forx, y, z ∈X with 0< λ < γ14. Then mappings f, g, F, G have a unique common fixed point inX provided that F, G are continuous.
Proof. Letx0 ∈Xthenf x0 =F x1for somex1 ∈Xsincef(X)⊂F(X) andgx1 =Gx2 for somex2 ∈X sinceg(X)⊂G(X). In general, we get y2n=f x2n=F x2n+1 for some x2n+1 ∈X and y2n+1 =gx2n+1 =Gx2n+2 for some x2n+2 ∈X. We shall show that the sequence{yn} is a Cauchy sequence in X. For the sequence {yn} using the inequality (6.20), we get
Sαβγ(y2n, y2n, y2n+1)
=Sαβγ(f x2n, f x2n, gx2n+1)
≤λmax{Sαβγ(Gx2n, Gx2n, F x2n+1), Sαβγ(f x2n, f x2n, Gx2n), Sαβγ(gx2n+1, gx2n+1, F x2n+1), Sαβγ(f x2n, f x2n, gx2n+1)}
≤λmax{Sαβγ(y2n−1, y2n−1, y2n), Sαβγ(y2n, y2n, y2n−1), Sαβγ(y2n+1, y2n+1, y2n), Sαβγ(y2n, y2n, y2n+1)}
≤λγmax{Sαβγ(y2n−1, y2n−1, y2n), Sαβγ(y2n, y2n, y2n+1)} (6.21)
IfSαβγ(y2n, y2n, y2n+1)> Sαβγ(y2n−1, y2n−1, y2n) then from inequality (6.21) we get
Sαβγ(y2n, y2n, y2n+1)≤λγmax{Sαβγ(y2n, y2n, y2n+1)}
< Sαβγ(y2n, y2n, y2n+1)
is a contradiction. Hence, Sαβγ(y2n, y2n, y2n+1)≤Sαβγ(y2n−1, y2n−1, y2n) therefore
Sαβγ(y2n, y2n, y2n+1)≤λγSαβγ(y2n−1, y2n−1, y2n)
≤λγ2Sαβγ(y2n, y2n, y2n−1) (6.22)
In a similar manner, have that
Sαβγ(y2n−1, y2n−1, y2n)
≤γSαβγ(y2n, y2n, y2n−1)
=γSαβγ(f x2n, f x2n, gx2n−1)
≤λγmax{Sαβγ(Gx2n, G2n, F x2n−1), Sαβγ(f x2n, f2n, Gx2n), Sαβγ(gx2n−1, gx2n−1, F x2n−1), Sαβγ(f x2n, f2n, gx2n−1)}
=γλmax{Sαβγ(y2n−1, y2n−1, y2n−2), Sαβγ(y2n, y2n, y2n−1), Sαβγ(y2n−1, y2n−1, y2n−2), Sαβγ(y2n, y2n, y2n−1)}
=γλmax{Sαβγ(y2n, y2n, y2n−1), Sαβγ(y2n−1, y2n−1, y2n−2)}
IfSαβγ(y2n, y2n, y2n−1)> Sαβγ(y2n−1, y2n−1, y2n−2) then it follows that
Sαβγ(y2n−1, y2n−1, y2n)≤λγSαβγ(y2n, y2n, y2n−1)
≤λγ2Sαβγ(y2n−1, y2n−1, y2n) (6.23)
which is a contradiction. Hence
Sαβγ(y2n−1, y2n−1, y2n)≤λγSαβγ(y2n−1, y2n−1, y2n−2)
≤λγ2Sαβγ(y2n−2, y2n−2, y2n−1) (6.24)
Thus, from inequality (6.22) and (6.24) we obtain
Sαβγ(yn, yn, yn−1)≤λγ2Sαβγ(yn−1, yn−1, yn−2) (6.25)
whereλγ2 <1 and n≥2. It follows by repeated application of inequality (6.25) that,
Sαβγ(yn, yn, yn−1)≤λγ2Sαβγ(yn−1, yn−1, yn−2) ...
≤(λγ2)n−1Sαβγ(y1, y1, y0) (6.26)
It follows from (6.26) that
Sαβγ(yn, yn, yn+1)≤γSαβγ(yn+1, yn+1, yn)≤γ(λγ2)nSαβγ(y1, y1, y0) (6.27)
Forn, m∈Nwe get
Sαβγ(yn, yn, yn+m)
≤(α+β)Sαβγ(yn, yn, yn+1) + (α+β)γ2Sαβγ(yn+1, yn+1, yn+2) +· · · + (α+β)(γ2)m−2Sαβγ(yn+m−2, yn+m−2, yn+m−1)
+ (γ2)m−1Sαβγ(yn+m−1, yn+m−1, yn+m)
≤(α+β)
m−1
X
i=0
(γ)2iSαβγ(yn+i, yn+i, yn+i+1)
≤(α+β)γ(λγ2)n
m−1
X
i=0
(γ)4λi
Sαβγ(y1, y1, y0)
<(α+β)γ(λγ2)n 1
1−γ4λSαβγ(y1, y1, y0)
since λγ2 < 1, it follows that {yn} is a Cauchy sequence in a complete Sαβγ-metric space, thus there existsy∈Xsuch that limn→∞y2n= limn→∞f x2n= limn→∞F x2n+1 = y = limn→∞y2n+1 = limn→∞gx2n+1 = limn→∞Gx2n+2 We shall now show that y is a
common fixed point for mappingsf, g, F, G. SinceGis continuous, we get limn→∞G(Gx2n+2) = Gyand limn→∞Gf x2n=Gysincef, Gare compatible limn→∞Sαβγ(f Gx2n, f Gx2n, Gf x2n) =
0 so by lemma 6.3 it follows that limn→∞f Gx2n=Gy.It follows from inequality (6.20),
Sαβγ(f Gx2n, f Gx2n, gx2n+1)
≤λmax{Sαβγ(GGx2n, GGx2n, F x2n+1), Sαβγ(f Gx2n, f Gx2n, GGx2n), Sαβγ(gx2n+1, gx2n+1, F x2n+1), Sαβγ(f Gx2n, f Gx2n, gx2n+1)}
Taking the limitn → ∞, we get
Sαβγ(Gy, Gy, y)
≤λmax{Sαβγ(Gy, Gy, y), Sαβγ(Gy, Gy, Gy), Sαβγ(y, y, y), Sαβγ(Gy, Gy, y)}
=λSαβγ(Gy, Gy, y)
since λ < 1, we get Sαβγ(Gy, Gy, y) = 0 thus Gy = y. In a similar manner, since F is continuous we get, limn→∞F F x2n+1 = F y, limn→∞F gx2n+1 = F y since g and F are compatible, limn→∞Sαβγ(gF x2n+1, gF x2n+1, F gx2n+1) = 0 and it follows that limn→∞gF x2n+1 =F y. From inequality (6.20),
Sαβγ(f x2n, f x2n, gF x2n+1)
≤λmax{Sαβγ(Gx2n, Gx2n, F F x2n+1), Sαβγ(f x2n, f x2n, Gx2n), Sαβγ(gF x2n+1, gF x2n+1, F F x2n+1), Sαβγ(f x2n, f x2n, gF x2n+1)}
Taking the limitn → ∞, we get
Sαβγ(y, y, F y)
≤λmax{Sαβγ(y, y, F y), Sαβγ(y, y, y), Sαβγ(F y, F y, F y), Sαβγ(y, y, F y)}
≤λSαβγ(y, y, F y)
since λ <1, it follows that F y =y. Furthermore, we obtain that Sαβγ(f y, f y, gx2n+1)
≤λ{Sαβγ(Gy, Gy, F x2n+1), Sαβγ(f y, f y, Gy), Sαβγ(gx2n+1, gx2n+1, F x2n+1), Sαβγ(f y, f y, gx2n+1)}
Taking the limitn → ∞, andGy =F y =y we have Sαβγ(f y, f y, y)
≤λmax{Sαβγ(Gy, Gy, y), Sαβγ(f y, f y, y), Sαβγ(y, y, y), Sαβγ(f y, f y, y)}
=λSαβγ(f y, f y, y)
since λ <1, f y =y. Finally, we have Gy =F y =f y =y and Sαβγ(y, y, gy) = Sαβγ(f y, f y, gy)
≤λmax{Sαβγ(Gy, Gy, F y), Sαβγ(f y, f y, Gy), Sαβγ(gy, gy, F y), Sαβγ(f y, f y, gy)}
=λSαβγ(y, y, gy)
It follows that gy = y. Thus we get F y = Gy = gy = f y = y. It remains to show that the common fixed point is unique. Assume that there exists x ∈ X such that F x=Gx=gx=f x=x then
Sαβγ(x, x, y) = Sαβγ(f x, f x, gy)
≤λmax{Sαβγ(Gx, Gx, F y), Sαβγ(f x, f x, Gy), Sαβγ(gy, gy, F y), Sαβγ(f x, f x, gy)}
=λmax{Sαβγ(x, x, y), Sαβγ(x, x, x), Sαβγ(x, x, y)}
=λSαβγ(x, x, y)
which implies thatSαβγ(x, x, y) = 0 thus x=y.
Corollary 6.4.1. Let (X, Sαβγ)be a complete Sαβγ- metric space and letf, g :X →X be mappings such that
Sαβγ(f x, f y, gz)
≤λmax{Sαβγ(x, y, z), Sαβγ(f x, f x, x), Sαβγ(gz, gz, z), Sαβγ(f y, f y, gz)}
for all x, y, z ∈X with0≤λ <1then there exists a unique fixed point for mappings f and g.
Proof. The proof follows in a similar manner as in Theorem 6.4, by taking mappings F and G as identity mappings.
Chapter 7
Conclusion
In Chapter 1, we presented the concept of a metric space and showed that a contraction mapping on a complete metric space has a unique fixed point which set the tone and style for sections to follow. We further presented definitions of concepts that were used in the thesis.
In Chapter 2, we presented the concept of a b-metric and showed by relaxing the s-triangle inequality, we can formulate the concept of a generalized b-metric type. We proved that a contraction type mapping on a complete generalizedb-metric space has a unique fixed point. We proved that if one replaces the s-inequality of a b-metric by a relaxed polygonal inequality, one can formulate the concept of generalized b- met- ric space type and can prove that a contraction mapping on a complete generalized b-metric space type has a unique fixed point. We further proved that a Kannan con- traction on a complete generalized b-metric space type has a unique fixed point.
In Chapter 3, we imposed a convex structure on a generalized b-metric space type to formulated the concept of a generalized convex metric type space. We proved that a contraction mapping in a complete generalized convex metric type space has a unique fixed point.
In Chapter 4, we imposed a partial ordering on the set of complex numbers and ex- tended the concept of a generalizedb-metric type space to a generalized complex valued b-metric type space. We proved that a Reich contraction type mapping on a complete generalized complex valuedb-metric space type has a fixed point.
In Chapter 5, we relaxed the rectangle inequality and formulated the concept of a generalizedGb- metric space. We further presented some properties of the generalized Gb metric type. We proved that in a complete generalized Gb metric space type with a contraction mapping a fixed point exists.
In Chapter 6, we formulated the concept of a generalized Sb-metric space and proved that a pair of compatible mappings satisfying a contraction condition on a complete generalizedSb-metric space type has common fixed points.
Bibliography
[1] A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat28(6) (2014), 1087–1101.
[2] H. Aimar, B. Iaffi and L. Nitti,On the Mac´ıas-Segovia metrization of quasi-metric spaces, Rev. Union Math. Argent.,41, (1998), no. 2, pp. 67–75.
[3] A. Azam, B.Fisher and M. Khan, Common fixed point theorems in complex-valued metric spaces,Numerical Functional Analysis and Optimization,32(3),(2011), pp.
243–253.
[4] T. Babinec, C. Best, ..., Introduction to Topology, PWS publishers, (2007), 9–27.
[5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct.
Anal.,30, (1989), pp. 26–37.
[6] S. Bhatt, S. Chaukiyal and R. Dimri, Common fixed point of mapping satisfying rational inequality in complex-valued metric spaces,International Journal of Pure and Applied Mathematics, 73 (2), (2011), pp. 159–164.
[7] N. Bourbaki, Topologie Generale, Herman: Paris, France, (1974).
[8] L Chen ,C Li, Kaczmarek R., Zhao, Y.,Several Fixed Point Theorems in Convex b-Metric Spaces and Applications, Mathematics 2020, 8, 242.
[9] R. Chugh, T. Kadian, A. Rani, B.E Rhoades,Property PinG-metric spaces, Fixed Point Theory Appl.,2010, Article ID 401684.
[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ.
Ostra.,1, (1993), pp. 5–11.
[11] A.P. Dempster, N.M. Laird, and D.B. Rubin.Maximal likelihood from incomplete data via theEM Algorithm. Journal of the Royal Statistical Society, 39, pp.185–197, 1977
[12] B.C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc.,84 (1992), 329-336.
[13] X.P. Ding,Iteration processes for nonlinear mappings in convex metric spaces. J.
Math. Anal. Appl. 1988, 132, 114–122.
[14] R. Fagin and L. Stockmeyer, Relaxing the triangle inequality in pattern matching, Int. J. Comput. Vis., 30, (1998), pp. 219–231.
[15] L. Farmakis, M. Moskowitz,Fixed Point Theorems and Their Applications, World Scientific Publishing Co. Pte. Ltd, (2013), 3–33.
[16] S. G¨ahler, 2-metrische R¨aume und ither topoloische Struktur, Math. Nachr., 26 (1963),115–148.
[17] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60, (1968), pp. 71–76.
[18] M. Kir and H. Kiziltunc, On some well known fixed point b-metric spaces,Turkish Journal of Analysis and Number Theory, vol:1, (1), (2013), pp.13-16.
[19] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Cham: Springer, (2014).
[20] P.K. Misra, S. Sachdeva and S.K. Banerjee, Some fixed point theorems in b-metric space,Turkish Journal of Analysis and Number theory, vol 2, (1),(2014),pp. 19-24.
[21] A.A Mukheimer, Some common fixed point theorems in complex-valued b-metric spaces,The Scientific World Journal, vol 2014, Atricle ID 587825.
[22] J. Muscat,Functional Analysis, An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras, Springer, (2014), 17–32.
[23] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal.,7 (2006), 289-297.
[24] Z. Mustafa, H. Obiedat, F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric spaces, Fixed Point Theory Appl., 2008, Article ID 189870.
[25] M. Paluszy’nski and K. Stempak, On quasi-metric and metric spaces,Proc. Amer.
Math. Soc., 137, (2009), no. 12, pp. 4307–4312.
[26] V. Pata,Fixed Point Analysis and Applications, Springer International Publishing, (2019), 3–8.
[27] K.P.R Rao, P.R Swamy and J.R Prasad, A common fixed point theorem in complex-valued b-metric spaces, Bulletin of Mathematics and Statistic Research, (1), (2013).
[28] R. T. Rockafeller, Convex Analysis, Princeton University Press, (1997), 23–25.
[29] B. Samet, C. Vetro, F. Vetro,Remarks on G-Metric Spaces, International Journal of Analysis, 2013, Article ID 917158, 6 pages.
[30] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S- metric spaces, Mat. Vesnik, 64 (2012), 258–266.
[31] S. Sedghi, K.P.R Rao, N. Shobe, Common fixed point theorems for six weakly compatible mappings in D∗-metric spaces, Internat. J. Math. Math. Sci., 6(2007), 225–237.
[32] S. Sedghi, N. Shobe, H. Zhou,A common fixed point theorem in D∗-metric spaces, Fixed Point Theory Appl., 2007, Article ID 27906, 13 pages.
[33] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S- metric spaces, Mat. Vesn. 64 (2012), 258–266.
[34] S. Sedghi, A. Gholidahneh, T. Dosenovi´c, J. Esfahani and S. Radenovi´c, Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra, 5(2)(2016), 93–104.
[35] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl., 2010, Article ID 181650.
[36] S. Shiral, H.L Vasudeva,Metric Spaces, Springer, (2006), 27–44.