• Tidak ada hasil yang ditemukan

Declaration 2 Publications

6. Conclusion

6.3 Concluding Remarks

In this dissertation, a trellis code-aided bandwidth efficiency improvement technique that improves the bandwidth efficiency of space-time block coded wireless communication systems without compromising the link reliability (error performance) has been presented. The presented technique has been investigated for differentially transmitted Alamouti STBC in the form of TC- DSTBC, and for USTLD in the form of E-USTLD. The significance of the trellis code-aided bandwidth efficiency improvement technique for space-time block coded systems is that it addresses the high speed data demands of modern digital communication systems. However, the bandwidth efficiency improvement has been achieved at the cost of high detection complexity, hence, an OP based LC near-optimal detection scheme for E-USTLD has been presented.

Moreover, the work presented in this dissertation has opened other avenues for future research.

53

Appendix A

The E-USTLD signals received prior to each decoding segment 𝑖 are expressed as:

π’š1,𝑖= √𝜌2 𝒉1,𝑖1 π‘₯π‘ž1𝑖+ √𝜌2 𝒉1,𝑖2 π‘₯π‘Ÿ2𝑖ejπœƒπ‘˜π‘–+ 𝜼1,𝑖 (A.1)

π’š2,𝑖 = √𝜌2 𝒉12,𝑖π‘₯Μ…π‘Ÿ2𝑖+ √𝜌2 𝒉2,𝑖2 π‘₯Μ…π‘ž1𝑖ejπœƒπ‘˜π‘–+ 𝜼2,𝑖 (A.2) Assuming that all symbol pairs are detected correctly, while the encoding trellis path is detected with errors, the PEP conditioned on 𝑯1 and 𝑯2 can be expressed as:

𝑃(π‘‘π‘˜β†’π‘”β†’ π‘‘Μ‚π‘˜β†’π‘”|𝑯1𝑯2) = 𝑃 (βˆ‘ {β€–π’š1,π‘–βˆ’ √𝜌2 𝒉1,𝑖1 π‘₯π‘ž1π‘–βˆ’ √𝜌2 𝒉2,𝑖1 π‘₯π‘Ÿ2𝑖ejπœƒπ‘˜Μ‚π‘–β€–

𝐹 2 𝑧 +

𝑖=1

β€–π’š2,π‘–βˆ’ √𝜌2 𝒉12,𝑖π‘₯Μ…π‘Ÿ2π‘–βˆ’ √𝜌2 𝒉2,𝑖2 π‘₯Μ…π‘ž1𝑖ejπœƒπ‘˜Μ‚π‘– β€–

𝐹 2

} < βˆ‘ {β€–π’š1,π‘–βˆ’ √𝜌2 𝒉1,𝑖1 π‘₯π‘ž1π‘–βˆ’ √𝜌2 𝒉2,𝑖1 π‘₯2π‘Ÿπ‘–ejπœƒπ‘˜π‘–β€–

𝐹 2 𝑧 +

𝑖=1

β€–π’š2,π‘–βˆ’ √𝜌2 𝒉2,𝑖1 π‘₯Μ…π‘Ÿ2π‘–βˆ’ √𝜌2 𝒉2,𝑖2 π‘₯Μ…π‘ž1𝑖ejπœƒπ‘˜π‘– β€–

𝐹 2

}) (A.3)

where 𝑧 is the length of the shortest error event path. Substituting (A.1) and (A.2) into (A.3) yields:

𝑃(π‘‘π‘˜β†’π‘” β†’ π‘‘Μ‚π‘˜β†’π‘”|𝑯1𝑯2) = 𝑃 (βˆ‘ {β€–βˆšπœŒ2 𝒉12,𝑖π‘₯π‘Ÿ2𝑖(ejπœƒπ‘˜π‘–βˆ’ ejπœƒπ‘˜Μ‚π‘–) + 𝜼1,𝑖‖

𝐹 2 𝑧 +

𝑖=1

β€–βˆšπœŒ2 𝒉2,𝑖2 π‘₯Μ…π‘ž1𝑖(ejπœƒπ‘˜π‘–βˆ’ ejπœƒπ‘˜Μ‚π‘–) + 𝜼2,𝑖‖

𝐹 2

} < βˆ‘π‘§π‘–=1{β€–πœΌ1,𝑖‖𝐹2+ β€–πœΌ2,𝑖‖𝐹2}) (A.4)

Let 𝑨𝑖 = √𝜌2 𝒉2,𝑖1 π‘₯π‘Ÿ2𝑖(ejπœƒπ‘˜π‘–βˆ’ ejπœƒπ‘˜Μ‚π‘–) and 𝑩𝑖 = √𝜌2 𝒉2,𝑖2 π‘₯Μ…π‘ž1𝑖(ejπœƒπ‘˜π‘–βˆ’ ejπœƒπ‘˜Μ‚π‘–). Applying the triangle inequality as in Naidoo et al [28] yields:

𝑃(π‘‘π‘˜β†’π‘”β†’ π‘‘Μ‚π‘˜β†’π‘”|𝑯1𝑯2)

= 𝑃 (βˆ‘ {‖𝑨𝑖‖𝐹2βˆ’ β€–πœΌ1,𝑖‖

𝐹

2+ ‖𝑩𝑖‖𝐹2βˆ’ β€–πœΌ2,𝑖‖

𝐹 2}

𝑧

𝑖=1

< βˆ‘ {β€–πœΌ1,𝑖‖

𝐹

2+ β€–πœΌ2,𝑖‖

𝐹 2}

𝑧

𝑖=1

)

(A.5) Considering that 𝜼1,𝑖 and 𝜼2,𝑖 are random Gaussian vectors with independent entries, the sum

βˆ‘π‘§π‘–=1{β€–πœΌ1,𝑖‖𝐹2+ β€–πœΌ2,𝑖‖𝐹2} can be written as β€–βˆ‘π‘§π‘–=1(𝜼1,𝑖+ 𝜼2,𝑖)‖𝐹2. Therefore, (A.5) can be further simplified as:

54 𝑃(π‘‘π‘˜β†’π‘” β†’ π‘‘Μ‚π‘˜β†’π‘”|𝑯1𝑯2) = 𝑃 (β€–βˆ‘(𝜼1,𝑖+ 𝜼2,𝑖)

𝑧

𝑖=1

β€–

𝐹 2

> βˆ‘{‖𝑨𝑖‖𝐹2+ ‖𝑩𝑖‖𝐹2}

𝑧

𝑖=1

)

= 𝑃 (β€–βˆ‘π‘§π‘–=1(𝜼1,𝑖+ 𝜼2,𝑖)‖𝐹 > √1

2βˆ‘π‘§π‘–=1(‖𝑨𝑖‖𝐹2+ ‖𝑩𝑖‖𝐹2)) (A.6) Let 𝜼T, with entries that are Gaussian RVs distributed as 𝐢𝑁(0,1) be defined as:

𝜼T=βˆ‘π‘§π‘–=1(𝜼1,𝑖+𝜼2,𝑖)

√2𝑧 (A.7) where 2𝑧 is the variance of each entry of the sum βˆ‘π‘§π‘–=1(𝜼1,𝑖+ 𝜼2,𝑖). Substituting (A.7) into (A.6) yields:

𝑃(π‘‘π‘˜β†’π‘” β†’ π‘‘Μ‚π‘˜β†’π‘”|𝑯1𝑯2) = 𝑃 (β€– 𝜼T‖𝐹 > √1

4π‘§βˆ‘(‖𝑨𝑖‖𝐹2+ ‖𝑩𝑖‖𝐹2)

𝑧

𝑖=1

)

= 𝑄 (√1

4π‘§βˆ‘(‖𝑨𝑖‖𝐹2+ ‖𝑩𝑖‖𝐹2)

𝑧

𝑖=1

)

= 𝑄 (βˆšβˆ‘ 𝜌

8𝑧‖𝒉2,𝑖1 β€–

𝐹

2|π‘₯π‘Ÿ2𝑖|2𝑑𝑖+ 𝜌

8𝑧‖𝒉2,𝑖2 β€–

𝐹

2|π‘₯Μ…π‘ž1𝑖|2𝑑𝑖

𝑧𝑖=1 ) (A.8)

where 𝑑𝑖 = |ejπœƒπ‘˜π‘–βˆ’ ejπœƒπ‘˜Μ‚π‘–|2, 𝑖 ∈ [1: 𝑧].

Let πœ…1,𝑖=8π‘§πœŒ ‖𝒉2,𝑖1 β€–

𝐹

2|π‘₯π‘Ÿ2𝑖|2𝑑𝑖 and πœ…2,𝑖 =8π‘§πœŒβ€–π’‰2,𝑖2 β€–

𝐹

2|π‘₯Μ…π‘ž1𝑖|2𝑑𝑖, therefore

𝑃(π‘‘π‘˜β†’π‘”β†’ π‘‘Μ‚π‘˜β†’π‘”|𝑯1𝑯2) = 𝑄 (βˆšβˆ‘( πœ…1,𝑖+ πœ…2,𝑖)

𝑧

𝑖=1

)

(A.9) Note that employing trellis code-aided mapping of additional bits, sets the squared distances as 𝑑1= 4, 𝑑2= 2 and 𝑑3= 4 for a scheme with one additional bit and z = 3, while for a scheme with two additional bits, 𝑑𝑖 = 4; 𝑖 ∈ [1: 𝑧] and 𝑧 = 2.

55

Appendix B

Figure A-1: 64-QAM Gray-coded labeling map πœ”πΊ [11]

Figure A-2: 64-QAM optimized labeling map πœ”π‘‚ [11]

56 Figure A-3: 16-QAM Gray-coded labeling map πœ”πΊ[11]

Figure A-4: 16-QAM optimized labeling map πœ”π‘‚ [11]

57

References

[1] S. K. Roy and N. Jain, β€œBER performance analysi of Alamouti coding technique in Rayleigh fading channel,” International Journal of Science and Research, vol. 3, no. 12, pp. 480- 483, Dec. 2014.

[2] S. M. Alamouti, β€œA Simple transmit diversity technique for wireless communications,”

IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct.

1998.

[3] C. Xu, S. X. N. Li Wang and L. Hanzo, β€œMultiple-symbol differential sphere detection- aided differential space-time block codes using QAM constellations,” IEEE Signal Processing Letters, vol. 18, no. 9, pp. 497-500, Sep. 2011.

[4] V. Tarokh and H. Jafarkhani, β€œA differential detection scheme for transmit diversity,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 7, pp. 1169-1174, July 2000.

[5] D. Divsalar and M. K. Simon, β€œMultiple-symbol differential detection of MPSK,” IEEE Transactions on Communications, vol. 38, no. 3, pp. 300-308, Mar. 1990.

[6] L. Li, Z. Fang, Y. Zhu and Z. Wang, β€œGeneralized differential transmission for STBC systems,” in IEEE Global Telecommunications (GLOBECOM) Conference, New Orleans, pp. 1-5, Dec. 2008.

[7] E. B. Slimane, S. Jarboui, I. Lamouchi and A. Bouallegue, β€œConcatenated differential space- time block codes and four dimensional 8-PSK trellis coded modulation for wireless MIMO system with Rayleigh fading noise,” International Journal of Computer Science and Information Technologies, vol. 3, no. 2, pp. 3456-3459, Apr. 2012.

[8] H. Lee, M. Siti, W. Zhu and M. Fitz, β€œSuper-orthogonal space-time block code using a unitary expansion,” in IEEE 60th Annual Conference on Vehicular Technology, Los Angeles, vol. 4, pp. 2513-2517, Sep. 2004.

[9] W. T. Chen, β€œSpectral efficiency analysis for LTE networks,” in IEEE Fourth International Conference on Consumer Electronics, Berlin, pp. 93-95, Sep. 2014.

[10] E. Basar , U. Aygolu, E. Panayirci and H. V. Poor, β€œSpace-time block coded spatial modulation,” IEEE Transactions on Communications, vol. 59, no. 3, pp. 823-832, Mar.

2011.

58 [11] K. Govindasamy, H. Xu and N. Pillay, β€œSpace-time block coded spatial modulation with

labeling diversity,” International Journal of Communication Systems, vol. e3395.

https://doi.org/10.1002/dac.3395, 2017.

[12] Q. Ling and T. T. Li, β€œEfficiency Improvement for Alamouti Codes,” in IEEE 40th Annual Conference on Information Sciences and Systems, Princeton, pp. 569-572, Mar. 2006.

[13] Z. A. Baloch, M. U. Baloch and N. Hussain, β€œEfficiency improvement of space time block codes,” International Journal of Communications, Network and System Sciences, vol. 3, no.

6, pp. 507-510, June 2010.

[14] J. Liu, β€œWireless multipath fading channels modeling and simulation based on sum-of- sinsoids,” in First IEEE International Conference on Computer Communication and the Internet, Wuhan, pp. 165-168, Oct. 2016.

[15] F. E. Mahmood, F. Y. Abdullah and H. A. Al-Tayyar, β€œAnalysis, simulation and modeling of mobile Rayleigh fading channel using Labview,” in IEEE Antenna and Propagation Conference, Loughborough, pp. 1-6, Nov. 2011.

[16] C. S. Hwang, S. H. Nam, J. Chung and V. Tarokh, β€œDifferential space-time block codes using nonconstant modulus constellations,” IEEE Transactions on Signal Processing, vol.

51, no. 11, pp. 2955-2964, Nov. 2003.

[17] H. Xu, K. Govindasamy and N. Pillay, β€œUncoded space-time labeling diversity,” IEEE Communication Letters, vol. 20, no. 8, pp. 1511-1514, June 2016.

[18] X. Li, A. Chindapol and J. A. Ritcey, β€œBit-interleaved coded modulation with iterative decoding and 8 PSK signaling,” IEEE Transactions on Communications, vol. 50, no. 8, pp.

1250-1257, Aug. 2002.

[19] Y. Huang and J. A. Ritcey, β€œOptimal constellation labeling for iteratively decoded bit- interleaved space-time coded modulation,” IEEE Transactions in Information Theory, vol.

51, no. 5, pp. 1865-1871, May 2005.

[20] M. Krasicki and P. Szulakiewicz, β€œBoosted space-time diversity scheme for wireless communications,” Electronics Letters, vol. 45, no. 16, pp. 843-845, July 2009.

[21] E. J. Kaminsky, J. Ayo and K. V. Cartwright, β€œTCM without constellation expansion,”

Journal of Communications and Networks, vol. 4, no. 2, pp. 90-96, June 2002.

59 [22] G. Ungerboeck, β€œTrellis-coded modulation with redundant signal sets,” IEEE

Communication Magazine, vol. 25, no. 2, pp. 5-21, Feb. 1987.

[23] S. Benedetto, M. Mondin and G. Montorsi, β€œPerformance evaluation of trellis coded modulation schemes,” Proceedings of the IEEE, vol. 82, no. 6, pp. 833-855, June 1994.

[24] S. Das, N. Al-Dhahir and R. Calderbank, β€œNovel full-diversity high-rate STBC for 2 and 4 transmit antennas,” IEEE Communications Letters, vol. 10, no. 3, pp. 171-173, Mar. 2006.

[25] H. Xu and N. Pillay, β€œSimple near-maximum-likelihood low-complexity detection scheme for Alamouti space-time block coded spatial modulation,” IET Communications, vol. 8, no.

15, pp. 2611-2618, May 2014.

[26] S. Siwamogsatham and M. F. Fitz, β€œImproved high rate space-time codes via orthogonality and set partitioning,” in IEEE Wireless Communication and Networking Conference, Orlando, vol. 1, pp. 264-270, Mar. 2002.

[27] S. S. H. Bidaki, S. Talebi and M. Shahabinejad, β€œA full-rate full-diversity 2\times2 space- time block code with linear complexity for the maximum likelihood receiver,” IEEE Communications Letters, vol. 15, no. 8, pp. 842-844, Aug. 2011.

[28] N. R. Naidoo, H. Xu and T. Quazi, β€œSpatial modulation: optimal detector asymptotic performance and multiple-stage detection,” IET Communications, vol. 5, no. 10, pp. 1368- 1376, July 2011.

[29] Z. Paruk and H. Xu, β€œPerformance analysis and simplified detection for two-dimensional signal space diversity with MRC reception,” SAIEE Africa Research Journal, vol. 104, no.

3, pp. 97-106, Sep. 2013.

[30] R. A. Abdallah, S. J. Lee, M. Goel and N. R. Shanbhag, β€œLow-power pre-coding based Viterbi decoder for tail-biting convolutional codes,” in Signal Processing Systems, Tampere, pp. 185-190, Oct. 2009.

[31] A. Hedayat, H. Shah and A. Nosratinia, β€œAnalysis of Space–time coding in correlated fading channels,” IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 2882-2891, Nov. 2005.

[32] E. Basar and I. Altunbas, β€œSpace-time channel modulation,” IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 7609-7614, Aug. 2017.

Dokumen terkait