CHAPTER 6: Effect of Hot Water and Molybdenum Dips on Endogenous Polyamines and 70 kDa
5. Conclusion
The susceptibility of lemon fruit to chilling is influenced by fruit source and growing conditions. Putrescine is the dominant PA and a precursor for synthesis of spm and spd, which are higher valency PAs than put. Seemingly, the HW 53°C treatment enhances protein synthesis, including HSPs. Therefore, the more soluble-conjugated PAs can be conjugated to proteins (including 70 kDa proteins as estimated of HSP70), enzymes, bioactive compounds with antioxidant properties, to improved protection against oxidative stress. In addition, Mo treatments increased XDH activity and ROS production to levels below critical damaging threshold, which possibly signal cellular aclimation through synthesis of high affinity PAs (spermine and spermidine) via putrescine as precursor. Therefore, the combination of HW and Mo led to reduced chilling injury through enhanced protein synthesis (specifically 70 kDa protein as an estimator of HSP70)), increased ROS production and soluble-conjugate PAs to increase oxidative stress acclimation.
144 References:
Aung, L.H, Jenner, J.F., Houck, L.G., 2001. Heat Shock induced changes in exocarp soluble sugars of lemons from two climatic regions. Journal of Horticultural Science & Biotechnology.
76(1), 107-111
Aung, L.H, Jenner, J.F, Fouse, D.C., Houck, L.G., 1999. Postharvest conditioning temperatures and fruit maturity on flavedo soluble sugars of coastal and desert lemons. Journal of Horticultural Science & Biotechnology. 74(3), 288-292
Aung, L.H, Obenland, D.M., Houck, L.G., 1998. Conditioning and heat treatments influence flavedo soluble sugars of lemon. Journal of Horticultural Science & Biotechnology. 73(3), 399-402 Bassard, J.E., Ullmanna, P., Bernier, F., Werck-Rerchhart, D., 2010. Phenolamides: Bridging
polyamines to the phenolic metabolism. Phytochemistry. 71, 1808-1824
Chaltz, E., Waks, J., Schiffmann-Nadel, M., 1985. A comparison of the responses of different citrus fruit cultivars to storage temperature. Scientia Horticulturae. 25, 271-277
Erkan, M., Pekmezci, M., 2000. The effect of different storage temperatures and postharvest treatments on storage and chilling injury of “Washington Navel” oranges. Acta Horticulturae. 518, 93-100
Erkan, M., Pekmezci, M., Wang, Y.C., 2005. Hot water and curing treatments reduce chilling injury and maintain post-harvest quality of ‘Valencia’ oranges. International Journal of Food Science and Technology. 40, 91-96
Foyer, C.H., Noctor, G., 2005. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 17, 1866-1875
Foyer, C.H., Shigeoka, S., 2011. Understanding oxidative stress and antioxidant function to enhance photosynthesis. Plant Physiology. 155, 93-100
González-Aguilar, G.A., Gayosso, L., Cruz, R., Fortiz, J., Báez, R., Wang, C.Y., 2000. Polyamines induced by hot water treatments reduce chilling injury and decay in pepper fruit.
Postharvest Biology and Technology. 18, 19-26
145
Hesberg, C., Hansch R., Mendel R.R., Bittner, F., 2003. Tendem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana. The Journal of Biological Chemistry.
279(14), 13547-13554
Houck, L.G., Jenner, J.F., Mackey, B.E., 1990. Seasonal variability of the response of desert lemons to rind injury an decay caused by quarantine cold treatments. Journal of Horticultural Science. 65(5), 611-617
Königshofer, H., Lechner, S., 2002. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension culture of tobacco and alfalfa in response to high-temperature stress?. Plant Physiology and Biochemistry. 40, 51-59
Kuznetsov, V.V., Shevyakova, N.I., 2007. Polyamines and stress tolerance of plants. Plant Stress.
50-62
Lenucci, M., Piro, G., Miller, J.G., Dalessandro, G., Fry, S.C., 2005. Do polyamines contribute to plant cell wall assembly by forming amide bonds with pectins?. Phytochemistry. 66, 2581-2594 Li, C., Jiao, J., Wang, G., 2004. The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Science. 166, 303-315
Lyons, M.J. 1973. Chilling injury in plants, Annual Reviews of Plant Physiology. 24, 445-66
Mathaba, N., Bower, J.P., Bertling, I., 2008. Influence of hot water and molybdenum dips on the production of total antioxidants during cold storage of lemon and their ability of such to scavenge reactive oxygen species. Proceedings of the International Society of Citriculture.
China Agriculture Press, 1130-1314
Martínez-Téllez, M.A., Ramos-Clamont, M.G., Gardea, A.A., Vargas-Arispuro, I., 2002. Effect of infiltrated polyamines on polygalacturonase activity and chilling responses in zucchini squash (Cucurbita pepo L.). Biochemical and Biophysical Research Communications. 295, 98-101
McLauchlan, R.L., Underhill, S.J., Dahler, J.M., Giles, J.E., 1997. Hot water dipping and low temperature storage of ‘Eureka’ lemons. Australian Journal Experimental Agriculture. 37, 249-52
146
Messiaen, J., Cambier, P., Van Cutsem, P., 1997. Polyamines and pectins I. Ion exchange and selectivity. Plant Physiology. 113, 387-395
Midehghan, S.H., Rahemi, M., Martínez-Romero, D., Guillén, F., Valverde, J.M., Zapata, P.J., Serrano, M., Valero, D., 2007. Reduction of pomegranate chilling injury during storage after heat treatment: Role of polyamines. Postharvest Biology and Technology. 44, 19-25
Mirdehghan, S.H., Rahemi, M., Castillo, S., Martínez-Romero, D., Serrano, M., Valero, D., 2007.
Postharvest Biology and Technology. 44, 26-33
Naka, Y., Watanable, K., Sagor, G.H.M., Niitsu, M., Pillai, M.A., Kusano, T., Takahashi, Y., 2010.
Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiology and Biochemistry. 48(7), 527-533
Németh, M., Janda, T., Horvath, E., Paldi. E., Szalai, G., 2002. Exogenous salicylic acid increase polyamine content but may decrease drought in maize. Plant Science. 162, 569-574 Porat, R., Pavoncello, D., Peretz, J., Ben-Yehoshua, S., Lurie, S., 2000. Effects of various heat
treatments on the induction of cold tolerance and on the postharvest qualities of ‘Star Ruby’ grapefruit. Postharvest Biology and Technology. 18, 159-165
Rozenzvieg, D., Elmaci, C., Samach, A., Lurie, S., Porat, R., 2004. Isolation of four heat shock protein cDNAs from grapefruit peel tissue and characterization if their expression in response to heat and chilling temperature stresses. Physiologia Plantarum. 121, 421-428 Sabehat, A., Weiss, D., Lurie S., 1996. The correlation between heat shock protein accumulation
and persistence and chilling tolerance in tomato fruit, Plant Physiology. 110, 531-537 Sala, J.M. 1998. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits.
Postharvest Biology and Technology. 13, 255-261
Schirra, M., Agabbio, M., D’Hallewin, P.M., Ruggiu, R., 1997. Response of torocco oranges to picking date, postharvest hot water dips and chilling storage temperature. Journal of Agricultural and Food Chemistry. 45(8), 3216-3220
Serrano, M., Pretel, M.T., Martínez-Madrid, C.M., Romojoro, F., Riquelme, F., 1998. CO2 treatment of Zucchini squash reduces chilling injury-induced physiological changes. Journal of Agriculture and Food Chemistry. 46, 2465-2468
147
Serrano, N., Martinez-Romero, D., Guillén, F., Valero, D., 2003. Effect of exogenous putrescine on improving shelf life of four plum cultivars. Postharvest Biology and Technology. 30, 259- 271
Tassoni, A., Germaná, A.M., Bagni, N., 2004. Free and conjugated polyamine content in Citrus sinensis Obseck, Brasiliano N.L 92, a Navel orange, at different maturation stages. Food Chemistry. 86, 537-541
Underhill, S.J., Dahler, J.M., McLauchlan, R.L., Barker, L.R., 1999. Susceptibility of ‘Lisbon’ and
‘Eureka’ lemons to chilling injury. Australian Journal of Experimental Agriculture. 39, 757-60
Valero, D., Martínez-Romero, D., Serrono, M., 2002. The role of polyamines in the improvement of the shelf life of fruit. Trends in Food Science and Technology. 13, 228-234
Velero, D., Serrano, M., Martínez-Madrid, M.C., Riquelime, F., 1997. Polyamines, ethylene, and physicochemical changes in low-temperature-stored peaches (Prunus persica L. Cv.
Maycrest), Journal of Agricultural Food Chemistry. 45, 3406-3410
Velero, D., Serrano, M., Martínez-Madrid, M.C., Riquelime, F., 1998. Influence of postharvest treatment with putrescine and calcium on endogenous polyamines, firmness, and abscisic acid in lemon (Citrus limon L. Burm cv. Verna). Journal of Agricultural Food Chemistry.
46, 2102-2109
Vierling, E. 1991. The roles of heat shock proteins in plants, Annual Reviews of Plant Physiology and Plant Molecular Biology. 42, 579-620
Wang, C.Y. 1993. Approaches to reduce chilling injury of fruits and vegetable. Hort Reviews. 15, 62-95
Wang, C.Y. 1994. Combined treatments of heat shock and low temperature conditioning reduces chilling injury in Zucchini squash. Postharvest Biology and Technology. 4, 65-73
Yesbergenova, Z., Yang, G., Oron, E., Soffer, D., Fluhr, R., Sagi, M., 2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. The Plant Journal. 42, 862-876
148
Zheng, Y., Zhang, Q., 2004. Effect of polyamines and salicylic acid on postharvest storage of
‘Ponkan’ Mandarin. Acta Horticulturae. 632, 317-320
List of Tables
Table 1: Effect of hot water and molybdenum postharvest dips on chilling symptoms of lemon fruit cold stored (-0.5°C) for up to 28 days
Table 2: Effect of hot water and molybdenum postharvest dips on lemon flavedo free, soluble- conjugated and membrane-conjugated polyamines over 28 days cold storage (-0.5°C) during 2007 harvest season
Table 3: Effect of hot water and molybdenum postharvest dips on lemon flavedo free, soluble- conjugated and membrane-conjugated polyamines over 28 days cold storage (-0.5°C) during 2008 harvest season
List of Figures
Figure 1: Confirmation of polyamines in lemon flavedo by chromatography. A. Polyamines authentic standards B. Flavedo free soluble polyamines C. Soluble-conjugated flavedo polyamines and D. Membrane-conjugated flavedo polyamines
Figure 2: Effect of fruit source (A-C) on free, soluble-conjugated and membrane-conjugated polyamines
Figure 3: Effect of cold storage time (A-C) on free-soluble, soluble-conjugated and membrane- conjugated PAs
Figure 4: SDS-PAGE of lemon flavedo from different growing condition over different harvest season pre-treated with hot water (47 or 53°C) and molybdenum.
Figure 5: Lemon flavedo total protein concentration over different fruit source and harvest season
Figure 5: Relationship between total soluble-conjugated polyamines and estimated HSP70 for lemon flavedo pre-treated with hot water and molybdenum before 28 days cold storage
149
Table 1
Treatmentsa Ukulinga 2007b Sun Valley Estatesc 2007
Ukulinga 2008b Eston Estates 2008d
Water dip (25oC) No symptoms 0.13a No symptoms Below detection
HW 47oC No symptoms 0.18a No symptoms Below detection
HW 53oC No symptoms 0.09a No symptoms Below detection
1 µM Mo No symptoms 0.04ab No symptoms Below detection
1 µM Mo + HW 53oC No symptoms 0.02ab No symptoms Below detection 10 µM Mo + HW 53oC No symptoms 0.00b No symptoms Below detection
aTreatment effect after 28 days cold storage plus 5 days shelf-life
bUkulinga lemon fruit showed no chilling symptoms during 2007 and 2008 harvest seasonS
cSun Valley lemon fruit showed chilling symptom expressible in chilling index ,and means followed by the same letter were not significantly different at LSD(0.05) = 0.096
dEston Estates lemon did show chilling symptoms but below detection and chilling index calculation
150
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
-10.0 20.0 40.0 60.0
80.0POLYAMINE MATHABA SPD 1.9 #1 Polyamine Mathaba UV_VIS_2 mAU
min 1
2
3 4
5
67
8
9 WVL:254 nm
Putrecsine Spermine
Spermidine
1,6 hexanediamine
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 25.0
-20 50 100
160Polyamine Mathaba Gateway 2008 7 days Water F 1 #1Polyamine Mathaba UV_VIS_2 mAU
min
1 2 3
4 5
6
7 8 9 10 1112
WVL:254 nm
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 25.0
-20 50 100 150 200
250Polyamine Mathaba Gateway 2008 7 days Water SC 1 #1Polyamine Mathaba UV_VIS_2 mAU
min 1 2 3
4
5 6 7 8 9 10
11
12 13 14
15
16 17
18 19 20 21 2223 24
25 26
WVL:254 nm
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
-100 250 500 750
1,200Polyamine Mathaba Gateway 2008 7 days Water MC 1 #1 UV_VIS_2 mAU
min 1 2
3
4
5 6 7 8
9 10 11
12 13 14
15 16
WVL:254 nm
(A) Standards
(D) Membrane conjugates (C) Soluble conjugates
(B) Free soluble
Time (min)
Fig 1:
151 0
40 80 120 0 40 80 120 160 200 240 0 1000 2000 3000 4000 5000 6000
Sun Valley 2007 Eston Estates 2008 Ukulinga 2007 Ukulinga 2008
Free soluble Soluble conjugates Membrane conjugates Putrescine (nmol g-1 DM)Spermidine (nmol g-1 DM)Spermine (nmol g-1 DM)
a
c b c
a
d
b c
b c b a
a a a a
b a b a
a a b a
b a b b
ab b aba
b b b a
A
C B
Fig 2:
152 Fig 3:
153 Fig 4:
154
0 1 2 3 4
Sun Valley Estates 2007
Eston Estates 2007 Ukulinga
2008 Ukulinga
2007
b
b a
a
Flavedo protein (mg g-1 DM)
Fig 5
155
Fig 6
156 Table 2.
Cold storage time (days)
Treatments Ukulinga 2007 Sun Valley Estates 2007
Free-soluble* Soluble-conjugates* Membrane-conjugates* Free soluble* Soluble conjugates* Membrane conjugates*
Put Spd Spm Put Spd Spm Put Spd Spm Put Spd Spm Put Spd Spm Put Spd Spm
Water dip (25OC) 446 27.7 31.8 4144 13.9 87.5 35 54.8 108.3 2853 3.8 87.3 3711 25.7 105.3 5200 206.3 19.9
HW 47oC 124 7.0 15.5 3135 12.4 33.4 25 34.8 252.2 2095 10.2 50.3 757 47.4 245.2 2793 199.8 281.0
0 HW 53oC 254 26.2 130.6 4573 58.1 64.4 37 52.8 152.9 501 2.1 4.5 4279 84.5 130.4 1828 108.5 152.9
1 µM Mo 80 4.6 46.1 5596 33.6 300.7 44 13.7 101.4 3402 8.4 108.5 619 17.5 255.8 3337 341.9 152.1
1 µM Mo + HW 53oC 990 115.0 390.8 7399 143.4 357.2 65 75.1 448.2 2304 22.0 72.4 1404 16.2 196.1 3104 61.3 93.7
10 µM Mo + HW 53oC 60 2.9 3.3 7827 68.7 135.7 61 72.4 70.8 2549 41.5 74.1 3501 64.5 372.2 1462 89.7 236.2
Water dip (25OC) 280 31.5 127.4 2083 7.1 262.9 18 39.8 127.5 2206 46.6 53.6 4495 41.2 201.1 4229 77.0 376.9
HW 47oC 114 7.7 5.2 7071 122.0 1028 55 13.3 108.8 503 143.8 47.7 10216 169.0 600.7 9158 157.8 665.5
7 HW 53oC 36 6.6 16.6 3400 92.6 488.6 26 39.9 62.5 2989 43.5 256.4 2242 242.6 388.8 803 67.6 62.5
1 µM Mo 745 60.7 211.5 6505 18.7 525.6 56 54.8 246.1 2425 42.7 71.4 2780 165.4 94.0 2600 29.5 502.5
1 µM Mo + HW 53oC 812 52.0 163.9 1756 37.6 129.5 20 47.6 140.4 2600 28.9 222.3 323 15.2 101.1 1620 53.4 189.1
10 µM Mo + HW 53oC 375 32.6 90.7 9769 592.0 644.9 78 196.7 469.1 3254 6.6 284.9 6908 273.0 133.2 2150 333.7 57.3
Water dip (25OC) 879 45.7 147.9 3862 63.6 191.0 37 14.0 34.0 4686 56.0 134.4 629 367.8 264.0 1519 15.2 11.4
HW 47oC 1131 194.7 371.8 1034 28.0 244.8 17 24.6 90.2 2595 32.0 187.6 6295 294.4 164.9 1700 8.10 83.2
14 HW 53oC 365 19.2 45.1 1822 87.6 227.7 19 91.7 162.1 4174 27.0 33.6 3074 151.9 159.9 1447 46.5 162.1
1 µM Mo 470 33.0 25.3 701 91.2 88.6 9 17.4 281.7 4227 4.3 4.4 5869 29.0 328.0 4116 25.2 34.5
1 µM Mo + HW 53oC 527 40.0 65.9 5392 31.9 83.4 46 32.4 71.3 151 4.8 7.0 405 29.4 272.2 3982 92.0 47.8
10 µM Mo + HW 53oC 1073 27.7 62.2 331 15.1 121.5 11 34.2 175.3 4107 17.4 68.0 6785 35.9 444.5 331 27.0 132.6
Water dip (25OC) 1516 15.8 80.6 11991 138.6 512.6 104 8.80 61.2 1917 66.0 94.9 15906 97.3 212.0 1060 96.4 5.8
HW 47oC 529 79.6 146.7 13277 83.0 152.2 106 37.0 78.0 3643 28.4 10.1 1974 17.7 25.3 47 5.8 11.9
21 HW 53oC 427 32.6 14.0 2466 27.9 45.1 22 50.1 477.0 1784 3.1 52.8 1343 24.7 79.1 42 4.6 477.0
1 µM Mo 272 22.3 21.6 9295 214.5 106.6 74 207.7 139.0 1016 17.4 149.9 3117 10.9 114.2 2442 55.9 119.0
1 µM Mo + HW 53oC 489 61.0 84.5 4958 37.7 156.2 42 39.7 53.5 3401 20.3 19.4 767 82.2 73.8 2941 104.7 292.9
10 µM Mo + HW 53oC 637 37.3 144.9 4710 86.6 113.1 41 63.5 122.9 2052 58.9 63.5 2188 49.6 108.3 186 156.8 41.4
Water dip (25OC) 255 44.6 68.6 12749 19.7 187.2 100 69.5 373.1 2648 6.9 24.6 9791 190.8 150.8 2925 54.8 188.2
HW 47oC 788 79.5 45.1 7152 20.6 124.9 61 101.3 370.5 4174 59.0 56.6 3963 370.3 646.1 2463 109.4 97.9
28 HW 53oC 895 32.1 7.5 5643 167.9 230.2 50 26.4 298.6 4244 20.5 74.3 4545 133.8 150.2 2453 21.7 298.6
1 µM Mo 64 4.5 10.2 13753 54.5 73.9 106 54.3 252.0 5161 14.8 114.4 2937 154.1 120.9 44 60.6 459.9
1 µM Mo + HW 53oC 279 24.2 10.7 7014 37.8 69.2 56 72.9 223.5 2878 8.9 233.2 806 61.4 218.6 885 95.4 100.5
10 µM Mo + HW 53oC 583 33.0 34.7 9080 84.4 103.4 74 51.5 85.2 4408 90.1 105.7 3991 27.2 66.8 324 27.1 127.9
F prob (5%) P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001
*PAs - mmol g-1 D
157 Table 3.
Cold storage time (days)
Treatments Ukulinga 2008 Eston Estates 2008
Free-soluble* Soluble-conjugates* Membrane-conjugates* Free-soluble* Soluble-conjugates* Membrane-conjugates*
Put Spd Spm Put Spd Spm Put Spd Spm Put Spd Spm Put Spd Spm Put Spd Spm
Water dip (25OC) 388 46.3 59.3 4629 14.2 84.6 738 29.4 198.0 961 11.7 67.9 1934 53.9 28.9 358 16.2 65.1
HW 47oC 411 20.2 147.7 3723 30.4 191.8 194 4.1 241.4 839 15.8 7.5 529 12.6 153.8 492 15.9 56.6
0 HW 53oC 521 55.9 17.1 2390 316.6 396.4 604 125.1 606.8 850 17.6 39.3 1578 67.2 133.9 984 61.0 111.6
1 µM Mo 354 25.4 38.3 1820 265.4 59.1 509 27.5 166.4 924 50.0 102.9 2507 251.0 66.6 331 17.2 134.4
1 µM Mo + HW 53oC 652 10.2 24.3 3519 44.6 40.3 680 67.5 152.9 2097 40.9 107.8 1510 4.0 84.4 466 83.5 110.9
10 µM Mo + HW 53oC 71 8.2 9.0 3744 65.2 27.6 547 94.5 91.8 21.00 3.9 13.1 2846 80.7 11.4 1462 89.7 250.8
Water dip (25OC) 590 31.0 151.8 1813 350.7 42.5 557 14.1 126.7 1038 36.6 121.3 4934 17.5 112.0 1621 49.4 110.2
HW 47oC 115 4.2 32.5 417 108.9 244.5 262 7.7 0.80 49 3.5 13.2 1451 12.6 20.6 72 2.6 0.90
7 HW 53oC 1275 12.4 177.5 2744 87.2 276.5 612 20.1 46.7 1317 9.6 82.0 3407 58.5 68.3 1914 100.2 16.5
1 µM Mo 692 55.6 114.8 2058 293.2 183.0 570 55.1 319.9 2084 65.5 65.7 296 142.5 12.0 467 50.0 266.8
1 µM Mo + HW 53oC 81 1.2 2.6 6304 85.9 203.4 526 18.2 67.9 1331 9.6 26.0 3482 42.0 134.7 1871 33.9 226.0
10 µM Mo + HW 53oC 150 2.7 17.5 3980 126.6 69.8 941 102.8 177.8 355 29.1 2.8 1340 139.3 24.0 2150 333.7 49.8
Water dip (25OC) 484 2.3 16.3 1845 7.8 84.0 381 55.5 314.7 644 3.0 10.3 1667 117.6 21.7 531 4.6 14.6
HW 47oC 403 37.8 31.2 2284 97.8 181.6 476 60.1 37.8 594 5.1 19.6 2621 79.0 30.1 663 55.5 188.9
14 HW 53oC 512 20.5 33.6 1344 103.4 132.6 855 95.4 457.9 515 5.4 19.5 4074 72.8 12.8 684 8.1 205.3
1 µM Mo 30 13.9 1.3 1772 150.8 63.2 566 65.9 260.3 380 45.8 46.6 2482 309.7 127.0 1376 97.2 45.0
1 µM Mo + HW 53oC 911 41.8 47.2 1358 79.6 38.5 425 14.6 91.6 530 6.8 39.7 1705 44.8 34.4 575 55.6 99.2
10 µM Mo + HW 53oC 391 34.0 142.6 5064 49.6 158.2 727 34.5 192.6 1766 17.6 77.0 848 368.4 82.4 331 27.0 219.7
Water dip (25OC) 200 33.1 28.9 1831 25.5 191.8 667 50.2 175.8 1816 15.8 29.6 674 147.1 27.6 477 197.4 317.3
HW 47oC 1023 45.8 290.1 4024 31.2 394.8 346 10.5 85.8 1912 89.0 24.9 739 56.6 414.1 353 40.6 335.0
21 HW 53oC 548 30.3 51.1 4599 78.5 463.5 597 60.4 9.2 767 34.8 15.9 654 29.6 651.3 292 41.7 151.0
1 µM Mo 626 60.5 125.3 2887 32.0 310.6 1552 36.9 65.8 2361 44.2 194.4 444 41.8 532.4 315 47.7 123.7
1 µM Mo + HW 53oC 353 50.0 12.1 2594 5.0 88.9 280 60.5 123.8 787 27.3 49.9 3066 7.2 711.8 250 51.7 193.3
10 µM Mo + HW 53oC 1268 112.5 37.0 3097 88.3 407.3 532 52.2 39.3 1800 13.1 15.3 578 132.9 230.1 186 156.8 324.4
Water dip (25OC) 564 9.0 8.8 1011 61.0 58.1 400 12.7 19.3 784 20.0 45.2 1549 32.8 330.0 249 23.7 32.1
HW 47oC 441 17.2 128.9 6855 231.8 385.4 1156 179.2 241.3 1196 24.0 445.2 1128 38.1 175.5 395 54.6 68.1
28 HW 53oC 152 37.2 145.2 5469 133.9 120.3 387 79.0 272.2 443 3.1 49.1 508 785.5 253.7 215 49.9 41.0
1 µM Mo 890 57.6 121.8 4526 49.0 160.9 865 94.6 116.1 576 71.9 121.1 859 24.1 380.9 123 39.2 9.3
1 µM Mo + HW 53oC 332 39.4 151.1 3268 48.1 105.5 418 47.7 204.4 912 8.3 149.0 748 28.4 311.7 190 61.3 194.4
10 µM Mo + HW 53oC 1025 12.9 99.3 3385 22.7 285.9 709 56.3 127.4 528 28.6 225.1 1401 194.3 108.9 324 27.1 30.0
F prob (5%) P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001 P<.001
*PAs - mmol g-1 DM
158