ContentslistsavailableatSciVerseScienceDirect
Agricultural Water Management
j our na l h o me p a ge :w w w . e l s e v i e r . c o m / l o c a t e / a g w a t
Impact of rainwater harvesting on water resources of the modder river basin, central region of South Africa
W.A. Welderufael, Y.E. Woyessa
∗, D.C. Edossa
SchoolofCivilEngineeringandBuiltEnvironment,CentralUniversityofTechnology,FreeState,PrivateBagX20539,Bloemfontein9300,SouthAfrica1,2
a r t i c l e i n f o
Articlehistory:
Received2May2012 Accepted27July2012 Available online 18 August 2012
Keywords:
Hydrology Catchment Landuse Waterharvesting
a b s t r a c t
Alongthepathofwaterflowinginariverbasinaremanywater-relatedhumaninterventionsthatmodify thenaturalsystems.Rainwaterharvestingisonesuchinterventionthatinvolvescollectinganduseof surfacerunofffordifferentpurposeintheupstreamcatchment.Increasedwaterconsumptionatupstream levelisanissueofconcernfordownstreamwateravailabilitytosustainecosystemservices.Theupper ModderRiverbasin,locatedinasemiaridregioninthecentralSouthAfrica,isexperiencingintermittent droughtscausingwatershortagesforagriculture,livestockanddomesticuses.Toaddressthisproblem atechniquewasdevelopedforsmallscalefarmerswiththeobjectiveofcollectingandconcentratingof rainwaterforcropproduction.However,thehydrologicalimpactofawideradoptionofthistechniqueby farmershasnotbeenwellquantified.Inthisregard,theSWAThydrologicalmodelwasusedtosimulate potentialhydrologicalimpactofsuchpractices.Thescenariosstudiedwere:(1)baselinescenario,based ontheactuallanduseof2000,whichisdominatedbypasture(combinationofnaturalandsomeimproved grasslands)(PAST);(2)partialconversionofactuallanduse2000(PAST)toconventionalagriculture (Agri-CON);and(3)partialconversionofactuallanduse2000(PAST)toin-fieldrainwaterharvesting whichwasaimedatimprovingtheprecipitationuseefficiency(Agri-IRWH).
SWATwascalibratedusingbothobserveddailyaswellasmonthlystreamflowdataofasub-catchment (419km2)inthestudyarea.SWATperformedwellinsimulatingthestreamflowgivingNashandSutcliffe efficiencyof0.57forthemonthlystreamflowcalibration.Thesimulatedwaterbalanceresultsshowed thatthehighestpeakmeanmonthlydirectflowwasobtainedundertheAgri-CONlanduse(18mm), followedbyPAST(12mm)andAgri-IRWHlanduse(9mm).Thesewere19%,13%and11%ofthemean annualrainfall,respectively.TheAgri-IRWHscenarioreducedtheannualdirectflowby32%compared toAgri-CONwhichissignificantatp<0.02level.OntheotherhanditwasfoundthattheAgri-IRWH contributedtomoregroundwaterrecharge(40mm/year)comparedtoPAST(32mm/year)andAgri-CON (19mm/year)scenarios.Althoughtherewasobservableimpactoftherainwaterharvestingtechniqueon thewateryieldwhenconsideredonamonthlytimeframe,theoverallresultsuggeststhattheannual wateryieldofoneoftheupperModderRiverBasinquaternarycatchmentwillnotbeadverselyaffected bytheAgri-IRWHlandusescenariodespiteitssurfacerunoffcapturedesign.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction
In ariver basin, thereare manywater-related humaninter- ventions,suchaswaterstorage,diversion,regulation,distribution, application,pollution,purificationandotherassociatedactsthat modifythenaturalwatersystems.Thecommoneffectofallofthese isthattheyimpactonthosewholivedownstream(Sunaryo,2001;
Ngigietal.,2006,2008),hencetheneedforaholisticapproachofa riverbasinscaleanalysisandmanagement.Thisapproachshould
∗Correspondingauthor.
E-mailaddress:[email protected](Y.E.Woyessa).
1 Tel.:+27515073241;fax:+27515073254.
2 www.cut.ac.za.
enhancethecommonunderstandingoftheimpactsofthedifferent activitiesontheoverallproductivityofwaterandsustainabilityof naturalresourceuse.
Rainwater harvesting, which involves collection of surface runoffintheupstreamcatchmentandisdesigned forupstream water consumption, may have hydrological impacts on down- streamcatchmentwateravailability(Ngigi,2003;Ngigietal.,2008;
Makuriraetal.,2009).Increasedwaterconsumptionatupstream level is an issue of concernfor downstream water availability, butitisgenerallyassumedthatthereareoverallgainsandsyn- ergiesbymaximizingtheefficientuseofrainwateratfarmlevel (Rockstrometal.,2002;Ngigietal.,2008).However,expansionof rainwaterharvestingpracticescouldhaveunintendedhydrolog- icalconsequencesonriverbasinwaterresourcesandmayhave negativeimplicationsondownstreamwateravailabilitytosustain 0378-3774/$–seefrontmatter© 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.agwat.2012.07.012
Runoff
Basin
Mulch No-till
1 m 2 m
Runoff
MaizeFig.1. DiagrammaticrepresentationoftheIRWHtechnique.
Source:AdaptedfromHensleyetal.(2000).
hydro-ecological and ecosystem services (Andersson et al., 2011).
Theexpectedupstreamshiftsinwaterflowsmayresultincom- plexandunexpecteddownstreameffectsintermsofquantityand qualityofwater.Ingeneral,though,increasingtheresidencetimeof waterinacatchmentthroughrainwaterharvestingmayhavepos- itiveenvironmentalaswellashydrologicalimplications/impacts downstream(Rockstrometal.,2002).However,itmayalsoresult inuninformeddecisionsbypolicymakers.Forinstance,Rajasthan IrrigationDepartmentinIndiaorderedthedestructionofcommu- nityrainwaterharvestingstructures,fearingthatitwouldthreaten the supply of irrigation water to downstream users (Agarwal etal.,2001).Therefore,there isaneedforfurtherresearchand understandingonthepossibleimpactofwiderexpansionofrain- water harvestingtechnologiesonthewater resource of a river basin.
TheModderRiverbasin,locatedinthesemi-aridregionsofcen- tralSouth Africa, is experiencingintermittent droughts causing watershortagesforagriculture,livestockanddomesticpurposes.
Theirrigatedagricultureinthebasindrawswatermainlybypump- ing out of river, poolsand weirs. However, many of the rural developingfarmersrelyonrain-fedagricultureforcropproduction.
Intherecentpast,theInstituteforSoil,ClimateandWater(ISCW) oftheAgriculturalResearchCouncil(ARC),SouthAfrica,introduced amicro-basintillagetechniquewhichcanbeusedasinsiturain- waterharvestingtechnique.Itisalsoknownasinfieldrainwater harvesting(IRWH).Itwasdevelopedforsmall-scalefarmersinthe basinwiththeobjectiveofcollectingandconcentratingofrain- waterforcropproduction(Hensleyetal.,2000).Itwasfoundthat withtheuseof theIRWHtechnique(Fig.1)thesurfacerun-off wasreducedtominimum.Withthistechnique,evaporationfrom thebasinsoilsurfacewasreducedconsiderablywhenmulchingis usedinthebasin.Thetechniquealsoenhanceshighwaterinfil- trationintothesoilbycapturingsurfacerunoffinthebasinofthe IRWH(Figure1).Thetechniqueshowedasignificantincreasein cropyieldsofmaize,sunflowerandbeans(30–50%)comparedto conventionaltillagepractices atGlen, SouthAfrica(Bothaetal., 2003).Makuriraetal.(2007)alsoreportedmaizeyieldincreaseof upto80%byusingacombinationofrainwaterharvestingandcon- servationagriculturecomparedtotheconventionaltillagepractice inMakanyacatchment,TanzaniawhileNgigietal.(2006)reported beans,wheatandMaizegrainyieldincreaseof30–150%bycon- servation tillagecompared tothe traditional tillage practice in Kenya.
Basedonthespecificbiophysicalandsocioeconomicrequire- mentsof IRWH,somestudieswerecarried outtoestimatethe suitableareasforIRWH.Forinstance,Woyessaetal.(2006b)esti- mated27%oftheupperModderriverbasinareaassuitablefor IRWHbased on biophysical conditions. MwengeKahinda et al.
(2008a,b)estimated79% ofthebasinassuitablefor IRWHcon- sidering both biophysical and socioeconomics criteria in their assessment.InoneofthequaternarycatchmentsoftheupperMod- derriverbasin (C52A),however, MwengeKahinda etal.(2009) foundonly14%ofthebasinareaassuitableforIRWH.Mwenge Kahindaetal.(2009)alsoconductedastudyonthehydrological impactofIRWHbyconsideringthemonthlymedianflow(wettest seasonflow)ofC52Acatchmentwhen100%oftheestimatedsuit- ableareasareunderIRWH.Theyreportedthatthe100%adoption scenariosignificantlyreducedthehighflowcomparedtotheactual landuseof2000or0%adoption.Theyalsoshowedthat“themost likelyscenario”,whichisabout10%oftheareabeingadoptedfor IRWH,gavenosignificantdifferencecompared tothe0%adop- tion.Mostrecently,Anderssonetal.(2011)assessedthepotential impactofinsituwater harvestingscenariowithotherlanduse scenarios in theThukelaRiverbasin, South Africa, using SWAT hydrologicalmodelandreportedanonsignificantimpactofthe waterharvestingtechniqueonthestreamflowofthebasin.How- ever,this study isaimed atevaluating theimpacts ofdifferent landusescenariospracticedaroundtheModderRiverbasinespe- cially,onseveralstreamflowcomponentsandwaterbalancesof theC52AquaternarycatchmentsimultaneouslybyapplyingArcGIS andSWAThydrologicalmodel.
Numerousmodellingapproacheshavebeendevelopedtosim- ulatetheimpactsandconsequences oflandusechangesonthe environmentingeneralandwaterresourcesinparticular.Oneof thesemodelsistheSoilandWaterAssessmentTool(SWAT),which wasdevelopedbytheUSDAtosimulatetheimpactsofland-use changesandlandmanagementpracticesonwaterbalanceofcatch- ments,especiallyforungaugedcatchments(Arnoldetal.,1998).
Manyresearchreportshavedemonstratedtherobustnessofthe modelinsimulatingsatisfactorilymostofthewaterbalancecom- ponentsofcatchments(Gassmanetal.,2007;Shimelisetal.,2008;
Ouessaretal.,2009;Anderssonetal.,2011).SWAThasalsoproven tobeaneffectivetoolforunderstandingpollutionsfromfertilizer applicationsandpointsources(Arnoldetal.,1998;Fohreretal., 2005)andforwiderenvironmentalstudies(Gassmanetal.,2007).
Themodelisalsousedasadecisionsupporttoolinlanduseplan- ningbysimulatingtheimpactofdifferentlandusescenarioson
Fig.2.LocationoftheModderriverbasin(C52)andthestudycatchment(C52A).
waterresources(Fohreretal.,2001;Chanasyketal.,2003;Conan etal.,2003b;Mapfumoetal.,2004;Linetal.,2007;Weietal.,2008;
ChoiandDeal,2008).Similarly,Gargetal.(2011)appliedthecal- ibratedandvalidatedSWAT2005modellingtooltoacommunity watershedatKothapallyinIndiatocomparetheimpactsofvarious soilandwatermanagementinterventionsinthewatershedduring a30-yearsimulationperiod.
Taking into account its wider application in assessing the impacts of land use changes onwater resources,SWAT model
(version 2005) was applied in the Modder river basin of Cen- tralSouthAfricatoevaluatetheimpactoflandusechangeson water resources,withparticularemphasis ontheflow ofwater intoRustfonteindam.Themainaimofthisstudywastoassessthe hydrologicalimpactofatillagetechniquewhichisusedasinsitu rainwaterharvestingintheUpperModderRiverBasin(C52A)of centralSouthAfrica.Thisresearchhypothesizesthatexpansionof IRWHintheupstreamofthecatchmentwillhaveimpactsonthe differentcomponentsofcatchmentstreamflow.
Fig.3.Soiltype,landuseandtopographyofthestudysite:soiltype(a),landuse2000(b),slopeclasses(c)andpastureon0–3%slopechangedtoagriculture(d).(Note:all landtypelegendsareasdefinedbySoilClassificationWorkingGroup(1991).)ThelanduseclassesaredefinedinTable1.
2. Materialsandmethods 2.1. Studysite
TheModderRiverbasin isa largebasin withatotal areaof 17,380km2.Itisdividedintothreesub-basins,namelytheUpper Modder,theMiddleModderandtheLowerModder.Thestudywas carriedoutintheUpperModderRiverBasinspecificallyinthequa- ternarycatchment,C52A(Fig.2),whichislocatedbetween26.48◦ and26.87◦Eastand29.25◦and29.62◦South.TheC52Aquaternary catchmentreceivesmeanannualrainfallof537mm/yearandhas anareaof927.6km2.Thedominantsoiltypesofthestudycatch- mentaresandyclayloamandsandyclay.Accordingtolanduse map2000,thedominantlandusetypeinthecatchmentispasture (seeFig.3b).
2.2. Inputdata
SWATmodel needslanduseinputdatain shape fileformat orrasterformatwhichshouldbeprocessedfromsatelliteimages.
Theprocessedshapefiledatafortheyear2000wasobtainedfrom theInstituteforSoil,ClimateandWater(ISCW)oftheAgricultural
ResearchCouncil(ARC).OtherinputdataneededbySWATmodel areasfollows:
•Soiltypemapinshapefile.
•Soildatabasewhichincludessoilphysicalandchemicalproper- tiesforthedifferentsoiltypesinthecatchment.
•Climatedata(rainfall,minimumtemperature,maximumtemper- ature,windspeed,relativehumidity,andsunradiationwhichall canbeperday,permonthorperyear).
•LandscapedataintheformofDigitalElevationModel(DEM).
•Basiccropmanagementpractices dataincludingtypeof crop, plantingdate,tillagetypeandfertilizermanagement,etc.
TheDEMfortheModderriverbasin(C52)wasobtainedfrom ISCWataresolutionof90m×90m.Rainfalldataatthreeweather stationsinthestudybasinduring1993–2007wereobtainedfrom SouthAfricanWeatherService(SAWS)(Fig.4)whereastemper- aturedatawiththesamelengthof recordswereobtainedfrom SAWS measured at three nearby stations (Bloemfontein-STAD, Bloemfontein-W.O.andKnellportDam).Otherclimaticdatawere generatedbySWATbyusingWXGEN weathergeneratormodel (SharpleyandWilliams,1990).Statisticalparametersusedinthe
Fig.4. Studysub-catchmentinC52Aandlocationsofrainandstreamflowgauging stations.
weathergeneratingmodulewerecalculatedfrom50yearsclimatic dataofC52Acatchment(1951–1999)obtainedfromSouthAfrican AtlasofAgrohydrologyandClimatologydevelopedbySchulzeetal.
(2001).Rainfallfromthethreestationswasspatiallydistributed tothecatchmentsub-basinsbySWAT.SWATusesskewednormal distributionmethodtocalculaterainfallamountsineachsub-basin.
Thesoilmapofthecatchment(C52A),inprocessedshapefile format,wasobtainedfromISCW.Thesoilofthecatchmentiscov- eredbylandtypeDc17(90.3%)andDb89(8.3%)(Fig.3a).Bothland typesare dominatedbyValsrivier soilforms (Soil Classification WorkingGroup,1991).Therefore,thewholeareaofC52Acatch- mentwastakenasValsrivirseriesforthisstudy.
2.3. Modelsetup
The study was carried out using the comprehensive, semi- distributed and physically based hydrological model, Soil and WaterAssessmentTool(SWAT)version2005.SWATwasdevel- opedby theUSDAtosimulatetheimpacts ofland-usechanges andlandmanagementpracticesonwaterbalanceofcatchments (Arnoldetal.,1998).TheSWATmodelisprimarilydevelopedfor ungaugedcatchments(Arnoldetal.,1998).Detailsofmodelfunc- tionanddescriptionweregiveninArnoldetal.(1998).Themodel wassetupusingthefollowinginputdatafromthestudycatchment:
•DEM
•Soilmapinshapefile
•Landusemapof2000inshapefile
•Rainfallandtemperaturedailydata(1993–2007)
Thestudyareawas,then, delineated bySWATmodel based onthe DEMand the geographic coordinates of theflow gaug- ingstationattheoutletofthecatchment.AsindicatedinFig.4, there are two gauging stations in the catchment. The gaug- ingstationC5R003measures dischargefromthewholeareaof C52Acatchment(927km2).ThedischargeatC5R003isregulated by Rustfontein dam at the outlet. The second gauging station (C5H056)measuresthedischargefroma sub-catchmentwitha
contributingareaof412km2.Thedailystreamflowrecordsdur- ingtheyears 2002–2006for thestationC5H056wereobtained fromtheDepartmentofWaterAffairs(DWA)ofSouthAfrica.Dur- ingthedelineationprocess,sixsub-basinswerecreatedwithinthe catchmentC52A.
Inthisstudy,landusedataoftheyear2000wasusedasabench- markagainstwhichtwolandusescenarioswerecompared.The firstparameterizationwasdonebasedonthelandusedataof2000.
SWATuses27parametersallofwhich,exceptsoilparameters,were derivedinternallybythemodelduringthedatainput,boundary delineation,andsub-basinandhydrologicalunit(HRU)creation processes(Arnoldetal.,1998).Threeslopeclasses(0–3%,3–8%and
>8%)wereusedduringsuper-positioningoflanduse,soilandslope mapstodefinedifferentHRUs.Theslopelayermap,whichwascre- atedbySWAT,waschangedtoshapefileandusedasonecriterion forcreatingthedifferentlandusescenarios.
Maizeagriculture under the conventional tillageand infield rainwaterharvesting(IRWH)scenarioswerecreatedusing‘edit’
toolofSWATandArcGIS.
Thecurvenumberforantecedentsoilmoistureconditiontwo (CN2)and tillagemanagementweremodified forAgri-IRWHin ordertosatisfythesurfaceconditioncreatedbyIRWH.Afterparam- etercalibration,theCN2undertheIRWHscenariowasreducedto 35,which istheminimumdefault valueinthemodel,byusing
“edit”menuintheSWAT.Thechangewasmadeinordertoreduce thesurfacerunofftobesimulatedtominimum.CN2isthemost sensitiveparameterwhichinfluencesthesurfacerunoffinSWAT model(Anderssonetal.,2011).Undertheconventionalscenario, agenerictillagepracticewasselectedtorunthesimulationwhile undertheIRWHscenarioaconservationtillagepracticewascho- senfromthedatabaseoftillagepracticesinSWATmodel.Weather datafrom1993to2007wasusedformodelsetup.
2.4. Sensitivity,calibrationandvalidation
Sensitivityandcalibrationanalysesforparametersusedinthe modelwerecarried outusingSWATstatistical module.Calibra- tionwascarriedoutonthemostsensitiveinputparametersofthe model(Table3)byusingtheauto-calibrationmoduleofSWAT.The flowdatarecordedatthegaugingstationC5H056onC52Acatch- mentduringtheyear2002wasusedtocalibratethemodel’stop sevensensitiveparameters(Table3).Thiswasconductedinorder tooptimizethevaluesofthoseparametersranked1–7duringsen- sitivityanalysis.ThecalibrationmoduleinSWATcalculatesonly theobjectivefunctiondescribedasNashandSutcliffeefficiency.
Theobjectivefunctions,coefficientofdetermination(R2),D-index, residualmeansquareerror(RMSE)werecalculatedaccordingto Willmott(1981).Modelvalidationwasnotperformedduetounre- liableobservedflowdatabeyondtheyear2002.
Followingmodelcalibration,anassessmentoflandusechange impactonthewaterbalancesofcatchmentC52Awasundertaken byusingpresentlanduse(landuse2000)andtwolandusescenar- ios.Duringthestreamflowsimulationprocess,thefirsttwoyears datawereusedtowarmuptheSWATmodel.Oncethemodelwas setupandcalibrated,thewaterbalanceofthecatchmentwassimu- latedwiththeSWATmodelforeachlandusescenario.Simulations wereconductedondailyaswellasonmonthlytimesteps,butthe resultswereinterpretedusingmeanmonthlyvalues.
2.5. Scenariodefinition
Thetwolandusescenariosconsideredwere:(1)conventional landusewhichrepresentsthecurrentlandusepracticeinthearea, and(2)in-fieldrainwaterharvesting,basedontheworkofHensley etal.(2000),whichwasaimedatimprovingtheprecipitationuse
Table1
ActuallanduseofC52Ain2000andthetwolandusescenarios.
Landusetype Areaandpercentage AreaandpercentageunderAgri-CONor
Agri-IRWH
Area(km2) (%) Area(km2) (%)
Agriculture(AGRR) 72.4 7.8 492.4 53.1
Evergreenforest(FRSE) 2.2 0.2 2.2 0.2
Pasture(PAST) 780.0 84.1 360.0 38.8
Rangeplusbrushland(RNGB) 42.0 4.5 42.0 4.5
Urban(URBN) 6.1 0.7 6.1 0.7
Waterbodies(WATR) 10.5 1.1 10.5 1.1
Wetland(WETN) 14.0 1.5 14.0 1.5
Total 927.2 100.0 927.1 100.0
efficiencybyreducingsurfacerunoff. The2000landusedataof C52Ashows that84% ofthelandis coveredby pasture(PAST).
Thiswastakenasabase-casescenarioagainstwhichtheothertwo scenarioswerecompared(Fig.3bandTable1).Tocreatethefirst scenario(Agri-CON),achangewasmadetotheoriginalpasture (PAST)landinsuchawaythattheareacoveredbypastureonslopes of0–3%wasconvertedtoagriculturalland(croppedwithmaize) withconventionaltillagepractices(Fig.3c,dandTable2).Theslope rangeswereselectedinsuchawaythatitsatisfiestheFAOslope classificationstandard(FAO,1990)andthesuitablesloperangefor IRWH(MwengeKahindaetal.,2008a).Thischangebroughtabout aconversionof420km2(54%)ofthepastureareatoagricultural landthusincreasingtheareaoftheagriculturallandfrom8%to 53%anddecreasingthepastureareafrom84%to39%.Thesecond scenario(Agri-IRWH)wasobtainedbychangingthepastureland (PAST)locatedonslopesof0–3%toanagriculturallandplanted withmaizeusinganinfieldrainwaterharvesting(IRWH)(Fig.3c, dandTable1).Inbothscenarios,socio-economicfactorswerenot consideredaspartofarequirementtothelandusechangesmade.
Fig.3c,theslopemapandFig.3b,thechangedlandusemapshows thespatialareawherethechangeofpasturelandtoagricultureis made.
2.6. Statisticalanalysis
Percentagechanges of the differentstreamflow components underthevariousscenariosfromthebase-casescenario(PAST)and amongthemselveswerecomputedusingthefollowingformula:
%change= (ScenarioA−ScenarioB) ScenarioB ×100
whereAandBarestreamflowdatageneratedunderthedifferent scenarios.
Besides,statisticaltest(F-test)wasconductedtoseewhether therearesignificantdifferencesamongthescenariosintermsof thegeneratedmeanmonthlystreamflowcomponents.
3. Resultsanddiscussion
3.1. Sensitivityanalysisandcalibration
Streamflow simulations wereconducted using SWAT model and the parameters were analysed for their sensitivity on the Table2
C52Asloperangesandtheirareacoverage.
Sloperange(%) Area(km2) (%)
0–3 524.1 56.5
3–8 319.0 34.4
>8 84.0 9.1
Total 927.1 100.0
totalstreamflowdischargeusingSWAT’ssensitivityanalysismod- ule.These arerankedand presentedinTable3.Thetopranked parametershasveryhighinfluenceonthestreamflowamountand occurrencespatiallyaswellastemporally.
ResultsofthecalibrationanalysisrevealedanR2(coefficientof determination)of0.68 andaD-index(agreementindex)of0.86 (Table4).Thesystematicandunsystematicrootmeansquareerrors (RMSEsandRMSEu)arealsominimal.Theratiooftheunsystem- atic rootmean square error(RMSEu) tothe root mean square errorprovidedavalueof0.87,indicatinggoodcorrelationbetween theobservedandsimulatedwater yieldand indicatingthatthe erroris notpossibly ofa systematic nature(Welderufaeletal., 2009).TheNashandSutcliffeefficiencyrevealedavalueof0.57 forthemonthlystreamflowcalibration,describingasatisfactory correlationbetweentheobservedandsimulatedmonthlystream discharges.Fig.5showstheplotofobservedandsimulatedstream- flowdata.
Althoughthestatisticalperformancewasfoundtobesatisfac- toryonmonthlyresolution,simulationofthedailystreamflowor
Table3
Resultsofsensitiveanalysis.
Parameter Rank
Curvenumberforlanduse(CN2) 1
Soilavailablewatercapacity(SolAWC) 2
Thresholddepthofwaterintheshallowaquiferrequiredfor returnflowtooccur(Gwqmn)
3 Soilevaporationcompensationfactor(Esco) 4
Soillayerdepth(SolZ) 5
Groundwater‘revapa’coefficient(GwRevap) 6 Soilsaturatedhydraulicconductivity(SolK) 7
Averageslopelengthofsubbasin(Slope) 8
Thresholddepthofwaterintheshallowaquiferfor‘revap’tooccur (Revapmn)
9
Surfacelagtime(Surlag) 10
Effectivehydraulicconductivityinmainchannelalluvium(ChK2) 11
Moistsoilalbedo(SolAlb) 12
Averageslopeofsubbasin(Slsubbsn) 13
aRevap:SWATmodelsthemovementofwaterintooverlayingunsaturatedlayers asafunctionofwaterdemandforevapotranspiration.Toavoidconfusionwithsoil evapotranspirationthisprocesshasbeentermed‘revap’.
Table4
Calibrationperformancestatistics.
Indicesfordailystreamflow Value
RMSE 0.18
RMSEs 0.09
RMSEu 0.16
R2 0.68
D-index 0.86
RMSEu:RMSE 0.87
NashandSutcliffeefficiency,NSa 0.57
aValueformonthlystreamflowcalibration.
0
10
20
30
40
50
60
70 0.0
0.5 1.0 1.5 2.0 2.5 3.0
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
Rainfall (mm/day)
Total Stream flow (mm/day)
Day of the year (DoY) during 2002
Rainfall Simulated Observed
Fig.5. Observedandsimulateddailystreamflow(Q)aftercalibrationatgaugingstationC5H056.
thewateryieldofthesub-basinusingthecalibratedparameters provideda resultthat failedtocapturesomeof thepeakflows (Fig.5).
3.2. Waterbalanceofthecatchment(C52A)
Theimpactsofthedifferentlandusescenarios onthewater balance of the catchment are presented in Figs. 6 and 7 and Tables 5 and 6. The simulated mean monthly water yield (WY=directflow(DIRQ)+groundwaterflow(GWQ)-transmission loss) during the period of 1995–2007 showed non-significant changein peak flow when PASTland on 0–3% slope was con- vertedtoAgri-CONandAgri-IRWHlandusetypes.Thesimulated monthlymeanpeakWYswere20mm/month,18mm/monthand 16mm/month forAgri-CON, Agri-IRWH and PAST,respectively.
ThemeanmonthlyWYundertheAgri-CONlandusescenariowas higherthantheothertwoscenariosduringtherainymonthsof DecembertoMarchonly(Fig.7a).Duringtheremainingmonths, the two land use types (Agri-IRWH and PAST) recharged the groundwaterbetterandhadhigherWYsthantheAgri-CONland usescenario.Agri-IRWHshowedahigherpeakWYvalue(12.5%) thanPASTprobablyduetothehighgroundwaterflowcontribution
Table5
Simulatedannualdeepwaterpercolationunderthedifferentlandusescenarios.
Year Precipitation(mm/year) Annualdeeppercolation(mm/year) Agri-IRWH PAST Agri-CON
1995 590.7 0.6 3.3 0.6
1996 755.5 110.3 67.1 45.4
1997 452.8 20.3 22.2 11.6
1998 811.5 78.3 59.0 28.0
1999 433.0 0.0 0.0 0.0
2000 591.3 7.9 14.2 4.3
2001 934.3 122.2 135.3 70.5
2002 531.3 28.3 21.4 12.4
2003 425.6 4.0 11.6 3.1
2004 403.7 0.0 0.0 0.0
2005 541.9 1.3 2.9 1.3
2006 910.8 168.7 174.3 104.4
2007 396.1 0.2 0.2 0.2
Mean 598.4 41.7a 39.3a 21.7b
a,bNumbersfollowedbydifferentlettersaresignificantlydifferentatP<0.05
bytheIRWHtechniqueduringthesamemonthastheoccurrence ofthepeakflow.TheF-testfortwosamplevariancesofthemean monthlyWYsrevealednosignificantdifferencesamongthethree landusescenarios.
The effect of the different land use scenarios on the water balanceofC52Aiswelldemonstratedbythedirect flow(DIRQ) componentoftheWY.TheDIRQcombinessurfacerunoff(SURQ) andlateralflow(LATQ)components.Thelateralflowortheinter- flowispartofthequickresponseofastreamflowtoarainfallevent thatinfiltratesintothesoilandmakesitswaytothestreamchan- nelthroughthesub-soilaboveaclayeyorsemi-imperviouslayer.
Fig.6apresentsthedirectflowcomponentofthethreelandusesce- narios.ThehighestmeanmonthlypeakflowofDIRQwasobtained underAgri-CONlanduse,amountingtoabout18mm/monthfol- lowedbyPASTwith12mm/month.Agri-IRWHlandusescenario generatedthelowestDIRQwhichamountedto9mm/month.Sim- ilarly,themeanannualDIRQswere71,52,and45mm/yearunder Agri-CON,PAST,andAgri-IRWHlandusescenarios,respectively.
The F-test for the DIRQ gave a significant difference (P<0.02) betweenAgri-IRWHandAgri-CONlandscenarioswhiletherewas nosignificantdifferencebetweenAgri-IRWHandPASTaswellas betweenPASTandAgri-CON.AlltheDIRQsgeneratedunderthe Agri-IRWHscenariocamefromthelateralflow(LATQ)component of thedirect flow (Table5).The surface runoff(SURQ) compo- nentfromIRWHportionoftheAgri-IRWHscenarioshowsnoor insignificantrunoff duringthewholestudyperiod(1995–2007) (Table5).Ngigietal.(2006)alsoestimatedtheamountofrainfall capturedbyrainwaterharvestingandconservationtillagepractices thatwouldhavebeenchangedtosurfacerunoffbyusingarainfall- runoffmodel as50–85%,75–100%and100%forheavy,medium andlightstorms,respectively,comparedtotraditionaltillagewhich capturedandstored25%,50–60%and75–100%,respectively,from similarstorms.
Generally,theresultsofthesimulationdemonstratedthatthe annual WY didnot show significant differenceamong the dif- ferent landusescenarios, which were89mm/year, 84mm/year and83mm/yearforAgri-CON,PASTandAgri-IRWH,respectively (Fig.7a).MwengeKahindaetal.(2008a)alsoreportedthatthere wasnosignificantchangeintheoverallWYbytheintroduction ofIRWHinthequaternarycatchmentC52A.Similarly,Ngigietal.
(2008)afterconductingacomprehensivestudyonthehydrologi- calimpactoffloodstorageandirrigationwaterabstractioninthe
0 20 40 60 80 100 120
0 2 4 6 8 10 12 14 16 18 20
Aug Jul Jun May Apr Mar Feb Jan Dec Nov Oct Sep
Rainfall (mm/month)
DIRQ (mm/month)
Month
Agri-IRWH Agri-CON PAST Rainfall
(a)
0 20 40 60 80 100 120
0 2 4 6 8 10 12
Aug Jul Jun May Apr Mar Feb Jan Dec Nov Oct Sep
Rainfall (mm/month)
GWQ (mm/month)
Month
Agri-IRWH Agri-CON PAST Rainfall
(b)
Fig.6.Simulatedstreamflowcomponents:(a)directflowand(b)baseflowinthequaternarycatchment(C52A)underthreelandusescenarios.
UpperEwasoNg’iroRiverBasin,Kenya,reportedanon-significant effectontheamountofflowdownstream.
Agri-IRWHtechniquereducedthedirectflowby37%andthe surfacerunoffcomponentbyalmost100%comparedtotheAgri- CON land use scenario. It also showed a 10% increase of the LATQ compared toAgri-CON. This obviously improves the soil wateravailabilitywithinthecroprootzone.Rain-fedagriculture usingAgri-IRWHtechniqueinthisareahasbeenreportedtohave increasedproductionofmaizeandsunflowerbyabout50%com- paredtoAgri-CONproduction(Hensleyetal.,2000;Bothaetal., 2003,2007).Woyessaetal.(2006b)havealsodemonstratedthat
IRWHimprovedbothcropproductionandmonetaryincomeofa farmermorethantheconventionallandpreparationmethodthat usessupplementalirrigationsystembyharvestingthedirectrunoff insmalldamsorponds.
Theotherinterestingresultontheimpactoflandusechange wasrelatedtothegroundwaterflow (baseflow) componentof the WY. Fig. 6b presents the groundwater flow component of thestreamflow.Agri-IRWH,duetoitssurfacerunoffharnessing design,collectstherunoffgeneratedfromthetwo-meterstripand storesitintheonemeterwidebasin.Bydoingsoitallowsmore watertoinfiltrateintothesoilandpercolateasignificantamount
Table6
Componentsofthedirectflowunderthethreelandusesscenariosinmm/year.
Year PREC PAST Agri-CON Agri-IRWH
SURQ LATQ DIRQ SURQ LATQ DIRQ SURQ LATQ DIRQ
1995 590.7 10.6 18.2 28.8 16.5 30.2 46.7 0.0 31.1 31.1
1996 755.5 61.2 27.5 88.6 85.9 42.5 128.4 0.0 51.4 51.4
1997 452.8 8.1 16.0 24.1 12.2 25.6 37.7 0.0 26.6 26.6
1998 811.5 75.1 29.0 104.1 86.5 45.2 131.8 0.0 54.2 54.2
1999 433.0 1.5 12.8 14.3 3.3 22.3 25.6 0.0 22.4 22.4
2000 591.3 6.4 20.4 26.8 10.9 31.4 42.4 0.0 32.1 32.1
2001 934.3 118.8 38.0 156.9 98.3 54.9 153.2 3.9 66.9 70.8
2002 531.3 14.4 18.7 33.1 26.5 29.9 56.2 0.0 32.2 32.2
2003 425.6 19.2 13.5 32.7 23.4 22.3 45.7 0.0 24.1 24.1
2004 403.7 0.1 12.0 12.1 0.7 19.6 20.4 0.0 19.7 19.7
2005 541.9 0.8 16.3 17.1 1.7 25.2 26.9 0.0 25.2 25.2
2006 910.8 104.8 42.4 147.1 112.3 58.2 170.5 0.0 70.4 70.4
2007 396.1 4.1 11.4 15.6 7.0 18.5 25.5 0.0 18.8 18.8
Mean 598.3 32.7 21.2 53.9 37.3 32.8 70.1 0.3 36.5 36.8
0 20 40 60 80 100 120
0 5 10 15 20 25
Aug Jul Jun May Apr Mar Feb Jan Dec Nov Oct Sep
Rainfall (mm/month)
WY (mm/month)
Month
Rainfall Agri-IRWH Agri-CON PAST
(a)
0 20 40 60 80 100 120
0 10 20 30 40 50 60 70 80
Aug Jul Jun May Apr Mar Feb Jan Dec Nov Oct Sep
Rainfall (mm/month)
ET (mm/month)
Month
Rainfall Agri-IRWH Agri-CON PAST
(b)
Fig.7. Simulatedwateryield(a)andevapotranspiration(b)inthequaternarycatchment(C52A)underthreelandusescenarios.
furtherdeepintothegroundwatertablethantheAgri-CONland usescenario(Table6).Improvedsoilinfiltrationisalsoreportedby Makuriraetal.(2009)underrainwaterharvestingtillagetechnique knownbyfanyajuusinTanzania,Makanyacatchment.Vohlandand Burry(2009)reportedthatinfieldrainwaterharvestingenhances infiltrationandgroundwaterrecharge.
Thus,theAgri-IRWHwasfoundtorechargethegroundwater tablesignificantly(P<0.03)morethantheAgri-CONscenario.The buildupofthewatertableundertheAgri-IRWHwillinturncon- tributetotherechargeoftheC52Astreamasabaseflow.Thus,the highestmeanmonthlypeakgroundwaterflowwasproducedby Agri-IRWHamountingto10mm/month,followedby7mm/month and4mm/monthbyPASTandAgri-CONlandusescenarios,respec- tively.Thestatisticaltestalsoshowedthatthereishighsignificant difference(P<0.01) betweenAgri-IRWH and Agri-CON in their monthlymeanGWQ.Incaseoftheannualgroundwaterflow,the resultsofthescenarioswereinreversesequencecomparedtothe directflow. Thehighestannualgroundwaterflowwasobtained fromAgri-IRWHwhichwas37mm/year,followedby32mm/year underPASTand18mm/yearunderAgri-CONlandusescenarios.
The base flow showed an increase of about 105% under Agri- IRWHcomparedtoAgri–CONlandusescenario.TheF-testforthe meanannualdeeppercolation(1995–2007)alsorevealedasignifi- cantdifference(P<0.03)betweenAgri-IRWHandAgri-CON.There wasalsoasignificantdifference(P<0.04)betweenPASTandAgri- CONintermsofannualdeeppercolation.However,therewasno significantdifferencebetweenAgri-IRWHandPAST.Theresults demonstratethattherewashigherinfiltrationofwaterunderAgri- IRWHandPASTthanundertheAgri-CONlandusescenario.The Agri-IRWHtechniquecreatesapond ofwaterinsidethefurrow thatlaterinfiltratesintothesoilprofile.Moreover,Agri-IRWHand PASTscenarioswerefoundtoincreasetheresidencetimeofrunoff
flow in acatchment whichin turnhad aneffect ontheoccur- renceofthemonthlyWYpeakflows.Thus,theincreaseddryseason WYunderAgri-IRWHmayhavepositiveenvironmentalaswellas hydrologicalimplications/impactsdownstreambyprovidingmore streamflow duringthedryseason.Thiscontributes tomaintain theenvironmentalflowinthestreamaswellasprovideswater downstreamduringthedryseason.
Withregardtothesimulatedevapotranspiration(ET),therewas nosignificantdifferenceinthetotalannualamount,buttherewas amarkeddifferencebetweenthemonthlyETdistributionofgrass andmaizecrops(Fig.7b).TheETsfromAgri-CONandAgri-IRWH landusesfollowedthesamepatternduetothefactthatthesame typeofcrop(maize)wasconsideredinbothcases.
4. Conclusions
TheSWAThydrologicalmodelwasusedtoanalysetwolanduse scenariosincomparisontothe2000baselinelandusetype.The modelwasabletoillustratethepotentialimpactofdifferentland usetypesonthewaterresourcesofquaternarycatchmentC52A.
Theresultsofthescenarioanalysisrevealedthatconventionalagri- culturallandusetypegeneratedthehighestdirectflowcompared totheonesdominatedbypastureorIRWHlandusetypes.Thecon- ventionalagriculturemaynotsupportfavourablecropproduction onrain-fedsemi-aridareas,suchastheModderriverbasin,dueto thedecreasedinfiltrationofwatertothesub-soilwhichultimately influencesthesoilwatercontentwithintherootzone.
Theresultsalsoimpliedthattherewasimprovementofwater infiltrationintothesoilbyAgri-IRWHlanduse.Bothresultedin higherbaseflowthanAgri-CONlandusetypeanddemonstrated increaseddeepwaterpercolationwithasignificantdifferencein
annualamountscompared toAgri-CON.TheAgri-IRWHshowed 105%higherbaseflowcomparedtotheAgri-CONlandusescenario.
Overall,theresultssuggest thattheWYof C52Awillnotbe adverselyaffectedbytheAgri-IRWHlandusescenariodespiteits designforsurfacerunoffabstraction.Itisexpectedthatthisresult willassistintakingaproactivemeasureregardingwaterresources managementingeneralandastrategicallocationanduseofwater inparticular.
However,stillthereremainssomeuncertaintiesinsimulating thelateralandgroundwaterflowcomponentsofthewateryield duetothelimiteddatain thesub-soil physicalpropertiessuch assoiltexture,soilhydraulicconductivity,andsoilwaterholding capacity,whichhavemajorinfluencesonthewateryieldcompo- nents.
Acknowledgements
Theauthorswouldliketoacknowledgethefinancialsupport receivedfromtheWaterResearchCommissionandtheNational ResearchFoundationofSouthAfrica.
References
Agarwal,A.,Narain,S.,Khurana,I.,2001.MakingWaterEverybody’sBusiness:Prac- ticeandPolicyofWaterHarvesting.CentreforScienceandEnvironment(CSE), NewDelhi,India,456p.
Andersson,J.C.M.,Zehnder,A.J.B.,Rockström,J.,Yang,H.,2011.Potentialimpacts ofwaterharvestingandecologicalsanitationoncropyield,evaporationand riverflowregimesintheThukelaRiverbasin,SouthAfrica.AgriculturalWater Management98,1113–1124.
Arnold,J.G.,Srinivasan,R.,Muttiah,R.S.,Williams,J.R.,1998.Largeareahydrologic modelingandassessment.PartI:modeldevelopment.JournaloftheAmerican WaterResourcesAssociation34(1),73–89.
Botha,J.J.,Anderson,J.J.,Groenewald,D.C.,Nhlabatsi,N.N.,Zere,T.B.,Mdibe,N., Baiphethi,M.N.,2007.On-farmapplicationofin-fieldrainwaterharvestingtech- niquesonsmallplotsintheCentralRegionofSouthAfrica.WRCReportNo.TT 313/07.
Botha,J.J.,VanRensburg,L.D.,Anderson,J.J.,Kundhlande,G.,Groenewald,D.C., Macheli,M.,2003.Applicationofin-fieldrainwaterharvestinginruralvillages insemiaridareasofSouthAfrica.In:ProceedingsofApplicationofWaterCon- servationTechnologiesandTheirImpactsonSustainableDrylandAgriculture, SymposiumandWorkshop,Bloemfontein,SouthAfrica,8–11April2003.
Chanasyk,D.S.,Mapfumo,E.,Willms,W.,2003.Quantificationandsimulationofsur- facerunofffromfescuegrasslandwatersheds.AgriculturalWaterManagement 59,137–153.
Choi,W.,Deal,B.M.,2008.Assessinghydrologicalimpactofpotentiallandusechange throughhydrologicalandlandusechangemodellingfortheKishwaukeeRiver basin(USA).JournalofEnvironmentManagement88,1119–1130.
Conan,C.,DeMarsily,G.,Bouraoui,F.,Bidoglio,G.,2003b.Along-termhydrological modellingoftheUpperGuadianariverbasin(Spain).PhysicsandChemistryof theEarth28,193–200.
FAO-UNESCO,1990.SoilMapoftheWorld,RevisedLegend.FAO,Rome.
Fohrer,N.,Eckhardt,K.,Haverkamp,S.,Frede,H.-G.,2001.ApplyingtheSWATmodel asadecisionsupporttoolforlanduseconceptsinperipheralregionsinGermany.
In:Stott,D.E.,Mohtar,R.H.,Steinhardt,G.C.(Eds.),SustainingtheGlobalFarm.
10thInternationalSoilConservationOrganizationMeeting.May24–29,1999.
PurdueUniversityandtheUSDA-ARSNationalSoilErosionLaboratory,USA.
Fohrer,N.,Haverkamp,S.,Frede,H-G.,2005.Assessmentoftheeffectsofland usepatternsonhydrologiclandscapefunctions:developmentofsustainable landuseconceptsforlowmountainrangeareas.HydrologicalProcesses19(3), 659–672.
Garg,K.K.,Karlberg,L.,Barron,J.,Wani,S.P.,Rockstrom,J.,2011.Assessingimpacts ofagriculturalwaterinterventionsintheKothapallywatershed,SouthernIndia.
HydrologyandEarthSystemSciences,http://dx.doi.org/10.1002/hyp.8138.
Gassman,P.W.,Reyes,M.R.,Green,C.H.,Arnold,J.G.,2007.TheSoilandWaterAssess- mentTool:historicaldevelopment,applications,andfutureresearchdirections.
TransactionsoftheASABE50(4),1211–1250.
Hensley,M.,Botha,J.J.,Anderson,J.J.,VanStaden,P.P.,DuToit,A.,2000.Optimizing rainfalluseefficiencyfordevelopingfarmerswithlimitedaccesstoirrigation water.WRCReportNo.878/1/00.WaterResearchCommission,Pretoria,South Africa.
Lin,Y.P.,Hong,N.M.,Wu,P.J.,Wu,C.F.,Verbur,P.H.,2007.Impactsoflanduse changescenariosonhydrologyandlandusepatternsintheWu-Tuwatershed inNorthernTaiwan.LandscapeUrbanPlanning80,111–126.
Makurira,H.,Savenije,H.H.G.,Uhlenbrook,S.,Rockström,J.,Senzanji,A.,2009.Inves- tigatingthewaterbalanceofon-farmtechniquesforimprovedcropproductivity inrainfedsystems:acasestudyofMakanyacatchment,Tanzania.Physicsand ChemistryoftheEarth34,93–98.
Makurira,H.,Savenije,H.H.G.,Uhlenbrook,S.,Rockström,J.,Senzanji,A.,2007.
Towardsabetterunderstandingofwaterpartitioningprocessesforimproved smallholderrainfedagriculturalsystems:acasestudyofMakanyacatchment, Tanzania.PhysicsandChemistryoftheEarth32,1082–1089.
Mapfumo,E.,Chanasyk,D.S.,Willms,W.D.,2004.Simulatingdailysoilwaterunder foothillsfescuegrazingwiththesoilandwaterassessmenttoolmodel(Alberta, Canada).HydrologicalProcesses18,2787–2800.
MwengeKahinda,J.,Lillie,E.S.B.,Taigbenu,A.E.,Taute,M.,Boroto,J.R.,2008a.Devel- opingsuitabilitymapsforrainwaterharvestinginSouthAfrica.Physicsand ChemistryoftheEarth33,788–799.
MwengeKahinda,J.,Sejamoholo,B.B.P.,Taigbenu,A.E.,Boroto,J.R.,Lillie,E.S.B., Taute,M.,Cousins,T.,2008.Waterresourcesmanagementinrainwaterhar- vesting:Anintegratedsystemsapproach.WRCReportNo.1563/1/08.
MwengeKahinda,J.,Taigbenu,A.E.,Sejamoholo,B.B.P.,Lillie,E.S.B.,Boroto,J.R., 2009.AGIS-baseddecisionsupportsystemforrainwaterharvesting(RHADESS).
PhysicsandChemistryoftheEarth34,767–775.
Ngigi,S.N.,Rockström,J.,Hubert,H.G.,Saveniji,H.H.G.,2006.Assessmentofrain- waterretentioninagriculturallandandcropyieldincreaseduetoconservation tillageinEwasoNg’iroriverbasin,Kenya.PhysicsandChemistryoftheEarth31, 910–918.
Ngigi,S.N.,Savenije,H.H.G.,Gichuki,F.N.,2008.Hydrologicalimpactsoffloodstorage andmanagementonirrigationwaterabstractioninupperEwasoNg’iroriver basin,Kenya.WaterResourcesManagement22,1859–1879.
Ngigi,S.N.,2003.Whatisthelimitofup-scalingrainwaterharvestinginariver basin?PhysicsandChemistryoftheEarth28,943–956.
Ouessar,M.,Bruggeman,A.,Abdelli,F.,Mohtar,R.H.,Gabriels,D.,Cornelis,W.M., 2009.Modellingwater-harvestingsystemsinthearidsouthofTunisiausing SWAT.HydrologyandEarthSystemSciences13(10),2003–2202.
Rockstrom,J.,Barron,J.,Fox,P.,2002.Rainwatermanagementforincreasedpro- ductivityamongsmallholderfarmersindroughtproneenvironments.Physics andChemistryoftheEarth27,949–959.
Schulze,R.E.,Maharaj,M.,Lynch,S.D.,Howe,B.J.,Melvil-Thomson,B.,2001.South AfricanAtlasofAgrohydrologyandClimatology.http://planet.botany.uwc.ac.za/
NISL/Invasives/Assignments/GARP/atlas/atlas.htm.
Sharpley,A.N.,Williams,J.R.,1990.EPIC-ErosionProductivityImpactCalculator,1.
ModelDocumentation.U.S.DepartmentofAgriculture,AgriculturalResearch Service,Tech.Bull,p.1768.
Shimelis,G.S.,Srinivasan,R.,Dargahi,B.,2008.HydrologicalmodellingintheLake TanaBasin,EthiopiausingSWATmodel.TheOpenHydrologyJournal2,49–62.
SoilClassificationWorkingGroup,1991.Soilclassification—ataxonomicsystemfor SouthAfrica.MemAgricNatResourS.AfrNo.15.DepartmentofAgricultural Development,Pretoria.
Sunaryo,T.M.,2001.IntegratedWaterResourcesManagementinaRiver-Basin Context:TheBrantasRiverBasin,Indonesia.In:Bruns,B.,Bandaragoda,D.J., Samad,M.(Eds.),IntegratedWaterResourcesManagementinaRiverBasin Context:InstitutionalStrategiesforImprovingtheProductivityofAgricultural WaterManagement.ProceedingsoftheRegionalWorkshop,Malang,Indonesia, January15–19,2001.InternationalWaterManagementInstitute,Colombo,Sri Lanka.
Vohland,K.,Burry,B.,2009.Areviewofinsituwaterharvesting(RWH)practices modifyinglandscapefunctionsinAfricandrylands.Agriculture,Ecosystemsand Environment131,119–127.
Wei,O.,Fang-Hua,H.,Xue-Lei,W.,Hong-Guang,C.,2008.Nonpointsourcepollution responsessimulationforconversioncroplandtoforestinmountainsbySWAT inChina.EnvironmentalManagement41,79–89.
Welderufael,W.A.,LeRoux,P.A.L.,Hensley,M.,2009.Quantifyingrainfall-runoff relationshipsontheMelkassahypocalcicregosolecotopeinEthiopia.Water S.A.35(5),634–648.
Willmott,C.J.,1981.Onthevalidationofmodels.PhysicalGeography2,184–194.
Woyessa,Y.E.,Pretorius,E.,Hensley,M.,VanRensburg,L.D.,VanHeerden,P.S.,2006b.
Up-scalingofrainwaterharvestingforcropproductioninthecommunallandsof theModderRiverbasininSouthAfrica:comparingupstreamanddownstream scenarios.WaterS.A.32(2),223–228.