Integrating this by parts yields, I1 = 1
2e2x(3x2−2x−1)−1 2
Z
e2x(6x−2)dx, (4.32) integrating the second half of I1 by parts, we get
I2 = 1
4e2x(6x−2)− Z 6
4e2xdx = 1
4e2x(6x−2)− 3
4e2x+G. (4.33) and thus,I1 results in
I1 = 1
2e2x(3x2−2x−1)− 1
4e2x(6x−2) + 3
4e2x+G, (4.34) where Gis the integration constant.
Integrating equation (4.36) leads to the generalised form of the first integral, I = ˙xR1[1 + tan(S1)]12 + 1
A[ ˙x+Aln( ˙x−A)] +ψ(x, t). (4.37) In order to solve for the general functions in (4.37), we first differentiate then equate like terms in the corresponding coefficients resulting with the following equations,
∂I
∂x = x˙
R1x[1 + tan(S1)]12 +R1
2 [1 + tan(S1)]−12 sec2(S1)·S1x
+ψx, (4.38)
∂I
∂t = xR˙ 1
2 [1 + tan(S1)]−12 sec2(S1)S1t+ψt, (4.39) where the subscript xor t refers to partial differentiation with respect to the variable.
Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙
˙ x2 :
R1x[1 + tan(S1)]12 + R1
2 [1 + tan(S1)]−12 sec2(S1)S1x
= bex+a
A(A−x)˙ , (4.40)
˙
x : −(bex+a)R1[1 + tan(S1)]12 − bex+a
A(A−x)˙ = R1
2 [1 + tan(S1)]−12 sec2(S1)S1t
+ψx. (4.41)
Integrating with respect to x, ψ = −
Z "
(bex+a)R1[1 + tan(S1)]12 + R1
2 [1 + tan(S1)]−12 sec2(S1)S1t + bex+a
A(A−x)˙
#
∂x+F(t). (4.42)
Equating coefficients by x˙0,
A R1 [1 + tan(S1)]12 (bex+a) = ψt, (4.43)
=⇒ F(t) = AR1[1 + tan(S1)]12 (bex+a), (4.44) +
Z "
(bex+a)R1[1 + tan(S1)]12 +R1
2 [1 + tan(S1)]−12 sec2(S1)S1t + bex+a
A(A−x)˙
#
∂x
!
+G. (4.45)
Thus, the first integral is given by I = ˙xR1[1 + tan(S1)]12 + 1
A[ ˙x+Aln( ˙x−A)] +AR1(bex+a) Z
[1 + tan(S1)]12 ∂t+G.
(4.46) where Gis the constant of integration.
Case 1.2: To determine the first integral we apply the equation (3.9) to (3.6) to obtain the relation,
R2[1 + tan(S2)]12 [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.47) Equating coefficients ofx,¨
∂I
∂x˙ =R2[1 + tan(S2)]12 . (4.48) Integrating equation (4.48) results in,
I = ˙xR2[1 + tan(S2)]12 +ψ(x, t). (4.49) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = x˙
R2x[1 + tan(S2)]12 + R2
2 [1 + tan(S2)]−12 sec2(S2)S2x
+ψx (4.50)
∂I
∂t = xR˙ 2
2 [1 + tan(S2)]−12 sec2(S2)S2t+ψt. (4.51)
Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙
˙ x2 :
R2x[1 + tan(S2)]12 +R2
2 [1 + tan(S2)]−12 sec2(S2)S2x
= 0, (4.52)
˙
x : −(bex+a)R2[1 + tan(S2)]12 = R2
2 [1 + tan(S2)]−12 sec2(S2)S2t
+ψx. (4.53)
Integrating with respect to x we obtain, ψ = −
Z
(bex+a)R2[1 + tan(S2)]12 + R2
2 [1 + tan(S2)]−12 sec2(S2)S2t
∂x
+ F(t). (4.54)
Equating coefficients by x˙0,
AR2 [1 + tan(S2)]12 (bex+a) =ψt,
=⇒ F(t) =AR2[1 + tan(S2)]12 (bex+a) +
Z "
(bex+a)R2[1 + tan(S2)]12
+ R2
2 [1 + tan(S2)]−12 sec2(S2)S2t
#
∂x
!
+G. (4.55)
Thus, the first integral is given by
I = ˙xR2[1 + tan(S2)]12 +AR2(bex+a) Z
[1 + tan(S2)]12 ∂t+G. (4.56) where Gis the constant of integration.
Case 1.3: To determine the first integral we apply the equation (3.10) to (3.6) to obtain the relation,
R3[1 + tan(S3)]12 [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.57)
Equating coefficients ofx,¨
∂I
∂x˙ =R3[1 + tan(S3)]12 . (4.58) Integrating equation (4.58) results in,
I = ˙xR3[1 + tan(S3)]12 +ψ(x, t). (4.59) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = x˙
R3x[1 + tan(S3)]12 +R3
2 [1 + tan(S3)]−12 sec2(S3)S3x
+ψx, (4.60)
∂I
∂t = xR˙ 3
2 [1 + tan(S3)]−12 sec2(S3)S3t+ψt. (4.61) Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙
˙ x2 :
R3x[1 + tan(S3)]12 +R3
2 [1 + tan(S3)]−12 sec2(S3)S3x
= 0, (4.62)
˙
x : −(bex+a)R3[1 + tan(S3)]12 = R3
2 [1 + tan(S3)]−12 sec2(S3)S3t
+ψx. (4.63)
Integrating with respect to x we obtain, ψ = −
Z
(bex+a)R3[1 + tan(S3)]12 + R3
2 [1 + tan(S3)]−12 sec2(S3)S3t
∂x
+ F(t). (4.64)
Equating coefficients by x˙0,
A R3 [1 + tan(S3)]12 (bex+a) = ψt,
=⇒ F(t) = AR[1 + tan(S3)]12 (bex+a) +
Z "
(bex+a)R3[1 + tan(S3)]12
+ R3
2 [1 + tan(S3)]−12 sec2(S3)S3t
#
∂x
!
+G. (4.65)
Thus, the first integral is given by
I = ˙xR3[1 + tan(S3)]12 +AR3(bex+a) Z
[1 + tan(S3)]12 ∂t+G. (4.66) where Gis the constant of integration.
Case 2.1: To determine the first integral for this case, we apply equation (3.12) to (3.6) to obtain the relation,
˙ x A−x˙
h
¨
x+ (bex+a)(A−x)˙ i
= ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.67) By equating coefficients of x¨ , we get
∂I
∂x˙ = x˙
A−x˙ (4.68)
Integrating equation (4.68) yields, I =−x˙
A −ln( ˙x−A) +ψ(x, t). (4.69) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.70)
∂I
∂t = ψt. (4.71)
Substituting the derivatives of I(x, t), we have
˙
x(beat+a) = ∂I
∂t + ˙x∂I
∂x, (4.72)
˙
x(beat+a) = ψt+ ˙xψx, (4.73)
and equating by powers of x˙ we get,
˙
x : bex+a=ψx, (4.74)
˙
x0 : 0 =ψt. (4.75)
Integrating x˙0,yields
ψ = C(x), (4.76)
ψx = C(x),˙
=⇒ C(x) =˙ bex+a,
=⇒ C(x) = bex+ax+G. (4.77) Therefore, our first integral becomes
I =−x˙
A −ln( ˙x−A) +bex+ax+G. (4.78) where Gis the constant of integration.
Case 2.2.1: To determine the first integral we apply equation (3.14) to (3.6) which results in,
1
Acos(S1)− x˙1 A(A−x˙1)
[¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.79) Equating coefficients ofx,¨
∂I
∂x˙ = 1
Acos(S1)− x˙1
A(A−x˙1) (4.80)
Integrating equation (4.80) yields, I = x˙
Acos(S1)− 1
A[ ˙x+Aln( ˙x−A)] +ψ(x, t). (4.81) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = −x˙
Asin(S1)S1x+ψx, (4.82)
∂I
∂t = −x˙
Asin(S1)S1t+ψt. (4.83)
Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙
˙
x2 : (bex+a)
A(A−x˙1) =−1
Asin(S)S1x, (4.84)
˙
x : −(bex+a)
A cos(S1)− (bex+a)
(A−x)˙ =−1
Asin(S1)S1t+ψx. (4.85) Integrating with respect to x yields,
ψ = Z
−(bex+a)
cos(S1)
A + 1
A−x˙
+ 1
Asin(S1)S1t
∂x+F(t), (4.86) ψt = ∂
∂t Z
−(bex+a)
cos(S1)
A + 1
A−x˙
+ 1
Asin(S1)S1t
∂x
+ ˙F(4.87) Equating coefficients by x˙0,
(bex+a) cos(S1) = ψt, (4.88)
=⇒ F(t) = − Z
−(bex+a)
cos(S1)
A + 1
A−x˙
+ 1
Asin(S1)S1t
∂x + (bex+a)
Z
cos(S1)∂t+G. (4.89)
Thus, the first integral is given by I = x˙
Acos(S1) + 1
A[ ˙x+Aln( ˙x−A)] + (bex+a) Z
cos(S1)∂t+G. (4.90) where Gis the constant of integration.
Case 2.2.2: To acquire the first integral for this case, we apply equation (3.15) to (3.6) which yields,
R2cos(S2) [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.91)
Equating coefficients ofx,¨
∂I
∂x˙ =R2cos(S2). (4.92)
Integrating equation (4.92) results in,
I = ˙xR2cos(S2) +ψ(x, t). (4.93) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = −xR˙ 2sin(S2)S2x+ψx, (4.94)
∂I
∂t = x˙h
R˙2cos(S2)−R2sin(S2)S2ti
+ψt. (4.95)
Substituting the derivatives of I(x, t), we separate by powers ofx,˙
˙
x2 : −R2sin(S2)S2x = 0, (4.96)
˙
x : −(bex+a)R2cos(S2) = ˙R2cos(S2)−R2sin(S2)S2t+ψx. (4.97) Integrating with respect to x,
ψ = − Z h
(bex+a)R2cos(S2) +
R˙2cos(S2)−R2sin(S2)S2ti
∂x
+ F(t). (4.98)
Equating coefficients by x˙0,
A(bex+a)R2cos(S2) = ψt, (4.99)
=⇒ F(t) = Z h
(bex+a)R2cos(S2) +
R˙2cos(S2)−R2sin(S2)S2ti
∂x + A(bex+a)
Z
R2cos(S2)∂t+G. (4.100) Thus, the first integral is given by
I = ˙xR2cos(S2) +A(bex+a) Z
R2cos(S2)∂t+G. (4.101)
where Gis the constant of integration.
Case 2.2.3 : In order to obtain the first integral, we apply equation (3.16) to (3.6) which gives us,
1
Acos(S3) [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.102) Equating coefficients ofx,¨
∂I
∂x˙ = 1
Acos(S3). (4.103)
I = x˙
Acos(S3) +ψ(x, t). (4.104) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = −x˙
Asin(S3)S3x+ψx, (4.105)
∂I
∂t = −x˙
Asin(S3)S3t+ψt. (4.106) Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙
˙
x2 : −1
Asin(S3)S3x= 0, (4.107)
˙
x : −(bex+a)
A cos(S3) = −1
Asin(S3)S3t+ψx. (4.108) Integrating with respect to x,
ψ = 1 A
Z 1
Asin(S3)S3t−(bex+a)
A cos(S3)
∂x+F(t), (4.109) ψt = ∂
∂t 1
A Z
1
Asin(S3)S3t− (bex+a)
A cos(S3)
∂x
+ ˙F (4.110)
Equating coefficients by x˙0,
(bex+a) cos(S3) = ψt, (4.111)
=⇒ F(t) = −1 A
Z 1
Asin(S3)S3t−(bex+a)
A cos(S3)
∂x + (bex+a)
Z
cos(S3)∂t+G. (4.112)
Thus, the first integral is given by I = x˙
Acos(S3) + (bex+a) Z
cos(S3)∂t+G. (4.113) where Gis the constant of integration.
Case 2.2.4: To determine the first integral we apply equation (3.17) to (3.6) which yields,
eA
A cos(S4) [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.114) Equating coefficients ofx,¨
∂I
∂x˙ = eA
A cos(S4). (4.115)
Integrating equation (4.115) results in, I = xe˙ A
A cos(S4) +ψ(x, t). (4.116) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = −xe˙ A+x
A sin(S4)S4x+ψx, (4.117)
∂I
∂t = −xe˙ A
A sin(S4)S4t+ψt. (4.118)
Substituting the derivatives of I(x, t) into the next part of the equation, we separate by powers ofx,˙
˙
x2 : −eA+x
A sin(S4)S4x = 0, (4.119)
˙
x : −(bex+a)eA
A cos(S4) =−eA
A sin(S4)S4t+ψx. (4.120) Integrating with respect to x,
ψ = eA A
Z eA
A sin(S4)S4t− (bex+a)eA
A cos(S4)
∂x+F(t), (4.121) ψt = ∂
∂t eA
A Z
eA
A sin(S4)S4t−(bex+a)eA
A cos(S4)
∂x
+ ˙F . (4.122) Equating coefficients by x˙0,
eA(bex+a) cos(S4) = ψt, (4.123)
=⇒ F(t) = −eA A
Z eA
A sin(S4)S4t− (bex+a)eA
A cos(S4)
∂x + eA(bex+a)
Z
cos(S4)∂t+G. (4.124)
Thus, the first integral is given by I = xe˙ A
A cos(S4) +eA(bex+a) Z
cos(S4)∂t+G. (4.125) where Gis the constant of integration.
Case 3.1: To obtain the first integral, we apply equation (3.19) to (3.6) which yields,
˙ x
A−x˙ [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.126) By equating coefficients of x,¨
∂I
∂x˙ = x˙
A−x˙ (4.127)
Integrating equation (4.127) results in, I =−x˙
A −ln( ˙x−A) +ψ(x, t). (4.128) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.129)
∂I
∂t = ψt. (4.130)
Substituting the derivatives of I(x, t), we have
˙
x(beat+a) = ∂I
∂t + ˙x∂I
∂x, (4.131)
˙
x(beat+a) = ψt+ ˙xψx. (4.132) So by equating coefficients we get,
˙
x : bex+a=ψx, (4.133)
˙
x0 : 0 =ψt. (4.134)
Integrating x˙0,yields
ψ = C(x), (4.135)
ψx = C(x),˙
=⇒ C(x) =˙ bex+a,
=⇒ C(x) = bex+ax+G. (4.136) Therefore our first integral becomes
I =−x˙
A −ln( ˙x−A) +bex+ax+G. (4.137)
where Gis the constant of integration.
Case 3.2.1 : To determine the first integral we apply equation (3.21) to (3.6) which results in,
R1cos(S1)− x˙1 A(A−x˙1)
[¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.138) Equating coefficients ofx,¨
∂I
∂x˙ =R1cos(S1)− x˙1
A(A−x˙1). (4.139)
Integrating equation (4.139) yields, I = ˙xR1cos(S1)− 1
A[ ˙x+Aln( ˙x−A)] +ψ(x, t). (4.140) Then differentiating and equating like terms in the corresponding coefficients leads to
∂I
∂x = ψx, (4.141)
∂I
∂t = x˙h
R˙1cos(S1)−R1sin(S1)S1ti
+ψt. (4.142)
Substituting the derivatives of I(x, t) into the next part of the equation, we can then separate by powers of x,˙
˙
x2 : (bex+a)
A(A−x)˙ = 0 (4.143)
˙
x : −R1(bex+a) cos(S1)− (bex+a)
(A−x)˙ = ˙R1cos(S1)−R1sin(S1)S1t+ψx. (4.144) Integrating with respect to x we obtain,
ψ = − Z
R1(bex+a) cos(S1) + (bex+a) (A−x)˙ +
R˙1cos(S1)−R1sin(S1)S1t
∂x
+ F(t). (4.145)
Equating coefficients by x˙0,
A (bex+a)R1cos(S1) =ψt,
=⇒ F(t) = Z "
R1(bex+a) cos(S1) + (bex+a) (A−x)˙ +
R˙1cos(S1)−R1sin(S1)S1t
#
∂x + A(bex+a)
Z
Rcos(S)∂t+G. (4.146)
Therefore, the first integral is given by I = ˙xR1cos(S1)− 1
A[ ˙x+Aln( ˙x−A)] +A(bex+a) Z
R1cos(S1)∂t+G. (4.147) where Gis the constant of integration.
Case 3.2.2 : To determine the first integral of this case, we apply equation (3.22) to (3.6)
R2cos(S2) [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.148) Equating coefficients ofx,¨
∂I
∂x˙ =R2cos(S2). (4.149)
Integrating equation (4.149) results in,
I = ˙xR2cos(S2) +ψ(x, t). (4.150) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.151)
∂I
∂t = x˙h
R˙2cos(S2)−R2sin(S2)S2ti
+ψt. (4.152)
Substituting the derivatives of I(x, t), we then separate by powers ofx,˙
˙
x : −R2(bex+a) cos(S2) = ˙R2cos(S2)−R2sin(S2)S2t+ψx. (4.153)
Integrating with respect to x,
ψ = −R2(bex+ax) cos(S2)−x
hR˙2cos(S2)−R2sin(S2)S2t
i
+F(t). (4.154) Equating coefficients by x˙0,
eA(bex+a) cos(S2) = ψt, (4.155)
=⇒ F(t) = R(bex+ax) cos(S2) +xh
R˙2cos(S2)−R2sin(S2)S2ti + A(bex+a)
Z
R2cos(S2)∂t+G. (4.156) Thus, the first integral is given by
I = ˙xR2cos(S2) +A(bex+a) Z
R2cos(S2)∂t+G. (4.157) where Gis the constant of integration.
Case 3.2.3 : To determine the first integral, we apply equation (3.23) to (3.6) which results in,
R3cos(S3) [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.158) Equating coefficients ofx,¨
∂I
∂x˙ =R3cos(S3). (4.159)
Integrating equation (4.159) yields,
I = ˙xR3cos(S3) +ψ(x, t). (4.160) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.161)
∂I
∂t = x˙h
R˙3cos(S3)−R3sin(S3)S3ti
+ψt. (4.162)
Substituting the derivatives of I(x, t), we can separate by powers of x,˙
˙
x : −R(bex+a) cos(S3) = ˙R3cos(S3)−R3sin(S3)S3t+ψx. (4.163) Integrating with respect to x,
ψ = −R3(bex+ax) cos(S3)−xh
R˙3cos(S3)−R3sin(S3)S3ti
+F(t). (4.164) Equating coefficients by x˙0,
eA(bex+a) cos(S3) = ψt, (4.165)
=⇒ F(t) = R3(bex+ax) cos(S3) +xh
R˙3cos(S3)−R3sin(S3)S3ti + A(bex+a)
Z
R3cos(S3)∂t+G. (4.166) Thus, the first integral is given by
I = ˙xR3cos(S3) +A(bex+a) Z
R3cos(S3)∂t+G. (4.167) where Gis the constant of integration.
Case 3.2.4 : To determine the first integral, we can apply (3.24) to (3.6) which yields, R4cos(S4) [¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.168) Equating coefficients ofx,¨
∂I
∂x˙ =R4cos(S4). (4.169)
Integrating equation (4.169) results in,
I = ˙xR4cos(S4) +ψ(x, t). (4.170)
The differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.171)
∂I
∂t = x˙
hR˙4cos(S4)−R4sin(S4)S4t
i
+ψt. (4.172)
Substituting the derivatives ofI(x, t)into the next part of the equation, we can separate by powers ofx,˙
˙
x : −R4(bex+a) cos(S4) = ˙R4cos(S4)−R4sin(S4)S4t+ψx. (4.173) Integrating with respect to x,
ψ = −R4(bex+ax) cos(S4)−xh
R˙4cos(S4)−R4sin(S4)S4ti
+F(t). (4.174) Equating coefficients by x˙0,
eA(bex+a) cos(S4) = ψt,
=⇒ F(t) = R4(bex+ax) cos(S4) +xh
R˙4cos(S4)−R4sin(S4)S4ti + A(bex+a)
Z
R4cos(S4)∂t+G. (4.175) Thus, the first integral is given by
I = ˙xR4cos(S4) +A(bex+a) Z
R4cos(S4)∂t+G. (4.176) where Gis the constant of integration.
Case 3.3.1 : To determine the first integral for this case, we apply equation (3.26) to (3.6) which results in,
[¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.177)
By equating coefficients x,¨
∂I
∂x˙ = 1. (4.178)
Integrating equation (4.178) yields,
I = ˙x+ψ(x, t). (4.179)
Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.180)
∂I
∂t = ψt. (4.181)
Substituting the derivatives of I(x, t), we can then separate by powers of x,˙
˙
x:−(bex+a) = ψx, (4.182a)
=⇒ ψ = −(bex+ax) +C(t), (4.182b) ψt = C(t).˙
˙
x0 :A(bex+a) = ψt, (4.182c)
A(bex+a) = C(t),˙
=⇒ C(t) = At(bex+a) +G. (4.182d) Therefore, our first integral becomes
I = ˙x−(bex+a) (At−1) +G. (4.183) where Gis the constant of integration.
Case 3.3.2 : To determine the first integral, we apply equation (3.27) to (3.6) which results in,
e−at[¨x+ (bex+a)(A−x)] =˙ ∂I
∂t + ˙x∂I
∂x + ¨x∂I
∂x˙. (4.184)
By equating coefficients x,¨
∂I
∂x˙ =e−at. (4.185)
Integrating equation (4.185) yields,
I =e−atx˙ +ψ(x, t). (4.186) Then differentiating and equating like terms in the corresponding coefficients leads to,
∂I
∂x = ψx, (4.187)
∂I
∂t = −ae−atx˙ +ψt. (4.188)
Substituting the derivatives of I(x, t), we have e−at(bex+a)(A−x) =˙ ∂I
∂t + ˙x∂I
∂x (4.189)
e−at(bex+a)(A−x) =˙ −ae−atx˙ +ψt+ ˙xψx. (4.190) We can now separate by powers of x,˙
˙
x : −e−at(bex+a) = −ae−at+ψx, (4.191a) ψx = −e−atbex,
ψ = −bex−at+C(t), (4.191b)
ψt = abex−at+ ˙C(t).
˙
x0 : e−at(bex+a)A = ψt, (4.191c)
e−at(bex+a)A = abex−at+ ˙C(t), C(t) =˙ e−at(bex−abex),
=⇒ C(t) = e−atbex− e−at
a (bex+a)A+G. (4.191d)
Therefore, our first integral becomes I =e−atx˙ − e−at
a (bex+a)A+G. (4.192)
where Gis the constant of integration.