CHAPTER 1: CO 2 CAPTURE
7. Conclusions and recommendations
7.2 Recommendations for future work
binary mixtures estimate the experimental refractive index values perfectly. The maximum deviation from the measured refractive index data is attributed to the Jouyban-Acree Model with
%AARD of 0.11 for MEA+ETOH, 0.24 for MDEA+ETOH and 0.27 for DEA+ETOH solution.
The lowest deviation from experimental data is attributed to the modified Graber equation (8 parameters) with %AARD of 0.04 for MEA+ETOH, 0.07 for MDEA+ETOH and 0.08 for DEA+ETOH solution.
182 References
[1] R. Cooper, J. McCarthy, and B. Metz, “Climate Change 2001: The Scientific Basis,” in Foreign Affairs, vol. 81, no. 1, 2002, p. 208.
[2] A. Yamasaki, “An Overview of CO2 Mitigation Options for Global Warming-Emphasizing CO2 Sequestration Options,” J. Chem. Eng. Japan - J CHEM ENG JPN, vol. 36, pp. 361–
375, Apr. 2003, doi: 10.1252/jcej.36.361.
[3] G. Balachandar, N. Khanna, and D. Das, “Chapter 6 - Biohydrogen Production from Organic Wastes by Dark Fermentation,” A. Pandey, J.-S. Chang, P. C. Hallenbecka, and C.
B. T.-B. Larroche, Eds. Amsterdam: Elsevier, 2013, pp. 103–144.
[4] Stephen A. Rackley, CCS technology glossary. Butterworth-Heinemann, 2017.
[5] “Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases.”
https://gml.noaa.gov/ccgg/trends/ (accessed Sep. 21, 2021).
[6] S. Dinda, “Development of solid adsorbent for carbon dioxide capture from flue gas,” Sep.
Purif. Technol., vol. 109, pp. 64–71, 2013, doi: 10.1016/j.seppur.2013.02.027.
[7] M. K. Mondal, H. K. Balsora, and P. Varshney, “Progress and trends in CO2 capture/separation technologies: A review,” Energy, vol. 46, no. 1, pp. 431–441, 2012, doi:
https://doi.org/10.1016/j.energy.2012.08.006.
[8] G. M. L. US Department of Commerce, NOAA, “Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases.” https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_full.html (accessed Mar. 13, 2020).
[9] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev., vol. 39, no. November, pp. 426–443, 2014, doi: 10.1016/j.rser.2014.07.093.
[10] Intergovernmental Panel on Climate Change, “CARBON DIOXIDE CAPTURE AND STORAGE.” Accessed: Jul. 13, 2020. [Online]. Available:
https://archive.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf.
[11] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev., vol. 39, pp. 426–443, 2014, doi: https://doi.org/10.1016/j.rser.2014.07.093.
[12] R. Sabouni, H. Kazemian, and S. Rohani, “Carbon dioxide capturing technologies: a review
focusing on metal organic framework materials (MOFs),” Environ. Sci. Pollut. Res., vol.
21, no. 8, pp. 5427–5449, Apr. 2014, doi: 10.1007/s11356-013-2406-2.
[13] O. Dr. Bolland, Carbon dioxide capture, no. October. 2009.
[14] Costas P. Pappis, Climate Change, Supply Chain Management and Enterprise Adaptation:Implications of Global Warming on the Economy. 2010.
[15] A. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications – A review,” Energy, vol. 35, no. 6, pp. 2610–2628, 2010, doi:
https://doi.org/10.1016/j.energy.2010.02.030.
[16] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, “Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program,”
Int. J. Greenh. Gas Control, vol. 2, no. 1, pp. 9–20, 2008, doi:
https://doi.org/10.1016/S1750-5836(07)00094-1.
[17] G. S. Kumar, M. Viswandham, A. V. S. S. K. S. Gupta, and G. S. Kumar, “a Review of Pre- Combustion Co2 Capture in Igcc,” Int. J. Res. Eng. Technol., vol. 02, no. 05, pp. 847–853, 2013, doi: 10.15623/ijret.2013.0205020.
[18] S. D. Kenarsari et al., “Review of recent advances in carbon dioxide separation and capture,” RSC Adv., vol. 3, no. 45, pp. 22739–22773, 2013, doi: 10.1039/c3ra43965h.
[19] Z. (Henry) Liang et al., “Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents,” Int. J. Greenh. Gas Control, vol.
40, pp. 26–54, 2015, doi: 10.1016/j.ijggc.2015.06.017.
[20] W. Kuckshinrichs and J. F. Hake, Carbon capture, storage and use: Technical, economic, environmental and societal perspectives. 2015.
[21] Feron, P. H.M. and Hendriks, C. A., “CO2 Capture Process Principles and Costs,” Oil Gas Sci. Technol. - Rev. IFP, vol. 60, no. 3, pp. 451–459, 2005, doi: 10.2516/ogst:2005027.
[22] A. B. Rao and E. S. Rubin, “A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control,”
Environ. Sci. Technol., vol. 36, no. 20, pp. 4467–4475, Oct. 2002, doi: 10.1021/es0158861.
[23] D. M. D. Alessandro, B. Smit, and J. R. Long, “Carbon Dioxide Capture Carbon Dioxide Capture%: Prospects for New Materials Angewandte,” pp. 6058–6082, 2010, doi:
10.1002/anie.201000431.
[24] A. S. Bhown and B. C. Freeman, “Analysis and Status of Post-Combustion Carbon Dioxide
184
Capture Technologies,” Environ. Sci. Technol, pp. 8624–8632, 2011, doi:
10.1021/es104291d.
[25] K. A. Mumford, Y. Wu, K. H. Smith, and G. W. Stevens, “Review of solvent based carbon- dioxide capture technologies,” Front. Chem. Sci. Eng., vol. 9, no. 2, pp. 125–141, 2015, doi: 10.1007/s11705-015-1514-6.
[26] W. M. Budzianowski, “Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: A review,” Int. J. Glob. Warm., vol. 7, no. 2, pp. 184–225, 2015, doi: 10.1504/IJGW.2015.067749.
[27] X. Luo, A. Hartono, and H. Svendsen, “Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns,” Chem. Eng. Sci., vol. 82, pp. 31–43, Sep. 2012, doi: 10.1016/j.ces.2012.07.001.
[28] C. Yu, C. Huang, and C. Tan, “A Review of CO 2 Capture by Absorption and Adsorption,”
pp. 745–769, 2012, doi: 10.4209/aaqr.2012.05.0132.
[29] A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, “Membrane technologies for CO 2 separation,” J. Memb. Sci., vol. 359, no. 1–2, pp. 115–125, 2010, doi:
10.1016/j.memsci.2009.11.040.
[30] S. Topham et al., Carbon Dioxide. 2014.
[31] T. Study, “CO 2 CAPTURE IN THE CEMENT,” no. July, 2008.
[32] R. Singh, “Chapter 3 - Hybrid membrane systems – applications and case studies,” R. B.
T.-H. M. S. for W. P. Singh, Ed. Amsterdam: Elsevier Science, 2005, pp. 131–196.
[33] S. S. Clair Gough, Carbon Capture and its Storage: An Integrated Assessment, 1st editio.
London, 2006.
[34] M. Tambe, M. M. Maroto-valer, and A. J. Finn, “Study of design parameters affecting the performance of CO 2 purification units in oxy-fuel combustion,” Int. J. Greenh. Gas Control, vol. 12, pp. 441–449, 2013, doi: 10.1016/j.ijggc.2012.11.016.
[35] G. Göttlicher and R. Pruschek, “Comparison of CO2 removal systems for fossil-fuelled power plant processes,” Energy Convers. Manag., vol. 38, pp. S173–S178, 1997, doi:
https://doi.org/10.1016/S0196-8904(96)00265-8.
[36] R. Porrazzo, G. White, and R. Ocone, “Techno-economic investigation of a chemical looping combustion based power plant,” Faraday Discuss., vol. 192, no. 0, pp. 437–457, 2016, doi: 10.1039/C6FD00033A.
[37] M. Q. ul I. Zafar, “Oxygen Carriers Materials for Chemical-Looping Technologies - Reactivity and Kinetics Muhammad Qamar ul Islam Zafar,” CHALMERS UNIVERSITY OF TECHNOLOGY, 2007.
[38] P. Wang, N. Means, D. Shekhawat, D. Berry, and M. Massoudi, “Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review,”
pp. 10605–10635, 2015, doi: 10.3390/en81010605.
[39] J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad, and J. M. Palacios,
“Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, vol.
18, no. 2, pp. 371–377, Mar. 2004, doi: 10.1021/ef0301452.
[40] M. M. Hossain and H. I. De Lasa, “Chemical-looping combustion ( CLC ) for inherent CO 2 separations — a review,” vol. 63, 2008, doi: 10.1016/j.ces.2008.05.028.
[41] E. D. Sloan Jr., C. A. Koh, and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd editio.
CRC Press, Taylor & Francis Group, New York, 2007.
[42] E. D. Sloan, “Gas Hydrates: Review of Physical/Chemical Properties,” Energy & Fuels, vol. 12, no. 2, pp. 191–196, Mar. 1998, doi: 10.1021/ef970164+.
[43] L. J. Florusse et al., “Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate,” Science (80-. )., vol. 306, no. 5695, pp. 469–471, Oct. 2004, doi:
10.1126/science.1102076.
[44] M. H. F. Sluiter, H. Adachi, R. V. Belosludov, V. R. Belosludov, and Y. Kawazoe, Ab initio study of hydrogen storage in hydrogen hydrate clathrates, vol. 45, no. 5. 2004.
[45] P. Linga, R. Kumar, J. A. Ripmeester, P. Enlezos, and B. Engineering, “HYDRATE PROCESSES FOR CO 2 CAPTURE AND SCALE UP USING A NEW APPARATUS,”
2008.
[46] P. Linga, R. Kumar, and P. Englezos, “The clathrate hydrate process for post and pre- combustion capture of carbon dioxide,” vol. 149, pp. 625–629, 2007, doi:
10.1016/j.jhazmat.2007.06.086.
[47] H. D. Schulz and M. Zabel, “Gas Hydrates in Marine Sediments,” Mar. Geochemistry, no.
August 2015, pp. 1–574, 2006, doi: 10.1007/3-540-32144-6.
[48] T. Hughes, “Plug Formation and Dissociation of Mixed Gas Hydrates and Methane Semi- Clathrate Hydrate Stability,” UNIVERSITY OF CANTERBURY, 2008.
[49] E. Oko, M. Wang, and A. S. Joel, “Current status and future development of solvent-based