

To prepare the proof of Theorem 5, we summarize some results about theZ-transform of a sequence x: N → R, which is defined by Z[x](z)=

i=0

x(i)ziforz∈C,|z|>Rlim supi→∞|x(i)|1/i, see e.g. [6, Chapter 6] and [7]. The Z-transform ofRdorRd×dvalued sequences is defined component-wise. The proof of the following lemma follows from [8, Lemma 3] and [2, Proposition 28].

Lemma 7(Z-transform of Mittag-Leffler functions and fractional differences). Let a∈R,α∈(0,1).

(i) Let A∈Rd×d,β∈R. ThenZ

E(α,β)(A,·) (z)=

z z1

β I1z

z z1

α A−1

.

(ii) Let x: (hN)a → Rd and y(n) (aΔαhx)(t) for t ∈ (hN)α and n ∈ N0 such that t = a+nh. ThenZ y

(z) = zh

z1

−α

Z[x](z), where X(z)=Z[x](z)and x(n)x(a+nh).

Proof of Theorem 5. By Lemma 7(ii), applying theZ-transform to equation (1) with the Gr¨unwald-Letnikov-type forward difference operator, we get

zh z−1

−α

G-L(·,x0)

(z)=AG-L(·,x0)

(z)+Z[f](z).

Using Lemma 7(i), we obtain ZϕG-L(·,x0)

(z)=Z

E(α,α)(Ahα,·)(z)x0+Z

E(α,α)(Ahα,·)(z)x0Z[f](z).

Applying the inverse of theZ-transform yields

ϕG-L(·,x0)=E(α,α)(Ahα,ht)x0+Z−1Z

E(α,α)(Ahα,·)(z)x0Z[f](z). Hence, we get

ϕG-L(t,x0)=E(α,α)(Ahα,ht)x0+

t

h

k=0

E(α,α)(Ahα,htk)f(k) (thN).

Boundedness of scalar linear Gr ¨unwald-Letnikov-type difference equations

Theorem 8(Stability of linear homogeneous Gr¨unwald-Letnikov-type scalar difference equation). Let α ∈ (0,1), λ∈R. If all solutions z∈Cof

1−1 z

z z−1

α

λhα=0 (6)

satisfy|z|<1, then

(0Δαhx)(t+h)=λx(t) (thN) (7)

is asymptotically stable.

Proof. From Theorem 5, we haveϕG-L(t,x0)=E(α,α)hα,ht)x0.From (8), we have (z−1)αhαzα−1.Hence, from Proposition 3, we have limt

h→∞E(α,α)α,ht)=0.

(5)

Theorem 9(Boundedness of nonautonomous linear Gr¨unwald-Letnikov-type scalar difference equation). Let α ∈ (0,1),λ∈Randn)n∈Na sequence in l1. If all solutions z∈Cof

1−1 z

z z−1

α

λhα=0. (8)

satisfy|z|<1, then the solution of

(0Δαhx)(t+h)=λx(t)+λt/h (thN), (9)

with initial condition x(0)=x0∈Rn, is bounded.

Proof. By Theorem 5, the solution of (9),x(0)=x0∈Rn, is given by ϕG-L(t,x0)=E(α,α)hα,ht)x0+

t

h

k=0

E(α,α)hα,htkk (thN).

By Theorem (8), there existsM≥0 such that|E(α,α)α,ht)| ≤MforthN. Then,

t

h

k=0

E(α,α)hα, t hkk

M

t

h

k=0

k| (thN),

proving that|ϕG-L(t,x0)| ≤M|x0|+M

k=0k|.

Using Corollary 4, the following Corollary follows from Theorem 9.

Corollary 10. Letα∈(0,1),λ∈R,n)n∈Na sequence in l1. Then the solution of(9)is bounded if2

h

α

< λ <0.

ACKNOWLEDGMENTS

The research of the second and third author was funded by the National Science Centre in Poland granted according to decisions DEC-2015/19/D/ST7/03679, DEC-2017/25/B/ST7/02888, respectively. The research of the last author was partially supported by an Alexander von Humboldt Polish Honorary Research Fellowship.

REFERENCES

[1] L. Kexue and P. Jigen,Applied Mathematics Letters24, 2019–2023 (2011).

[2] D. Mozyrska and M. Wyrwas, Discrete Dynamics in Nature and Society (2015).

[3] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science (Addison-Wesley, 1994).

[4] D. Mozyrska and E. Pawłuszewicz,Bulletin of the Polish Academy of Sciences: Technical Sciences61, 251–

256 (2013).

[5] E. Pawłuszewicz, “Remarks on Mittag-Leffler discrete function and putzer algorithm for fractional h- difference linear equations,” inTheory and Applications of Non-integer Order Systems(Springer, 2017), pp.

89–99.

[6] S. Elaydi,An Introduction to Dierence Equations(Springer New York, 2005).

[7] E. Girejko, E. Pawłuszewicz, and M. Wyrwas, “The z-transform method for sequential fractional difference operators,” inTheoretical Developments and Applications of Non-Integer Order Systems(Springer, 2016), pp.

57–67.

[8] P. Anh, A. Babiarz, A. Czornik, M. Niezabitowski, and S. Siegmund, Archives of Control Sciences p. under review (2018).

Referensi

Dokumen terkait

munculnya berbagai isu gerakan pembentukan negara berbasis agama sampai dengan praktik-praktik pemahaman dan perubahan ideologi di berbagai aspek kehidupan sikap intoleransi

Quan điểm coi phương tiện truyền thông là một phần của lực lượng sản xuất trong bối cảnh cuộc cách mạng công nghiệp 4.0 sẽ giúp chúng ta lý giải những vấn đề như tác động của truyền