Declaration 2 Publications
6. Conclusion
6.3 Concluding Remarks
In this dissertation, a trellis code-aided bandwidth efficiency improvement technique that improves the bandwidth efficiency of space-time block coded wireless communication systems without compromising the link reliability (error performance) has been presented. The presented technique has been investigated for differentially transmitted Alamouti STBC in the form of TC- DSTBC, and for USTLD in the form of E-USTLD. The significance of the trellis code-aided bandwidth efficiency improvement technique for space-time block coded systems is that it addresses the high speed data demands of modern digital communication systems. However, the bandwidth efficiency improvement has been achieved at the cost of high detection complexity, hence, an OP based LC near-optimal detection scheme for E-USTLD has been presented.
Moreover, the work presented in this dissertation has opened other avenues for future research.
53
Appendix A
The E-USTLD signals received prior to each decoding segment π are expressed as:
π1,π= βπ2 π1,π1 π₯π1π+ βπ2 π1,π2 π₯π2πejπππ+ πΌ1,π (A.1)
π2,π = βπ2 π12,ππ₯Μ π2π+ βπ2 π2,π2 π₯Μ π1πejπππ+ πΌ2,π (A.2) Assuming that all symbol pairs are detected correctly, while the encoding trellis path is detected with errors, the PEP conditioned on π―1 and π―2 can be expressed as:
π(π‘πβπβ π‘Μπβπ|π―1π―2) = π (β {βπ1,πβ βπ2 π1,π1 π₯π1πβ βπ2 π2,π1 π₯π2πejππΜπβ
πΉ 2 π§ +
π=1
βπ2,πβ βπ2 π12,ππ₯Μ π2πβ βπ2 π2,π2 π₯Μ π1πejππΜπ β
πΉ 2
} < β {βπ1,πβ βπ2 π1,π1 π₯π1πβ βπ2 π2,π1 π₯2ππejπππβ
πΉ 2 π§ +
π=1
βπ2,πβ βπ2 π2,π1 π₯Μ π2πβ βπ2 π2,π2 π₯Μ π1πejπππ β
πΉ 2
}) (A.3)
where π§ is the length of the shortest error event path. Substituting (A.1) and (A.2) into (A.3) yields:
π(π‘πβπ β π‘Μπβπ|π―1π―2) = π (β {ββπ2 π12,ππ₯π2π(ejπππβ ejππΜπ) + πΌ1,πβ
πΉ 2 π§ +
π=1
ββπ2 π2,π2 π₯Μ π1π(ejπππβ ejππΜπ) + πΌ2,πβ
πΉ 2
} < βπ§π=1{βπΌ1,πβπΉ2+ βπΌ2,πβπΉ2}) (A.4)
Let π¨π = βπ2 π2,π1 π₯π2π(ejπππβ ejππΜπ) and π©π = βπ2 π2,π2 π₯Μ π1π(ejπππβ ejππΜπ). Applying the triangle inequality as in Naidoo et al [28] yields:
π(π‘πβπβ π‘Μπβπ|π―1π―2)
= π (β {βπ¨πβπΉ2β βπΌ1,πβ
πΉ
2+ βπ©πβπΉ2β βπΌ2,πβ
πΉ 2}
π§
π=1
< β {βπΌ1,πβ
πΉ
2+ βπΌ2,πβ
πΉ 2}
π§
π=1
)
(A.5) Considering that πΌ1,π and πΌ2,π are random Gaussian vectors with independent entries, the sum
βπ§π=1{βπΌ1,πβπΉ2+ βπΌ2,πβπΉ2} can be written as ββπ§π=1(πΌ1,π+ πΌ2,π)βπΉ2. Therefore, (A.5) can be further simplified as:
54 π(π‘πβπ β π‘Μπβπ|π―1π―2) = π (ββ(πΌ1,π+ πΌ2,π)
π§
π=1
β
πΉ 2
> β{βπ¨πβπΉ2+ βπ©πβπΉ2}
π§
π=1
)
= π (ββπ§π=1(πΌ1,π+ πΌ2,π)βπΉ > β1
2βπ§π=1(βπ¨πβπΉ2+ βπ©πβπΉ2)) (A.6) Let πΌT, with entries that are Gaussian RVs distributed as πΆπ(0,1) be defined as:
πΌT=βπ§π=1(πΌ1,π+πΌ2,π)
β2π§ (A.7) where 2π§ is the variance of each entry of the sum βπ§π=1(πΌ1,π+ πΌ2,π). Substituting (A.7) into (A.6) yields:
π(π‘πβπ β π‘Μπβπ|π―1π―2) = π (β πΌTβπΉ > β1
4π§β(βπ¨πβπΉ2+ βπ©πβπΉ2)
π§
π=1
)
= π (β1
4π§β(βπ¨πβπΉ2+ βπ©πβπΉ2)
π§
π=1
)
= π (ββ π
8π§βπ2,π1 β
πΉ
2|π₯π2π|2ππ+ π
8π§βπ2,π2 β
πΉ
2|π₯Μ π1π|2ππ
π§π=1 ) (A.8)
where ππ = |ejπππβ ejππΜπ|2, π β [1: π§].
Let π 1,π=8π§π βπ2,π1 β
πΉ
2|π₯π2π|2ππ and π 2,π =8π§πβπ2,π2 β
πΉ
2|π₯Μ π1π|2ππ, therefore
π(π‘πβπβ π‘Μπβπ|π―1π―2) = π (ββ( π 1,π+ π 2,π)
π§
π=1
)
(A.9) Note that employing trellis code-aided mapping of additional bits, sets the squared distances as π1= 4, π2= 2 and π3= 4 for a scheme with one additional bit and z = 3, while for a scheme with two additional bits, ππ = 4; π β [1: π§] and π§ = 2.
55
Appendix B
Figure A-1: 64-QAM Gray-coded labeling map ππΊ [11]
Figure A-2: 64-QAM optimized labeling map ππ [11]
56 Figure A-3: 16-QAM Gray-coded labeling map ππΊ[11]
Figure A-4: 16-QAM optimized labeling map ππ [11]
57
References
[1] S. K. Roy and N. Jain, βBER performance analysi of Alamouti coding technique in Rayleigh fading channel,β International Journal of Science and Research, vol. 3, no. 12, pp. 480- 483, Dec. 2014.
[2] S. M. Alamouti, βA Simple transmit diversity technique for wireless communications,β
IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct.
1998.
[3] C. Xu, S. X. N. Li Wang and L. Hanzo, βMultiple-symbol differential sphere detection- aided differential space-time block codes using QAM constellations,β IEEE Signal Processing Letters, vol. 18, no. 9, pp. 497-500, Sep. 2011.
[4] V. Tarokh and H. Jafarkhani, βA differential detection scheme for transmit diversity,β IEEE Journal on Selected Areas in Communications, vol. 18, no. 7, pp. 1169-1174, July 2000.
[5] D. Divsalar and M. K. Simon, βMultiple-symbol differential detection of MPSK,β IEEE Transactions on Communications, vol. 38, no. 3, pp. 300-308, Mar. 1990.
[6] L. Li, Z. Fang, Y. Zhu and Z. Wang, βGeneralized differential transmission for STBC systems,β in IEEE Global Telecommunications (GLOBECOM) Conference, New Orleans, pp. 1-5, Dec. 2008.
[7] E. B. Slimane, S. Jarboui, I. Lamouchi and A. Bouallegue, βConcatenated differential space- time block codes and four dimensional 8-PSK trellis coded modulation for wireless MIMO system with Rayleigh fading noise,β International Journal of Computer Science and Information Technologies, vol. 3, no. 2, pp. 3456-3459, Apr. 2012.
[8] H. Lee, M. Siti, W. Zhu and M. Fitz, βSuper-orthogonal space-time block code using a unitary expansion,β in IEEE 60th Annual Conference on Vehicular Technology, Los Angeles, vol. 4, pp. 2513-2517, Sep. 2004.
[9] W. T. Chen, βSpectral efficiency analysis for LTE networks,β in IEEE Fourth International Conference on Consumer Electronics, Berlin, pp. 93-95, Sep. 2014.
[10] E. Basar , U. Aygolu, E. Panayirci and H. V. Poor, βSpace-time block coded spatial modulation,β IEEE Transactions on Communications, vol. 59, no. 3, pp. 823-832, Mar.
2011.
58 [11] K. Govindasamy, H. Xu and N. Pillay, βSpace-time block coded spatial modulation with
labeling diversity,β International Journal of Communication Systems, vol. e3395.
https://doi.org/10.1002/dac.3395, 2017.
[12] Q. Ling and T. T. Li, βEfficiency Improvement for Alamouti Codes,β in IEEE 40th Annual Conference on Information Sciences and Systems, Princeton, pp. 569-572, Mar. 2006.
[13] Z. A. Baloch, M. U. Baloch and N. Hussain, βEfficiency improvement of space time block codes,β International Journal of Communications, Network and System Sciences, vol. 3, no.
6, pp. 507-510, June 2010.
[14] J. Liu, βWireless multipath fading channels modeling and simulation based on sum-of- sinsoids,β in First IEEE International Conference on Computer Communication and the Internet, Wuhan, pp. 165-168, Oct. 2016.
[15] F. E. Mahmood, F. Y. Abdullah and H. A. Al-Tayyar, βAnalysis, simulation and modeling of mobile Rayleigh fading channel using Labview,β in IEEE Antenna and Propagation Conference, Loughborough, pp. 1-6, Nov. 2011.
[16] C. S. Hwang, S. H. Nam, J. Chung and V. Tarokh, βDifferential space-time block codes using nonconstant modulus constellations,β IEEE Transactions on Signal Processing, vol.
51, no. 11, pp. 2955-2964, Nov. 2003.
[17] H. Xu, K. Govindasamy and N. Pillay, βUncoded space-time labeling diversity,β IEEE Communication Letters, vol. 20, no. 8, pp. 1511-1514, June 2016.
[18] X. Li, A. Chindapol and J. A. Ritcey, βBit-interleaved coded modulation with iterative decoding and 8 PSK signaling,β IEEE Transactions on Communications, vol. 50, no. 8, pp.
1250-1257, Aug. 2002.
[19] Y. Huang and J. A. Ritcey, βOptimal constellation labeling for iteratively decoded bit- interleaved space-time coded modulation,β IEEE Transactions in Information Theory, vol.
51, no. 5, pp. 1865-1871, May 2005.
[20] M. Krasicki and P. Szulakiewicz, βBoosted space-time diversity scheme for wireless communications,β Electronics Letters, vol. 45, no. 16, pp. 843-845, July 2009.
[21] E. J. Kaminsky, J. Ayo and K. V. Cartwright, βTCM without constellation expansion,β
Journal of Communications and Networks, vol. 4, no. 2, pp. 90-96, June 2002.
59 [22] G. Ungerboeck, βTrellis-coded modulation with redundant signal sets,β IEEE
Communication Magazine, vol. 25, no. 2, pp. 5-21, Feb. 1987.
[23] S. Benedetto, M. Mondin and G. Montorsi, βPerformance evaluation of trellis coded modulation schemes,β Proceedings of the IEEE, vol. 82, no. 6, pp. 833-855, June 1994.
[24] S. Das, N. Al-Dhahir and R. Calderbank, βNovel full-diversity high-rate STBC for 2 and 4 transmit antennas,β IEEE Communications Letters, vol. 10, no. 3, pp. 171-173, Mar. 2006.
[25] H. Xu and N. Pillay, βSimple near-maximum-likelihood low-complexity detection scheme for Alamouti space-time block coded spatial modulation,β IET Communications, vol. 8, no.
15, pp. 2611-2618, May 2014.
[26] S. Siwamogsatham and M. F. Fitz, βImproved high rate space-time codes via orthogonality and set partitioning,β in IEEE Wireless Communication and Networking Conference, Orlando, vol. 1, pp. 264-270, Mar. 2002.
[27] S. S. H. Bidaki, S. Talebi and M. Shahabinejad, βA full-rate full-diversity 2\times2 space- time block code with linear complexity for the maximum likelihood receiver,β IEEE Communications Letters, vol. 15, no. 8, pp. 842-844, Aug. 2011.
[28] N. R. Naidoo, H. Xu and T. Quazi, βSpatial modulation: optimal detector asymptotic performance and multiple-stage detection,β IET Communications, vol. 5, no. 10, pp. 1368- 1376, July 2011.
[29] Z. Paruk and H. Xu, βPerformance analysis and simplified detection for two-dimensional signal space diversity with MRC reception,β SAIEE Africa Research Journal, vol. 104, no.
3, pp. 97-106, Sep. 2013.
[30] R. A. Abdallah, S. J. Lee, M. Goel and N. R. Shanbhag, βLow-power pre-coding based Viterbi decoder for tail-biting convolutional codes,β in Signal Processing Systems, Tampere, pp. 185-190, Oct. 2009.
[31] A. Hedayat, H. Shah and A. Nosratinia, βAnalysis of Spaceβtime coding in correlated fading channels,β IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp. 2882-2891, Nov. 2005.
[32] E. Basar and I. Altunbas, βSpace-time channel modulation,β IEEE Transactions on Vehicular Technology, vol. 66, no. 8, pp. 7609-7614, Aug. 2017.