• Tidak ada hasil yang ditemukan

Future work

Dalam dokumen University of Cape Town (Halaman 108-141)

Although significant progress in structure-based vaccine design has been made, improvement in antigen design would have a significant effect in improving the immunogenicity of this vaccine.

Given that the spike is highly metastable and often requires modifications, the addition of prolines has been demonstrated to be one mechanism that can be employed to achieve stability [269]. The study showed that adding prolines to stabilize the spike protein in its prefusion conformation was largely advantageous for inducing stronger immune responses. This strategy has been employed by several others, and has recently been modified by Schaub and colleagues to include six prolines instead of two [270]. The authors demonstrated that the large and heavily glycosylated spike protein was difficult to stabilize in its prefusion conformation, and this was remedied by the addition of four prolines to form the HexaPro design [270].

Overall improvement of the MVA-SARS2-SΔTM and other vaccines is necessary to accommodate the evolving SARS-CoV-2 virus. It is possible that the inclusion of other important antigens such as the nucleocapsid protein could result in a more immunogenic vaccine. Coexpression with the highly expressed nucleocapsid, or generation of nucleocapsid-only expressing vaccines is worth exploring [271], [247], [272]. Due to the fact that it is relatively more stable as compared to the spikeand plays a crucial role in viral replication, the protein is a target for cytotoxic T-cells [273].

This has been demonstrated by several others and is being shown as a viable target [274], [275],

108

[272]. Studying T-cells and their role in mitigating severe disease has proven challenging [276]

yet it is crucial to understand this for design of next generation vaccines. Given the frequently mutating virus and high levels of breakthrough infections, T-cell immunity has been shown to be important because T-cells have the ability to recognize parts of SARS-CoV-2 that are not frequently mutating such as the nucelocapsid [277]. Additionally, it has been demonstrated that severe and fatal COVID-19 disease is characterized by lymphopenia and high levels of the biomarker CXCL10, which were shown to be strongly positively correlated with T-cell death when compared in ICU and non-ICU patients [278]. These findings together elucidate the role of T-cells which is critical as the virus continues to evade host immunity. Further investigations could be done to determine the effect of including a shorter length of our designed antigen, with either the S1 only or S2 only subunits. Kim et al., 2021 demonstrated that the S1 subunit alone given at high dose produced high titres of neutralizing antibodies. However, when compared to a low-dose of a full-length spike vaccine, the S1 subunit produced lower neutralizing antibodies [279]. It is fundamental for vaccines to be “updated” through employment of strategies in order to continue offering protection to humans. Considering the continuing COVID-19 pandemic, vaccine development is an ongoing process. The mutation of the SARS-CoV-2 virus presents an additional challenge which shifts vaccine development to focusing on the effect of already approved and administered vaccines on emerging variants. Booster shots are in discussion with some countries already administering these for several vaccines [280], [281], [282]. The timing of the booster shots and questions of whether to get the same shot or a different vaccine as a booster are all under consideration with the aim of eliciting as safe, strong, broad and long-lasting immune responses as possible.

Combining vaccines expressing different immunogenic antigens has been shown to induce both T-cells and antibodies [235]. A possible application of this would be the combination of the MVA- SARS2-SΔTM vaccine with another vaccine, such as priming with the S protein and boosting with another antigen e.g. the RBD. This approach has been explored whereby it was shown that priming with the S protein and boosting with either the S or the RBD was highly immunogenic. On the other hand, this study observed that priming with the RBD and boosting with the S or the RBD was not immunogenic [283].

109

Once further work has been done to improve immunogenicity of the MVA-SARS2-SΔTM vaccine, evaluations on dose safety would be necessary to determine the toxicity of the vaccine.

This would involve varying doses to conclude on adverse effects and what the “right” dose is.

Hamster challenges will be set up where hamsters will be vaccinated and subsequently challenged with variants of the SARS-CoV-2 virus. Following this, hamsters will be assessed for histopathological changes, viral load and weight changes to evaluate the vaccine’s ability to provide protection against severe infection.

APPENDICES

APPENDIX A: REAGENT FORMULATIONS

110 Luria Bertani agar (100ml)

Tryptone 1 g

Yeast extract 0.5 g

NaCl 0.5 g

Agar 1.5 g

Water Adjust to 100 ml

10% (v/v) Complete Dulbecco’s Modified Eagle Medium (cDMEM) Dulbecco’s Modified Eagle Medium 450 ml

10% Heat inactivated Fetal Calf Serum 50 ml 1% Penicillin-Streptomycin antibiotic 5 ml

Freezing medium Concentration (v/v)

Heat inactivated Fetal Calf Serum 80%

Dimethyl Sulfoxide (DMSO) 10%

DMEM 10%

4X protein loading buffer

100% Glycerol 4 ml

1.5M Tris/HCl (p.H 6.8) 1.6 ml

SDS 0.8 g

Bromophenol blue 4 mg

β-mercaptoethanol 0.5 ml

ddH2O 3.9 ml

10 X SDS page running buffer

SDS 10 g

Tris 30.3 g

Glycine 29 g

ddH2O adjust to 1000 ml

10 X transfer buffer

SDS 3.7 g

Tris 58 g

Glycine 144.1 g

ddH2O adjust to 1000 ml

PBST

10 X PBS 100 ml

10% Tween 20 10 ml

ddH2O Adjust to 1000 ml

Block buffer

1 X PBS 100 ml

Instant skim milk power 5 g

10% Tween 20 1 ml

111

4% (v/v) stacking gel (5 ml)

40% Acryl-bisacrylaminde mix 0.5 ml

1.5 M Tri (pH 6.8) 0.63 ml

10% SDS 50 µl

10% APS 50 µl

TEMED 5 µl

ddH2O 3.8 ml

8% (v/v) resolving gel (10 ml)

40% Acryl-bisacrylaminde mix 2 ml

1.5 M Tri (pH 8.8) 2.5 ml

10% SDS 0.1 ml

10% APS 0.1 ml

TEMED 6 µl

ddH2O 5.3 ml

2% Bovine Serum Albumin (BSA)

BSA 2 g

1 X PBS 100 ml

4 % Paraformaldehyde

Paraformaldehyde powder 40 g

1 X PBS 800 ml

Red Blood Cell Lysis buffer

NH4CL 8.34 g

EDTA 0.037 g

NHCO3 1 g

ddH2O 1000 ml

Resuspension Solution P1

Tris-HCL (1 M, pH 8.0) 2.5 ml

20% (w/v) glucose 0.91 g of glucose in 4.55 ml of ddH2O

EDTA (0.5 M, pH 8.0) 2 ml

ddH2O 0.95 ml

RNase (200 µg/ml) 400 µl

Lysis buffer P2

Sodium hydroxide (200mM) 8 g in 900 ml of ddH2O

1% (v/v) SDS 100 ml of 10% SDS in 1 L of ddH2O

112 Neutralization buffer P3 (100 ml)

Potassium acetate (3.0 M, pH 4.8) 4.41 g

Glacial acetate 7.5 ml

ddH2O adjust to 15 ml

113 APPENDIX B: pMVA-FNK2 Sequence

G1L-SARS-CoV-2 SΔTM-GGTGGACCGGTAAGCTTCT-mH5- CCGGGTTATAG -K1L- CGTGGCGGTCGACTCTAA-pSS- GAGCTCAGAAAAA-eGFP- GGT- p7.5- ATCGA-I8R

CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGC TCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAG ACCGAGATAGGGTTGAGTGGCCGCTACAGGGCGCTCCCATTCGCCATTCAGGCTGC GCAACTGTTGGGAAGGGCGTTTCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCG AAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTC ACGACGTTGTAAAACGACGGCCAGTGAGCGCGACGTAATACGACTCACTATAGGGC GAATTGTGCGAAGGCCGTCAAGGCCTAGGCGCGCCTGTCGACGCCGGCGCATGCAC TAGTGTTCTTGACGCAACCAATGATGGACTGATTAAGAAACCTTATAGAAGTATACC CCTAATGAAGCGTCTAACATCTAATGAAATATTTATACGATACGGAGACGCGTCTCT CATGGACATGATAACTTTATCATTGTCTAAACAAGATATATCATTAAAAAGAAATGC CGAAGGAATACGTGTAAAACATAGTTTTTCAGCTGATGATATACAGGCAATTATGGA ATCTGATTCGTTTTTAAAGTATAGTAGATCAAAACCAGCTGCGATGTATCAATATAT ATTTCTATCATTTTTTGCTAGTGGTAATTCCATAGATGACATATTGGCAAATAGAGAT TCTACCTTAGAATTTTCTAAAAGAACTAAAAGTAAAATTTTGTTTGGTAGGAATACC AGATACGACGTCACTGCAAAATCTAGTTTTGTATGTGGTATAGTACGAGGTAAATCA TTGGATAAAACGTCTCTGGTTGAAATGATGTGGGATCTCAAGAAGAAAGGATTAAT ATATTCTATGGAATTTACCAATCTATTGAGCAAGAATACCTTTTATCTGTTCACATTT ACTATCTACACTGATGAAGTATACGATTATCTAAACACTAATAAACTTTTTTCTGCA AAATGTTTAGTCGTGTCTACAAAAGGAGATGTGGAAAATTTTTCATCTCTAAAAAAA GATGTGGTCATTAGAGTTTGAGAATTCTCAGTGGTGGTGGTGATGGTGCCCGCTGCC CCCGCTGCCGCCGCTCCCTCCCAGGAAGGTGCTCAGCAGCACCCACTCGCCATCCTT TCTCACGTAGGCCTGTCCGTCCCGAGGTGCCTCTGGGATATATCCGGAGCCTGGAGA GCCGGAGCCggatccAGGCCACTTGATGTACTGCTCATACTTGCCCAGCTCCTGCAGAT CGATCAGGCTCTCGTTCAGATTCTTGGCCACCTCGTTCAGTCTGTCGATCTCCTTCTG GATGTTCACCACGCTGGCATTGATGCCAGAGATGTCGCCCAGATCCACGTCGGGGG AGGTGTGATTCTTGAAGTACTTATCCAGCTCCTCCTTAAAGCTGTCCAGCTCTGGCTG CAGAGGATCATACACGGTATTGTTCACGATGCCGATGACCACGTCACAGTTGCCGCT CACGAAGGTATTGTCTGTGGTGATGATCTGGGGCTCGTAGAAATTTCTCTGTGTCAC AAACCAGTGGGTGCCGTTGGACACGAACACGCCCTCCCGTGGAAAGTGGGCCTTGC CATCGTGGCAGATGGCAGGGGCTGTGGTGAAGTTCTTCTCCTGGGCGGGCACGTAG GTCACGTGCAGAAACACCACTCCGTGTGGGGCGGACTGTGGGAAGCTCATCAGGTG ATAGCCCTTGCCACAAAAGTCCACCCTCTTGGACTGTCCCAGCACGCACTCGCTCAT CTTGGTTGCTGCCAGATTGGCGCTTGCCCTGATCTCTGCTGCCCTGATCAGCTGCTGT GTCACGTAGGTCTGCAGAGACTGCAGTCTGCCTGTGATCAGCCGGTCGATCTGCACC TCGGCCTCCACCTTGTCCAGCCTGGACAGGATATCATTCAGCACGCTAGAGATGGCG CCGAAGTTGGAGCTCAGCTGCTTCACCAGGGTATTCAGGGCCTGGGCGTTCTGATTC ACCACATCCTGCAGCTTGCCCAGGGCGGAGGCTGTAGAGGACAGGCTGTCCTGGAT CTTGCCGATGGCGCTGTTAAACTGATTGGCGATCAGCTTCTGGTTCTCGTACAGCAC ATTCTGGGTCACGCCGATGCCGTTGAAGCGATAGGCCATCTGCATGGCAAAGGGGA

114

TCTGCAGGGCGGCTCCTGCGCCGAAGGTCCATCCGCTTGTGATGGTTCCTGCCAGCA GGGCAGATGTGTACTGGGCGATCATCTCATCTGTCAGCAGTGGAGGCAGCACGGTC AGGCCATTAAACTTCTGGGCACAGATCAGGTCGCGGGCTGCGATGTCGCCCAGGCA ATCGCCATACTGCTTGATGAAGCCGGCATCGGCCAGGGTCACCTTGTTGAACAGCAG GTCCTCGATAAAGCTCCTCTTAGAAGGCTTGGAAGGATCGGGCAGGATCTGGCTGA AGTTGAAGCCGCCAAAGTCCTTGATGGGTGGGGTCTTGTAGATCTGCTTCACCTGGG CGAACACCTCCTGTGTGTTCTTATCCTGCTCCACTGCGATGCCTGTCAGGGCCCTATT CAGCTGGGTACAAAAGGAGCCGTACTGCAGCAGCAGGTTAGAGCACTCGGTGGAAT CGCCACAGATATACATTGTGCAGTCCACGGATGTCTTGGTCATGCTCACGGGCAGGA TCTCTGTGGTCACGCTGATTGTGAAGTTGGTTGGGATGGCGATGCTATTGTTAGAGT AGGCCACGCTGTTCTCGGCGCCCAGGGACATGGTATAGGCGATGATAGACTGGGAT GCCACGCTTCTCCGGCGCCTTCTCCGTGGAGAGTTTGTCTGGGTCTGGTAGGAGGCA CAGATGCCGGCGCCGATTGGGATGTCGCACTCATAAGAATTGTTCACGTGCTCTGCT CCGATCAGGCATCCGGCGCGTGTCTGGAACACGTTGGAGCCGGTGCTGTACACCCTC CATGTTGGGGTCAGCTGATCGGCGTGGATGGCCACAGGCACCTCGGTACAATTCACG TCCTGATACAGCACGGCCACCTGGTTGGATGTATTGGTGCCGGGTGTGATCACAGAC ACGCCGCCGAAGGAGCAGGGTGTGATATCCAGGATCTCCAGGGTCTGGGGGTCCCG CACGGCGTCTGTGGTATCTGCGATGTCCCGGCCGAACTGCTGAAATGGCAGGAACTT CTTGTTGCTCTCGGTCAGCACGCCTGTGCCGGTCAGGCCGTTGAAGTTGAAGTTCAC GCACTTGTTCTTCACCAGATTGGTGGACTTCTTAGGTCCGCACACTGTTGCTGGTGCG TGCAGCAGCTCAAAGCTCAGCACCACCACTCTGTAAGGCTGATAGCCCACGCCGTTG GTGGGCTGGAAGCCGTAAGACTGCAGTGGGAAATAACAGTTAAAGCCCTCCACGCC ATTGCAAGGGGTAGAGCCGGCCTGGTAGATCTCTGTGGAGATGTCCCGCTCGAAGG GCTTCAGATTGGACTTTCTAAACAGCCGGTACAGATAATTGTAGTTGCCGCCCACTT TGCTATCCAGATTGTTAGAGTTCCAGGCGATCACGCAGCCGGTGAAATCGTCTGGCA GCTTATAATTGTAGTCGGCGATCTTGCCTGTCTGTCCAGGTGCGATCTGGCGCACCTC GTCGCCCCTGATCACGAAAGAATCGGCGTACACGTTGGTAAAGCACAGGTCATTCA GCTTTGTGGGGGACACGCCATAGCACTTAAAGGTGCTGAAAGAGGCGGAGTTGTAC AGCACGCTATAGTCGGCCACGCAGTTAGAGATGCGCTTCCTATTCCAGGCGTACACG CTGGCGAATCTGGTGGCGTTGAACACCTCGCCAAAGGGGCACAGGTTTGTGATATTT GGAAATCTCACGATGGACTCGGTTGGCTGCACCCGGAAATTGCTTGTCTGATAGATG CCCTTCTCCACGGTAAAGCTCTTCAGTGTACACTTTGTCTCAGACAGGGGGTCCAGT GCGCAATCCACTGCGTCTGTGATGGTGCCATTCTCGTTGTACTTCAGCAGGAAGGTC CGAGGCTGCAGATAGCCCACATAGTAGGCTGCTGCTCCTGCGGTCCATCCGCTAGAG GAGTCGCCTGGTGTCAGGTAGGAGCGGTGCAGGGCCAGCAGTGTCTGAAACCTGGT GATGTTGATGCCGATTGGCAGATCCACCAGAGGCTCCAGGGCGCTGAAGCCCTGAG GCAGGTCCCGCACCAGGTTGATGGGGGTGTGCTTAGAGTAGATCTTGAAGTAGCCAT CGATATTCTTAAACACGAACTCCCGCAGGTTCTTGAAATTGCCCTGCTTGCCCTCCA GGTCCATCAGGAAAGGCTGGCTCACGTACTCAAATGTGCAATTGTTGGCGCTAGAAT ACACCCTAAACTCGCTCTCCATCCAAGACTTATTGTTCTTGTGATAGTACACGCCCA GGAAGGGATCATTACAAAACTGGAACTCGCACACCTTGATGACCACGTTGGTGGCA TTGTTCACGATCAGCAGGGACTGTGTCTTGCTGTCCAGTGTGGTGCCAAAGATCCAG CCGCGGATGATGTTAGACTTCTCGGTGGAGGCGAAGTACACGCCATCGTTAAAGGG CAGCACTGGATTGTCGAACCTCTTTGTGCCATTGGTGCCGGACACGTGGATGGCGTG GAACCAGGTCACGTTAGAAAAGAATGGCAGAAACAGATCCTGTGTGGAGTGCAGCA CGGAGCTGCGAAACACCTTGTCAGGATAGTACACGCCCCTTGTGAAGCTATTGGTAT

115

AGGCAGGGGGCAGCTGAGTTCTGGTAGTCAGGTTCACGGGGCTCACAAACACGGCT CCGCACAGCAGCAGCACGCAGCACAGTCCTCTTTTCATAGCATCCATGGTGGACCGG TAAGCTTCTAGATATTTATGATTATTTCTCGCTTTCAATTTAACACAACCCTCAAGAA CCTTTGTATTTATTTTCAATTTTTCCCGGGTTATAGGATATTGATTCTTCTAATGAAA ATCTTTAGAATGAATAGAGATATGTTAATAACAGGGTTGTTAGCTACACCCATTTTT GTAGCTAGTTGTTCACAATCGGGCCCGTCGACAGAAAAATTAGTTCTTCTTTACACA GTTTACGTACATAAGTCTTAGTTCTTTGTTCTTAGAGATGATCTCATCCAACTTGTTG TTCTTTACGATATCCAAATCCTTTGTGTAAGAATCAGACTTGTATTCTACATGTTTTT CGATGATCATCTTCGCGATTTCCGCATCATCCAATAGTACGTTTTCTAGGTTCGCAGA GTAGATGTTGATATCGTACTTAAACAAGGCTTGTAGCATTTCGATATCCTTGTTATCA ATCGCTAGCTTGATATCCGGGATAAACAACAAACTGTTGTTTGTGTTTGTAGATGTC ATGTAATCTAGTAGTAGGATCATCATATCTACATGTCCGTTCTTGATTGTGATATGGA TACAAGATAGTAGGATCGCTAGATCAAATGTAGACGGGATTTCAGATAGAAAGTAA GATACGATAGATACATCGTTTAGCATTACGGCATGGTAAAAAGATGTTTTCCATCCT GTCTTTCCGTAAAACATTAGTCTCCAATTTTTCTTAACAAATAGCTTTACTGTTTGCA TGTTTCCAGAATCTACCGCGTAGTACAACGCTGTGTTTCCCTTATCATCAAATTGACT GTCGTCTAAACCAGAAAACAACAGGATTTTCACAATCTTAGTGTCCTCTAGTGTAGC AGCTTGGTGCAGAGGGAACTCGTTTTCCAATAAGTTCTTTAGAGCACCTGCATTCAG TAGAGTGCAGACCAATCGTACATTGTTGTCTGCAATAGCGTAGTAACTAGCTGAGTG ACCGTGTACGTCAGCTTTGAAAGTGTCCTTAGAACTTAAGAAAGACTTCAATTGTTT ACTTTTCCATGTGTTGATTCTACTCAAATCCATCGTGGCGGTCGACTCTAATATTTAT ATTCCAAAAAAAAAAAATAAAATTTCAATTTTGAGCTCAGAAAAATTACTTGTACAG CTCGTCCATGCCGAGAGTGATCCCGGCGGCGGTCACGAACTCCAGCAGGACCATGT GATCGCGCTTCTCGTTGGGGTCTTTGCTCAGGGCGGACTGGGTGCTCAGGTAGTGGT TGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGTTCTGCTGGTAGTGGTCG GCGAGCTGCACGCTGCCGTCCTCGATGTTGTGGCGGATCTTGAAGTTCACCTTGATG CCGTTCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGTAGTTGTACTCCA GCTTGTGCCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTCAGCTCGATGC GGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCGCGGGTCTTGTAGTTGCCGT CGTCCTTGAAGAAGATGGTGCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGA AGAAGTCGTGCTGCTTCATGTGGTCGGGGTAGCGGCTGAAGCACTGCACGCCGTAG GTCAGGGTGGTCACGAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGAT GAACTTCAGGGTCAGCTTGCCGTAGGTGGCATCGCCCTCGCCCTCGCCGGACACGCT GAACTTGTGGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGT GAACAGCTCCTCGCCCTTGCTCACCATGGTCATTCGACGGGATCCGTCACTGTTCTTT ATGATTCTACTTCCTTACCGTGCAATAAATTAGAATATATTTTCTACTTTTACGAGAA ATTAATTATTGTATTTATTATTTATGGGTGAAAAACTTACTATAAAAAGCGGGTGGG TTTGGAATTAGATCGATTTAGTTATTATCTACAGGAACAAATATAGTATCTGAAATC ATATTCATATATCCCGTTAGAGGTCTATGATAATATATAGTAGCGTTTGTTCCGTTAT AGACACCGAATAATATTTTACAAAAGTGTATATACGTATCATCATCTTTATGTTTAA AATTTAAAATCTTAATTCGTAAATTTAGAGATAAAATGGCTTCTTGTACAATACTTGT TAATTCTCCCGTCCTCTCAAAATTATCCAACTCCTCAGCGAGAATAGGACTTAGTAC ATAAAGTTTAGCATACTCTATCATCTTCATATAATAATTGGATAATAATTTATTCCAT GTTTCTGTACTAATATCGAACGAGTCTATATATTCCTTTGTACGCCATAGAATATCCA AATTTGTAGGGATTATAAACAAATCTTCGGGGAGTGTTAGATTAAACTTATTAGCGT ACAATATATAATTATGTAGAAATTCTGAATCTATTCGCTGTATAGACTTCATATAAG

116

ACAGATCATAGAAATATACGTATGTCCCAGGGGTACCGTTAATTAACTGGCCTCATG GGCCTTCGCATCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTA ACATGGTCATAGCTGTTTCCTTGCGTATTGGGCGCTCTCCGCTTCCTCGCTCACTGAC TCGCTGCGCTCGGTCGTTCGGGTAAAGCCTGGGGTGCCTAATGAGCAAAAGGCCAG CAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCG CCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGA CAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTG TTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGC GCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAG CTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAAC TATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACT GGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG GTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAA GCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCG CTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGAT CTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACT CACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTT TAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTG ACAGTTATTACGCACCGCCCTGCCATTCATCACAATACTGCTGCAGTTCGTTCAGCA TACGGCCCACATGAAAGCCATCACACACCGCATGATGCACCTGAATGGCCAGCGGC ATCAGCACTTTATCGCCCTGGGTATAATATTTGCCCATGGTAAACACCGGCGCAAAA AAGTTATCCATGTTCGCCACGTTCAGATCGAAGCTGGTAAAGCTCACCCACGGATTC GCGCTCACAAAGAACATGTTTTCGATGAAGCCTTTCGGAAAATAGGCCAGGTTTTCG CCATAGCACGCCACATCCTGGCTATAAATATGCAGGAACTGGCGAAAATCATCATG ATATTCGCTCCACAGGCTGCTAAAGGTTTCGGTCTGTTCATGAAACACGGTATAGCA CGGATGCACGCTATCCCAAATCACCAGTTCGCCATCTTTCATGGCCATACGAAATTC CGGATGCGCGTTCATCAGACGGGCCAGAATATGAATAAACGCCGGGTAGAATTTGT GTTTGTTTTTTTTCACGGTTTTCAGAAACGCGGTGATATCCAGCTGCACGGTCTGGTT ATAGGTGCACTGCGCCACGCTCTGAAACGCTTCAAAATGTTCTTTACGATGCCACTG GCTAATATCCACGGTGGTATAGCCGGTGATTTTTTTTTCCATACTCTTCCTTTTTCAAT ATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTAT TTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC

117 APPENDIX C:

Table 2.5 GenScript SARS-CoV-2-r spike peptide sequence

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFS NVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIV NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE GKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQT LLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETK CTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISN CVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIAD YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPC NGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITP GTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSY ECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTI SVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDC LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAM QMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALN TLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRA SANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPA ICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP LQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDD SEPVLKGVKLHYT

118 References

1. Qian, H., et al., Indoor transmission of SARS‐CoV‐2. Indoor Air, 2021. 31(3): p. 639-645.

2. Ai, J.-W., et al., Optimizing diagnostic strategy for novel coronavirus pneumonia, a multi-center study in Eastern China. MedRxiv, 2020.

3. Mallapaty, S., Closest known relatives of virus behind COVID-19 found in Laos. Nature, 2021. 597(7878): p. 603-603.

4. Zhu, Z., et al., From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human

coronaviruses. Respiratory Research, 2020. 21(1): p. 224.

5. Woo, P.C.Y., et al., Molecular diversity of coronaviruses in bats. Virology, 2006. 351(1):

p. 180-187.

6. Jones, K.E., et al., Global trends in emerging infectious diseases. Nature, 2008.

451(7181): p. 990-993.

7. Hooper, D.U., et al., A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 2012. 486(7401): p. 105-108.

8. Read, J.M., et al., Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates. Philosophical Transactions of The Royal Society B, 2021. 376(1829): p. 20200265.

9. Platto, S., T. Xue, and E. Carafoli, COVID19: an announced pandemic. Cell Death &

Disease, 2020. 11(9): p. 799.

10. Deslandes, A., et al., SARS-CoV-2 was already spreading in France in late December 2019. International Journal of Antimicrobial Agents, 2020. 55(6): p. 106006.

11. Korber, B., et al., Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020. 182(4): p. 812-827. e19.

12. WHO. Listings of WHO’s response to COVID-19. 2020 [cited 2021 02 November 2021];

Available from: https://www.who.int/news/item/29-06-2020-covidtimeline.

13. Elezkurtaj, S., et al., Causes of death and comorbidities in hospitalized patients with COVID-19. Scientific Reports, 2021. 11(1): p. 4263.

14. Jin, Y., et al., Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 2020. 12(4): p. 372.

119

15. Chinazzi, M., et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020. 368(6489): p. 395-400.

16. Coronavirus: the first three months as it happened, in Nature 2020.

17. Yesudhas, D., A. Srivastava, and M.M. Gromiha, COVID-19 outbreak: history,

mechanism, transmission, structural studies and therapeutics. Infection, 2021. 49(2): p.

199-213.

18. Liu, Y. and J. Rocklöv, The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. Journal of Travel Medicine, 2021. 28(7).

19. Worldometer. COVID-19 CORONAVIRUS PANDEMIC. 2021 01 November 2021 [cited 2021 02 November 2021]; Available from: https://www.worldometers.info/coronavirus/.

20. Reuters. COVID-19 Tracker. 2021 21 November 2021 [cited 2021 21 November 2021];

Available from: https://graphics.reuters.com/world-coronavirus-tracker-and- maps/regions/africa/.

21. WHO. What is Africa’s vaccine production capacity? 2021 [cited 2021 10 November 2021]; Available from: https://www.afro.who.int/news/what-africas-vaccine-production- capacity.

22. Nkengasong, J.N., et al., COVID-19 vaccines: how to ensure Africa has access. 2020, Nature Publishing Group.

23. Otu, A., E. Agogo, and B. Ebenso, Africa needs more genome sequencing to tackle new variants of SARS-CoV-2. Nature Medicine, 2021. 27(5): p. 744-745.

24. Bank, T.W. The World Bank in Africa. 2021 [cited 2021 17 November 2021]; Available from: https://www.worldbank.org/en/region/afr/overview.

25. Outlook, A.E., From debt resolution to growth: The Road ahead of Africa. Africa Development Bank Group Publications, 2021.

26. International, O., Vaccine monopolies make cost of vaccinating the world against COVID at least 5 times more expensive than it could be, S. Dransfield, Editor. 2021.

27. Montes, J., et al., How Much Will Poverty Rise in Sub-Saharan Africa in 2020? World Bank, 2020.

28. Acharya, K.P., T.R. Ghimire, and S.H. Subramanya, Access to and equitable distribution of COVID-19 vaccine in low-income countries. npj Vaccines, 2021. 6(1): p. 1-3.

120

29. Gona, P.N., et al., Burden and changes in HIV/AIDS morbidity and mortality in Southern Africa Development Community Countries, 1990–2017. BMC Public Health, 2020. 20: p.

1-14.

30. Moses, S.J., et al., The impact of the 2014 Ebola epidemic on HIV disease burden and outcomes in Liberia West Africa. PloS one, 2021. 16(9): p. e0257049.

31. Bhatt, S., et al., The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 2015. 526(7572): p. 207-211.

32. UNAIDS. Global HIV & AIDS statistics — Fact sheet. 2021 [cited 2021 17 November 2021]; Available from: https://www.unaids.org/en/resources/fact-sheet.

33. Cui, J., F. Li, and Z.-L. Shi, Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2019. 17(3): p. 181-192.

34. Krammer, F., SARS-CoV-2 vaccines in development. Nature, 2020. 586(7830): p. 516- 527.

35. McCarthy, K.R., et al., Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science, 2021. 371(6534): p. 1139-1142.

36. Müller, M.A., et al., MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerging infectious diseases, 2014. 20(12): p. 2093.

37. Corman, V.M., et al., Hosts and Sources of Endemic Human Coronaviruses. Advances in virus research, 2018. 100: p. 163-188.

38. Nova, N., Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Frontiers in Public Health, 2021. 9(1375).

39. Gerna, G., et al., Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J Med Virol, 2006. 78(7): p. 938-49.

40. Su, S., et al., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

Trends Microbiol, 2016. 24(6): p. 490-502.

41. Zhang, S.F., et al., Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010- 2015 in Guangzhou. PLoS One, 2018. 13(1): p. e0191789.

121

42. Zhou, W., et al., First infection by all four non-severe acute respiratory syndrome human coronaviruses takes place during childhood. BMC Infectious Diseases, 2013. 13(1): p.

433.

43. Gaunt, E.R., et al., Epidemiology and Clinical Presentations of the Four Human Coronaviruses 229E, HKU1, NL63, and OC43 Detected over 3 Years Using a Novel Multiplex Real-Time PCR Method. Journal of Clinical Microbiology, 2010. 48(8): p.

2940-2947.

44. Peiris, J.S.M., Y. Guan, and K.Y. Yuen, Severe acute respiratory syndrome. Nature Medicine, 2004. 10(12): p. S88-S97.

45. html, W.H.O.J.h.w.w.i.c.s.c.t.e.i., Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. 2003.

46. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS).

2003, World Health Organization: Geneva, Switzerland. p. 44.

47. Drosten, C., et al., Severe acute respiratory syndrome: identification of the etiological agent. Trends in Molecular Medicine, 2003. 9(8): p. 325-327.

48. Rota, P.A., et al., Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. Science, 2003. 300(5624): p. 1394-1399.

49. Tsang, K.W., et al., A Cluster of Cases of Severe Acute Respiratory Syndrome in Hong Kong. England Journal of Medicine, 2003. 348(20): p. 1977-1985.

50. Zaki, A.M., et al., Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New England Journal of Medicine, 2012. 367(19): p. 1814-1820.

51. Bermingham, A., et al., Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012.

Eurosurveillance, 2012. 17(40): p. 20290.

52. Ramadan, N. and H. Shaib, Middle East respiratory syndrome coronavirus (MERS-CoV):

A review. Germs, 2019. 9(1): p. 35-42.

53. Raj, V.S., et al., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013. 495(7440): p. 251-254.

54. Zhang, A.-R., et al., Epidemiology and evolution of Middle East respiratory syndrome coronavirus, 2012–2020. Infectious Diseases of Poverty, 2021. 10(1): p. 66.

122

55. Ren, L.-L., et al., Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal, 2020. 133(9): p. 1015-1024.

56. Zhu, N., et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 2020. 382(8): p. 727-733.

57. Wu, F., et al., A new coronavirus associated with human respiratory disease in China.

Nature, 2020. 579(7798): p. 265-269.

58. Hasan, M.N., et al., The Global Case-Fatality Rate of COVID-19 Has Been Declining Since May 2020 The American Journal of Tropical Medicine and Hygiene, 2021. 104(6):

p. 2176-2184.

59. Sigal, A., Milder disease with Omicron: is it the virus or the pre-existing immunity?

Nature Reviews Immunology, 2022: p. 1-3.

60. Moro, E., et al., The international European Academy of Neurology survey on neurological symptoms in patients with COVID-19 infection. European journal of neurology, 2020. 27(9): p. 1727-1737.

61. Jasti, M., et al., A review of pathophysiology and neuropsychiatric manifestations of COVID-19. Journal of neurology, 2021. 268(6): p. 2007-2012.

62. Prakash, M.K., Quantitative COVID-19 infectiousness estimate correlating with viral shedding and culturability suggests 68% pre-symptomatic transmissions. MedRxiv, 2020: p. 2020.05.07.20094789.

63. Mulu, A., et al., The challenges of COVID-19 testing in Africa: the Ethiopian experience.

The Pan African medical journal, 2021. 38: p. 6-6.

64. UCT, COVID-19, in University of Cape Town. 2021: Cape Town.

65. Wang, H., et al., The genetic sequence, origin, and diagnosis of SARS-CoV-2. European Journal of Clinical Microbiology & Infectious Diseases, 2020. 39(9): p. 1629-1635.

66. Corman, V.M., et al., Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT- PCR. Eurosurveillance, 2020. 25(3): p. 2000045.

67. Mak, G.C.K., et al., Evaluation of rapid antigen test for detection of SARS-CoV-2 virus.

Journal of Clinical Virology, 2020. 129: p. 104500.

68. Eleftheriou, I., et al., Real-life evaluation of a COVID-19 rapid antigen detection test in hospitalized children. Journal of Medical Virology, 2021. 93(10): p. 6040-6044.

123

69. Guglielmi, G., Rapid coronavirus tests: a guide for the perplexed. Nature, 2021.

590(7845): p. 202-5.

70. Pavelka, M., et al., The effectiveness of population-wide, rapid antigen test based screening in reducing SARS-CoV-2 infection prevalence in Slovakia. MedRxiv, 2020.

71. Wong, H.Y.F., et al., Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology, 2020. 296(2): p. E72-E78.

72. Li, W.T., et al., Using Machine Learning of Clinical Data to Diagnose COVID-19. BMC medical informatics and decision making, 2020: p. 2020.06.24.20138859.

73. Maghdid, H., et al., Diagnosing COVID-19 pneumonia from x-ray and CT images using deep learning and transfer learning algorithms. SPIE Defense + Commercial Sensing.

Vol. 11734. 2021: SPIE.

74. Born, B., A.M. Dietrich, and G.J. Müller, The lockdown effect: A counterfactual for Sweden. PLOS ONE, 2021. 16(4): p. e0249732.

75. Wallace, L.J., et al., COVID-19 in sub-Saharan Africa: impacts on vulnerable

populations and sustaining home-grown solutions. Canadian Journal of Public Health, 2020. 111(5): p. 649-653.

76. Teachout, M. and C. Zipfel, The economic impact of COVID-19 lockdowns in sub- Saharan Africa. London: International Growth Centre, 2020.

77. Moore, M., et al., Identifying Future Disease Hot Spots: Infectious Disease Vulnerability Index. Rand health quarterly, 2017. 6(3): p. 5-5.

78. Nkengasong, J.N. and W. Mankoula, Looming threat of COVID-19 infection in Africa:

act collectively, and fast. The Lancet, 2020. 395(10227): p. 841-842.

79. Okonji, E.F., et al., Understanding varying COVID-19 mortality rates reported in Africa compared to Europe, Americas and Asia. Tropical Medicine & International Health, 2021. 26(7): p. 716-719.

80. Meo, S., et al., Impact of weather conditions on incidence and mortality of COVID-19 pandemic in Africa. Eur Rev Med Pharmacol Sci, 2020. 24(18): p. 9753-9759.

81. Njenga, M.K., et al., Why is There Low Morbidity and Mortality of COVID-19 in Africa?

The American journal of tropical medicine and hygiene, 2020. 103(2): p. 564-569.

82. Zeberg, H. and S. Pääbo, The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature, 2020. 587(7835): p. 610-612.

124

83. Shi, Y., et al., Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Critical Care, 2020. 24(1): p. 108.

84. Jassat, W., et al., Risk factors for COVID-19-related in-hospital mortality in a high HIV and tuberculosis prevalence setting in South Africa: a cohort study. The Lancet HIV, 2021. 8(9): p. e554-e567.

85. Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, S.A., Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa.

Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2021. 73(7): p. e2005-e2015.

86. Okeahalam, C., V. Williams, and K. Otwombe, Factors associated with COVID-19 infections and mortality in Africa: a cross-sectional study using publicly available data.

BMJ Open, 2020. 10(11): p. e042750.

87. Gesesew, H.A., et al., Risk factors for COVID-19 infection, disease severity and related deaths in Africa: a systematic review. BMJ Open, 2021. 11(2): p. e044618.

88. Roth, G.A., et al., Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2018. 392(10159): p. 1736-1788.

89. Tesoriero, J.M., et al., COVID-19 Outcomes Among Persons Living With or Without Diagnosed HIV Infection in New York State. JAMA Netw Open, 2021. 4(2): p. e2037069.

90. Geretti, A.M., et al., Outcomes of Coronavirus Disease 2019 (COVID-19) Related

Hospitalization Among People With Human Immunodeficiency Virus (HIV) in the ISARIC World Health Organization (WHO) Clinical Characterization Protocol (UK): A

Prospective Observational Study. Clinical Infectious Diseases, 2020. 73(7): p. e2095- e2106.

91. Hogan, A.B., et al., Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. The Lancet Global Health, 2020. 8(9): p. e1132-e1141.

92. Pyrc, K., B. Berkhout, and L.v.d. Hoek, The Novel Human Coronaviruses NL63 and HKU1. Journal of virology, 2007. 81(7): p. 3051-3057.

125

93. Weiss, S.R. and J.L. Leibowitz, Chapter 4 - Coronavirus Pathogenesis, in Advances in Virus Research, K. Maramorosch, A.J. Shatkin, and F.A. Murphy, Editors. 2011, Academic Press. p. 85-164.

94. Tyrrell, D.A.J.A., J. D.; Berry, D .M .; Cunningham, C.H.; Hamre, D.; Hofstad, M. S.;

Mallucci, L., and McIntosh, K Virology: Coronaviruses. Nature, 1968. 220(5168): p.

650-650.

95. Brian, D.A. and R.S. Baric, Coronavirus genome structure and replication. Curr Top Microbiol Immunol, 2005. 287: p. 1-30.

96. Walls, A.C., et al., Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A, 2017. 114(42): p. 11157-11162.

97. Rastogi, M., et al., SARS coronavirus 2: from genome to infectome. Respiratory Research, 2020. 21(1): p. 318.

98. Henderson, R., et al., Controlling the SARS-CoV-2 spike glycoprotein conformation.

Nature Structural & Molecular Biology, 2020. 27(10): p. 925-933.

99. Wang, Q., et al., Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 2020. 181(4): p. 894-904.e9.

100. Graham, R.L. and R.S. Baric, Recombination, Reservoirs, and the Modular Spike:

Mechanisms of Coronavirus Cross-Species Transmission. Journal of virology, 2010.

84(7): p. 3134-3146.

101. Khare, S., et al., Conformational Changes of the Receptor Binding Domain of SARS- CoV-2 Spike Protein and Prediction of a B-Cell Antigenic Epitope Using Structural Data. Frontiers in Artificial Intelligence, 2021. 4.

102. Smith, T.R.F., et al., Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 2020. 11(1): p. 2601.

103. Watanabe, Y., et al., Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020. 369(6501): p. 330-333.

104. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020. 367(6483): p. 1260-1263.

105. Zost, S.J., et al., Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020. 26(9): p.

1422-1427.

Dalam dokumen University of Cape Town (Halaman 108-141)