• Tidak ada hasil yang ditemukan

First integrals of the Lotka-Volterra Model

Integrating this by parts yields, I1 = 1

2e2x(3x2−2x−1)−1 2

Z

e2x(6x−2)dx, (4.32) integrating the second half of I1 by parts, we get

I2 = 1

4e2x(6x−2)− Z 6

4e2xdx = 1

4e2x(6x−2)− 3

4e2x+G. (4.33) and thus,I1 results in

I1 = 1

2e2x(3x2−2x−1)− 1

4e2x(6x−2) + 3

4e2x+G, (4.34) where Gis the integration constant.

Integrating equation (4.36) leads to the generalised form of the first integral, I = ˙xR1[1 + tan(S1)]12 + 1

A[ ˙x+Aln( ˙x−A)] +ψ(x, t). (4.37) In order to solve for the general functions in (4.37), we first differentiate then equate like terms in the corresponding coefficients resulting with the following equations,

∂I

∂x = x˙

R1x[1 + tan(S1)]12 +R1

2 [1 + tan(S1)]12 sec2(S1)·S1x

x, (4.38)

∂I

∂t = xR˙ 1

2 [1 + tan(S1)]12 sec2(S1)S1tt, (4.39) where the subscript xor t refers to partial differentiation with respect to the variable.

Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙

˙ x2 :

R1x[1 + tan(S1)]12 + R1

2 [1 + tan(S1)]12 sec2(S1)S1x

= bex+a

A(A−x)˙ , (4.40)

˙

x : −(bex+a)R1[1 + tan(S1)]12 − bex+a

A(A−x)˙ = R1

2 [1 + tan(S1)]12 sec2(S1)S1t

x. (4.41)

Integrating with respect to x, ψ = −

Z "

(bex+a)R1[1 + tan(S1)]12 + R1

2 [1 + tan(S1)]12 sec2(S1)S1t + bex+a

A(A−x)˙

#

∂x+F(t). (4.42)

Equating coefficients by x˙0,

A R1 [1 + tan(S1)]12 (bex+a) = ψt, (4.43)

=⇒ F(t) = AR1[1 + tan(S1)]12 (bex+a), (4.44) +

Z "

(bex+a)R1[1 + tan(S1)]12 +R1

2 [1 + tan(S1)]12 sec2(S1)S1t + bex+a

A(A−x)˙

#

∂x

!

+G. (4.45)

Thus, the first integral is given by I = ˙xR1[1 + tan(S1)]12 + 1

A[ ˙x+Aln( ˙x−A)] +AR1(bex+a) Z

[1 + tan(S1)]12 ∂t+G.

(4.46) where Gis the constant of integration.

Case 1.2: To determine the first integral we apply the equation (3.9) to (3.6) to obtain the relation,

R2[1 + tan(S2)]12 [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.47) Equating coefficients ofx,¨

∂I

∂x˙ =R2[1 + tan(S2)]12 . (4.48) Integrating equation (4.48) results in,

I = ˙xR2[1 + tan(S2)]12 +ψ(x, t). (4.49) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = x˙

R2x[1 + tan(S2)]12 + R2

2 [1 + tan(S2)]12 sec2(S2)S2x

x (4.50)

∂I

∂t = xR˙ 2

2 [1 + tan(S2)]12 sec2(S2)S2tt. (4.51)

Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙

˙ x2 :

R2x[1 + tan(S2)]12 +R2

2 [1 + tan(S2)]12 sec2(S2)S2x

= 0, (4.52)

˙

x : −(bex+a)R2[1 + tan(S2)]12 = R2

2 [1 + tan(S2)]12 sec2(S2)S2t

x. (4.53)

Integrating with respect to x we obtain, ψ = −

Z

(bex+a)R2[1 + tan(S2)]12 + R2

2 [1 + tan(S2)]12 sec2(S2)S2t

∂x

+ F(t). (4.54)

Equating coefficients by x˙0,

AR2 [1 + tan(S2)]12 (bex+a) =ψt,

=⇒ F(t) =AR2[1 + tan(S2)]12 (bex+a) +

Z "

(bex+a)R2[1 + tan(S2)]12

+ R2

2 [1 + tan(S2)]12 sec2(S2)S2t

#

∂x

!

+G. (4.55)

Thus, the first integral is given by

I = ˙xR2[1 + tan(S2)]12 +AR2(bex+a) Z

[1 + tan(S2)]12 ∂t+G. (4.56) where Gis the constant of integration.

Case 1.3: To determine the first integral we apply the equation (3.10) to (3.6) to obtain the relation,

R3[1 + tan(S3)]12 [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.57)

Equating coefficients ofx,¨

∂I

∂x˙ =R3[1 + tan(S3)]12 . (4.58) Integrating equation (4.58) results in,

I = ˙xR3[1 + tan(S3)]12 +ψ(x, t). (4.59) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = x˙

R3x[1 + tan(S3)]12 +R3

2 [1 + tan(S3)]12 sec2(S3)S3x

x, (4.60)

∂I

∂t = xR˙ 3

2 [1 + tan(S3)]12 sec2(S3)S3tt. (4.61) Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙

˙ x2 :

R3x[1 + tan(S3)]12 +R3

2 [1 + tan(S3)]12 sec2(S3)S3x

= 0, (4.62)

˙

x : −(bex+a)R3[1 + tan(S3)]12 = R3

2 [1 + tan(S3)]12 sec2(S3)S3t

x. (4.63)

Integrating with respect to x we obtain, ψ = −

Z

(bex+a)R3[1 + tan(S3)]12 + R3

2 [1 + tan(S3)]12 sec2(S3)S3t

∂x

+ F(t). (4.64)

Equating coefficients by x˙0,

A R3 [1 + tan(S3)]12 (bex+a) = ψt,

=⇒ F(t) = AR[1 + tan(S3)]12 (bex+a) +

Z "

(bex+a)R3[1 + tan(S3)]12

+ R3

2 [1 + tan(S3)]12 sec2(S3)S3t

#

∂x

!

+G. (4.65)

Thus, the first integral is given by

I = ˙xR3[1 + tan(S3)]12 +AR3(bex+a) Z

[1 + tan(S3)]12 ∂t+G. (4.66) where Gis the constant of integration.

Case 2.1: To determine the first integral for this case, we apply equation (3.12) to (3.6) to obtain the relation,

˙ x A−x˙

h

¨

x+ (bex+a)(A−x)˙ i

= ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.67) By equating coefficients of x¨ , we get

∂I

∂x˙ = x˙

A−x˙ (4.68)

Integrating equation (4.68) yields, I =−x˙

A −ln( ˙x−A) +ψ(x, t). (4.69) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.70)

∂I

∂t = ψt. (4.71)

Substituting the derivatives of I(x, t), we have

˙

x(beat+a) = ∂I

∂t + ˙x∂I

∂x, (4.72)

˙

x(beat+a) = ψt+ ˙xψx, (4.73)

and equating by powers of x˙ we get,

˙

x : bex+a=ψx, (4.74)

˙

x0 : 0 =ψt. (4.75)

Integrating x˙0,yields

ψ = C(x), (4.76)

ψx = C(x),˙

=⇒ C(x) =˙ bex+a,

=⇒ C(x) = bex+ax+G. (4.77) Therefore, our first integral becomes

I =−x˙

A −ln( ˙x−A) +bex+ax+G. (4.78) where Gis the constant of integration.

Case 2.2.1: To determine the first integral we apply equation (3.14) to (3.6) which results in,

1

Acos(S1)− x˙1 A(A−x˙1)

[¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.79) Equating coefficients ofx,¨

∂I

∂x˙ = 1

Acos(S1)− x˙1

A(A−x˙1) (4.80)

Integrating equation (4.80) yields, I = x˙

Acos(S1)− 1

A[ ˙x+Aln( ˙x−A)] +ψ(x, t). (4.81) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = −x˙

Asin(S1)S1xx, (4.82)

∂I

∂t = −x˙

Asin(S1)S1tt. (4.83)

Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙

˙

x2 : (bex+a)

A(A−x˙1) =−1

Asin(S)S1x, (4.84)

˙

x : −(bex+a)

A cos(S1)− (bex+a)

(A−x)˙ =−1

Asin(S1)S1tx. (4.85) Integrating with respect to x yields,

ψ = Z

−(bex+a)

cos(S1)

A + 1

A−x˙

+ 1

Asin(S1)S1t

∂x+F(t), (4.86) ψt = ∂

∂t Z

−(bex+a)

cos(S1)

A + 1

A−x˙

+ 1

Asin(S1)S1t

∂x

+ ˙F(4.87) Equating coefficients by x˙0,

(bex+a) cos(S1) = ψt, (4.88)

=⇒ F(t) = − Z

−(bex+a)

cos(S1)

A + 1

A−x˙

+ 1

Asin(S1)S1t

∂x + (bex+a)

Z

cos(S1)∂t+G. (4.89)

Thus, the first integral is given by I = x˙

Acos(S1) + 1

A[ ˙x+Aln( ˙x−A)] + (bex+a) Z

cos(S1)∂t+G. (4.90) where Gis the constant of integration.

Case 2.2.2: To acquire the first integral for this case, we apply equation (3.15) to (3.6) which yields,

R2cos(S2) [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.91)

Equating coefficients ofx,¨

∂I

∂x˙ =R2cos(S2). (4.92)

Integrating equation (4.92) results in,

I = ˙xR2cos(S2) +ψ(x, t). (4.93) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = −xR˙ 2sin(S2)S2xx, (4.94)

∂I

∂t = x˙h

2cos(S2)−R2sin(S2)S2ti

t. (4.95)

Substituting the derivatives of I(x, t), we separate by powers ofx,˙

˙

x2 : −R2sin(S2)S2x = 0, (4.96)

˙

x : −(bex+a)R2cos(S2) = ˙R2cos(S2)−R2sin(S2)S2tx. (4.97) Integrating with respect to x,

ψ = − Z h

(bex+a)R2cos(S2) +

2cos(S2)−R2sin(S2)S2ti

∂x

+ F(t). (4.98)

Equating coefficients by x˙0,

A(bex+a)R2cos(S2) = ψt, (4.99)

=⇒ F(t) = Z h

(bex+a)R2cos(S2) +

2cos(S2)−R2sin(S2)S2ti

∂x + A(bex+a)

Z

R2cos(S2)∂t+G. (4.100) Thus, the first integral is given by

I = ˙xR2cos(S2) +A(bex+a) Z

R2cos(S2)∂t+G. (4.101)

where Gis the constant of integration.

Case 2.2.3 : In order to obtain the first integral, we apply equation (3.16) to (3.6) which gives us,

1

Acos(S3) [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.102) Equating coefficients ofx,¨

∂I

∂x˙ = 1

Acos(S3). (4.103)

I = x˙

Acos(S3) +ψ(x, t). (4.104) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = −x˙

Asin(S3)S3xx, (4.105)

∂I

∂t = −x˙

Asin(S3)S3tt. (4.106) Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙

˙

x2 : −1

Asin(S3)S3x= 0, (4.107)

˙

x : −(bex+a)

A cos(S3) = −1

Asin(S3)S3tx. (4.108) Integrating with respect to x,

ψ = 1 A

Z 1

Asin(S3)S3t−(bex+a)

A cos(S3)

∂x+F(t), (4.109) ψt = ∂

∂t 1

A Z

1

Asin(S3)S3t− (bex+a)

A cos(S3)

∂x

+ ˙F (4.110)

Equating coefficients by x˙0,

(bex+a) cos(S3) = ψt, (4.111)

=⇒ F(t) = −1 A

Z 1

Asin(S3)S3t−(bex+a)

A cos(S3)

∂x + (bex+a)

Z

cos(S3)∂t+G. (4.112)

Thus, the first integral is given by I = x˙

Acos(S3) + (bex+a) Z

cos(S3)∂t+G. (4.113) where Gis the constant of integration.

Case 2.2.4: To determine the first integral we apply equation (3.17) to (3.6) which yields,

eA

A cos(S4) [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.114) Equating coefficients ofx,¨

∂I

∂x˙ = eA

A cos(S4). (4.115)

Integrating equation (4.115) results in, I = xe˙ A

A cos(S4) +ψ(x, t). (4.116) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = −xe˙ A+x

A sin(S4)S4xx, (4.117)

∂I

∂t = −xe˙ A

A sin(S4)S4tt. (4.118)

Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙

˙

x2 : −eA+x

A sin(S4)S4x = 0, (4.119)

˙

x : −(bex+a)eA

A cos(S4) =−eA

A sin(S4)S4tx. (4.120) Integrating with respect to x,

ψ = eA A

Z eA

A sin(S4)S4t− (bex+a)eA

A cos(S4)

∂x+F(t), (4.121) ψt = ∂

∂t eA

A Z

eA

A sin(S4)S4t−(bex+a)eA

A cos(S4)

∂x

+ ˙F . (4.122) Equating coefficients by x˙0,

eA(bex+a) cos(S4) = ψt, (4.123)

=⇒ F(t) = −eA A

Z eA

A sin(S4)S4t− (bex+a)eA

A cos(S4)

∂x + eA(bex+a)

Z

cos(S4)∂t+G. (4.124)

Thus, the first integral is given by I = xe˙ A

A cos(S4) +eA(bex+a) Z

cos(S4)∂t+G. (4.125) where Gis the constant of integration.

Case 3.1: To obtain the first integral, we apply equation (3.19) to (3.6) which yields,

˙ x

A−x˙ [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.126) By equating coefficients of x,¨

∂I

∂x˙ = x˙

A−x˙ (4.127)

Integrating equation (4.127) results in, I =−x˙

A −ln( ˙x−A) +ψ(x, t). (4.128) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.129)

∂I

∂t = ψt. (4.130)

Substituting the derivatives of I(x, t), we have

˙

x(beat+a) = ∂I

∂t + ˙x∂I

∂x, (4.131)

˙

x(beat+a) = ψt+ ˙xψx. (4.132) So by equating coefficients we get,

˙

x : bex+a=ψx, (4.133)

˙

x0 : 0 =ψt. (4.134)

Integrating x˙0,yields

ψ = C(x), (4.135)

ψx = C(x),˙

=⇒ C(x) =˙ bex+a,

=⇒ C(x) = bex+ax+G. (4.136) Therefore our first integral becomes

I =−x˙

A −ln( ˙x−A) +bex+ax+G. (4.137)

where Gis the constant of integration.

Case 3.2.1 : To determine the first integral we apply equation (3.21) to (3.6) which results in,

R1cos(S1)− x˙1 A(A−x˙1)

[¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.138) Equating coefficients ofx,¨

∂I

∂x˙ =R1cos(S1)− x˙1

A(A−x˙1). (4.139)

Integrating equation (4.139) yields, I = ˙xR1cos(S1)− 1

A[ ˙x+Aln( ˙x−A)] +ψ(x, t). (4.140) Then differentiating and equating like terms in the corresponding coefficients leads to

∂I

∂x = ψx, (4.141)

∂I

∂t = x˙h

1cos(S1)−R1sin(S1)S1ti

t. (4.142)

Substituting the derivatives of I(x, t) into the next part of the equation, we can then separate by powers of x,˙

˙

x2 : (bex+a)

A(A−x)˙ = 0 (4.143)

˙

x : −R1(bex+a) cos(S1)− (bex+a)

(A−x)˙ = ˙R1cos(S1)−R1sin(S1)S1tx. (4.144) Integrating with respect to x we obtain,

ψ = − Z

R1(bex+a) cos(S1) + (bex+a) (A−x)˙ +

1cos(S1)−R1sin(S1)S1t

∂x

+ F(t). (4.145)

Equating coefficients by x˙0,

A (bex+a)R1cos(S1) =ψt,

=⇒ F(t) = Z "

R1(bex+a) cos(S1) + (bex+a) (A−x)˙ +

1cos(S1)−R1sin(S1)S1t

#

∂x + A(bex+a)

Z

Rcos(S)∂t+G. (4.146)

Therefore, the first integral is given by I = ˙xR1cos(S1)− 1

A[ ˙x+Aln( ˙x−A)] +A(bex+a) Z

R1cos(S1)∂t+G. (4.147) where Gis the constant of integration.

Case 3.2.2 : To determine the first integral of this case, we apply equation (3.22) to (3.6)

R2cos(S2) [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.148) Equating coefficients ofx,¨

∂I

∂x˙ =R2cos(S2). (4.149)

Integrating equation (4.149) results in,

I = ˙xR2cos(S2) +ψ(x, t). (4.150) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.151)

∂I

∂t = x˙h

2cos(S2)−R2sin(S2)S2ti

t. (4.152)

Substituting the derivatives of I(x, t), we then separate by powers ofx,˙

˙

x : −R2(bex+a) cos(S2) = ˙R2cos(S2)−R2sin(S2)S2tx. (4.153)

Integrating with respect to x,

ψ = −R2(bex+ax) cos(S2)−x

hR˙2cos(S2)−R2sin(S2)S2t

i

+F(t). (4.154) Equating coefficients by x˙0,

eA(bex+a) cos(S2) = ψt, (4.155)

=⇒ F(t) = R(bex+ax) cos(S2) +xh

2cos(S2)−R2sin(S2)S2ti + A(bex+a)

Z

R2cos(S2)∂t+G. (4.156) Thus, the first integral is given by

I = ˙xR2cos(S2) +A(bex+a) Z

R2cos(S2)∂t+G. (4.157) where Gis the constant of integration.

Case 3.2.3 : To determine the first integral, we apply equation (3.23) to (3.6) which results in,

R3cos(S3) [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.158) Equating coefficients ofx,¨

∂I

∂x˙ =R3cos(S3). (4.159)

Integrating equation (4.159) yields,

I = ˙xR3cos(S3) +ψ(x, t). (4.160) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.161)

∂I

∂t = x˙h

3cos(S3)−R3sin(S3)S3ti

t. (4.162)

Substituting the derivatives of I(x, t), we can separate by powers of x,˙

˙

x : −R(bex+a) cos(S3) = ˙R3cos(S3)−R3sin(S3)S3tx. (4.163) Integrating with respect to x,

ψ = −R3(bex+ax) cos(S3)−xh

3cos(S3)−R3sin(S3)S3ti

+F(t). (4.164) Equating coefficients by x˙0,

eA(bex+a) cos(S3) = ψt, (4.165)

=⇒ F(t) = R3(bex+ax) cos(S3) +xh

3cos(S3)−R3sin(S3)S3ti + A(bex+a)

Z

R3cos(S3)∂t+G. (4.166) Thus, the first integral is given by

I = ˙xR3cos(S3) +A(bex+a) Z

R3cos(S3)∂t+G. (4.167) where Gis the constant of integration.

Case 3.2.4 : To determine the first integral, we can apply (3.24) to (3.6) which yields, R4cos(S4) [¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.168) Equating coefficients ofx,¨

∂I

∂x˙ =R4cos(S4). (4.169)

Integrating equation (4.169) results in,

I = ˙xR4cos(S4) +ψ(x, t). (4.170)

The differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.171)

∂I

∂t = x˙

hR˙4cos(S4)−R4sin(S4)S4t

i

t. (4.172)

Substituting the derivatives ofI(x, t)into the next part of the equation, we can separate by powers ofx,˙

˙

x : −R4(bex+a) cos(S4) = ˙R4cos(S4)−R4sin(S4)S4tx. (4.173) Integrating with respect to x,

ψ = −R4(bex+ax) cos(S4)−xh

4cos(S4)−R4sin(S4)S4ti

+F(t). (4.174) Equating coefficients by x˙0,

eA(bex+a) cos(S4) = ψt,

=⇒ F(t) = R4(bex+ax) cos(S4) +xh

4cos(S4)−R4sin(S4)S4ti + A(bex+a)

Z

R4cos(S4)∂t+G. (4.175) Thus, the first integral is given by

I = ˙xR4cos(S4) +A(bex+a) Z

R4cos(S4)∂t+G. (4.176) where Gis the constant of integration.

Case 3.3.1 : To determine the first integral for this case, we apply equation (3.26) to (3.6) which results in,

[¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.177)

By equating coefficients x,¨

∂I

∂x˙ = 1. (4.178)

Integrating equation (4.178) yields,

I = ˙x+ψ(x, t). (4.179)

Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.180)

∂I

∂t = ψt. (4.181)

Substituting the derivatives of I(x, t), we can then separate by powers of x,˙

˙

x:−(bex+a) = ψx, (4.182a)

=⇒ ψ = −(bex+ax) +C(t), (4.182b) ψt = C(t).˙

˙

x0 :A(bex+a) = ψt, (4.182c)

A(bex+a) = C(t),˙

=⇒ C(t) = At(bex+a) +G. (4.182d) Therefore, our first integral becomes

I = ˙x−(bex+a) (At−1) +G. (4.183) where Gis the constant of integration.

Case 3.3.2 : To determine the first integral, we apply equation (3.27) to (3.6) which results in,

e−at[¨x+ (bex+a)(A−x)] =˙ ∂I

∂t + ˙x∂I

∂x + ¨x∂I

∂x˙. (4.184)

By equating coefficients x,¨

∂I

∂x˙ =e−at. (4.185)

Integrating equation (4.185) yields,

I =e−atx˙ +ψ(x, t). (4.186) Then differentiating and equating like terms in the corresponding coefficients leads to,

∂I

∂x = ψx, (4.187)

∂I

∂t = −ae−atx˙ +ψt. (4.188)

Substituting the derivatives of I(x, t), we have e−at(bex+a)(A−x) =˙ ∂I

∂t + ˙x∂I

∂x (4.189)

e−at(bex+a)(A−x) =˙ −ae−atx˙ +ψt+ ˙xψx. (4.190) We can now separate by powers of x,˙

˙

x : −e−at(bex+a) = −ae−atx, (4.191a) ψx = −e−atbex,

ψ = −bex−at+C(t), (4.191b)

ψt = abex−at+ ˙C(t).

˙

x0 : e−at(bex+a)A = ψt, (4.191c)

e−at(bex+a)A = abex−at+ ˙C(t), C(t) =˙ e−at(bex−abex),

=⇒ C(t) = e−atbex− e−at

a (bex+a)A+G. (4.191d)

Therefore, our first integral becomes I =e−atx˙ − e−at

a (bex+a)A+G. (4.192)

where Gis the constant of integration.

Dokumen terkait