• Tidak ada hasil yang ditemukan

Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)

N/A
N/A
Protected

Academic year: 2023

Membagikan "Carbon supported Pd-Ni and Pd-Ru-Ni nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)"

Copied!
18
0
0

Teks penuh

(1)

Carbon supported Pd-Ni and Pd-Ru-Ni

nanocatalysts for the alkaline direct ethanol fuel cell (DEFC)

ASME2011, Washington, DC

Mkhulu K Mathe

(2)

Outline

• Background and Introduction

• Synthesis of Electrocatalysts

• Characterization and Evaluation of the Electrocatalysts

• Performance measurement of the Electrocatalysts

• Concluding remarks

• Acknowledgements

© CSIR 2011 www.csir.co.za

(3)

© CSIR 2011 www.csir.co.za

DEFC anode studies

- synthesis

- Electrooxidation

- Performance

G.F. McLean et al. International Journal of Hydrogen Energy 27 (2002) 507 – 526

(4)

4

Nanostructures Thin Film

catalytic active sites (active reaction area)

surface-to-volume ratio

transport of reactants and products

Synthesis of electrocatalysts

Electrocatalyst particles have to maintain electronic contact with support

(5)

Metal salts/

precursors

5

M

1+

El ectr ode / S ubst rate

Chemical Reduction / Precipitation

Chemical routes to

Nanoparticulate Multimetallic Electrocatalysts

M

2(s)

Metal salts/

precursors M

2+

M

1(s)

Electrochemical deposition e

-

M

1

M

2(s)

Transfer

To Electrode M

1+

M

2+

El ectr ode / S ubst rate

Reducing agent

V

e

-

(6)

6

Cu2+

(1) Clean substrate with blank electrolyte (BE);

Inject Cu2+ solution at E >> ECu-Cu2+

S S S S S S S

(2) Potentiostatic electrodeposition at – Edep> ECu-Cu2+(Underpotential

Deposition (UPD)) or Edep< ECu-Cu2+

(small Overpotential Deposition (OPD) - to produce sacrificial Cu adlayer on active sites of the substrate; Rinse with BE Cu2+ Cu2+

S S S S S S S Cu Cu Cu Cu Cu

-2e

S S S S S S S Pt Cu Pt Cu Cu

(3) Inject H2PtCl6 solution and allow surface-limited redox-replacement (SLRR) of Cu by Pt at open circuit (OC)

Pt4+

S S S S S S S Pt Pt Pt Pt Pt

(4) Pt nanodeposit on substrate;

Rinse with BE and inject Cu2+

solution at E >> ECu-Cu2+

Pt4+

Cu2+

S S S S S S S Pt Pt Pt Pt Pt Cu Cu Cu Cu Cu

S S S S S S S Pt Pt Pt Pt Pt Ru Cu Ru Ru Cu

Cu2+ -2e Cu2+ Cu2+

(5) Potentiostatic electrodeposition at – Edep to produce sacrificial Cu adlayer on active sites on Pt adlayers; Rinse with BE

Ru3+

Ru3+

Cu2+

S S S S S S S Pt Pt Pt Pt Pt Ru Ru Ru Ru Ru

(6) Inject RuCl3 solution and allow surface-limited redox-replacement

(SLRR) of Cu by Ru at OC S S S S S S S

Pt Pt Pt Pt Pt Ru Ru Ru Ru Ru

Pt Pt Pt Pt Pt Ru Ru Ru Ru Ru Cu2+

(1) Clean substrate with blank electrolyte (BE);

Inject Cu2+ solution at E >> ECu-Cu2+

S S S S S S S S S S S S S S

(2) Potentiostatic electrodeposition at – Edep> ECu-Cu2+(Underpotential

Deposition (UPD)) or Edep< ECu-Cu2+

(small Overpotential Deposition (OPD) - to produce sacrificial Cu adlayer on active sites of the substrate; Rinse with BE Cu2+ Cu2+

S S S S S S S Cu Cu Cu Cu Cu S S S S S S S S S S S S S S

Cu Cu Cu Cu Cu -2e

S S S S S S S S S S S S S S

Pt Cu Pt Cu Cu

(3) Inject H2PtCl6 solution and allow surface-limited redox-replacement (SLRR) of Cu by Pt at open circuit (OC)

Pt4+

S S S S S S S Pt Pt Pt Pt Pt S S S S S S S S S S S S S S

Pt Pt Pt Pt Pt

(4) Pt nanodeposit on substrate;

Rinse with BE and inject Cu2+

solution at E >> ECu-Cu2+

Pt4+

Cu2+

S S S S S S S S S S S S S S

Pt Pt Pt Pt Pt Cu Cu Cu Cu Cu

S S S S S S S S S S S S S S

Pt Pt Pt Pt Pt Ru Cu Ru Ru Cu

Cu2+ -2e Cu2+ Cu2+

(5) Potentiostatic electrodeposition at – Edep to produce sacrificial Cu adlayer on active sites on Pt adlayers; Rinse with BE

Ru3+

Ru3+

Cu2+

S S S S S S S S S S S S S S

Pt Pt Pt Pt Pt Ru Ru Ru Ru Ru

(6) Inject RuCl3 solution and allow surface-limited redox-replacement

(SLRR) of Cu by Ru at OC SS SS SS SS SS SS SS Pt Pt Pt Pt Pt Ru Ru Ru Ru Ru

Pt Pt Pt Pt Pt Ru Ru Ru Ru Ru

Sequential deposition coupled to Surface-limited Redox-

replacement reactions (SLRR): Synthesis of multilayered

bimetallic RuPt electrocatalyst

(7)

© CSIR 2009 www.csir.co.za

Multi-stage electrodeposition

Time

Potential

Cu(s) or Pb(s) - UPD

a.Pd4+ at OC b.Redox-replacement

to form (Pd | Pt)/C a.Rinse

b.Cu2+

or Pb2+

Cu(s) or Pb(s) - UPD

a. Run+ at OC b.Redox-replacement to form (Ru | Pd | Pt)/C

Pt/C

a.Rinse b.Cu2+

or Pb2+

(Ru | Pd | Pt)/C

Noble-Metals studied = Pt, Ru, Au, Pd

Substrates = Carbon materials, Gold films

(8)

Synthesis of Electrocatalysts

reducing agent: mixture NaBH

4

and ethylene glycol

Low ethanol oxidation

performance vs Pd+Ru-Ni/C

(9)

© CSIR 2011 www.csir.co.za A.V. Tripkovic´ et al. Electrochimica Acta 47 (2002) 3707/3714

(a) a twinned single Pt2Ru3 nanoparticle of ca. 4.39/0.3 nm characteristic dimensions.

(b) distribution of Pt2Ru3 bimetallic nanoparticles on the high-surface area carbon support.

HRTEM and TEM micrographs

(10)

Electrochemical characterization

-50 -40 -30 -20 -10 0 10 20 30

-1.1 -0.6 -0.1 0.4

Potential (V vs Ag/AgCl)

Current density (mA/cm2 )

RuNi/C PdRu/C PdRuNi/C

Pd oxides reduction region

-4 -3 -2 -1 0 1 2

-1.1 -0.6 -0.1 0.4

Potential (V vs Ag/AgCl) Current density (mA/cm2 )

Pd/C PdNi/C

Pd oxides reduction region

cyclic voltammograms in 0.5 M NaOH

Pd+ Ru-Ni/C

(11)

cyclic voltammograms in ethanol

-30 -20 -10 0 10 20 30 40 50 60

-1.2 -0.7 -0.2 0.3

Potential (V vs Ag/AgCl)

Current density (mA/cm2 ) Pd/C

PdNi/C PdRuNi/C

\

-15 -10 -5 0 5 10 15 20

-1.2 -0.7 -0.2 0.3

Potential (V vs Ag/AgCl)

Current density (mA/cm2 )

RuNi/C PdRu/C

RuNi/C and PdRu/C:

no or low activity towards ethanol oxidation

Electrochemical characterization

(12)

Concentration studies effect on current density

Effect of ethanol concentration

PdNi/C PdRuNi/C

-40 -20 0 20 40 60 80 100 120

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Potential (V vs Ag/AgCl) Current density (mA/cm2 )

0.25M 0.5M 1.0M 2.0M 3.0M 4.0M CEtOH =

-1.0 -0.8 -0.6

Potential (V vs Ag/AgCl) Current density (mA/cm2 )

0.25M 0.5M 1.0M 2.0M 3.0M 4.0M CEtOH =

-40 -20 0 20 40 60 80 100 120

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Potential (V vs Ag/AgCl) Current density (mA/cm2 )

0.25M 0.5M 1.0M 2.0M 3.0M 4.0M CEtOH =

-1.0 -0.8 -0.6

Potential (V vs Ag/AgCl) Current density (mA/cm2 )

0.25M 0.5M 1.0M 2.0M 3.0M 4.0M CEtOH =

Raising ethanol concentration up to 3 M increased the coverage of the adsorbed ethoxy (CH

3

COads) species on the nanocatalyst

surface, thus yielding an increase in current density

(13)

Electro-catalyst performance: passive alkaline DEFC

Electro- catalyst

Open circuit voltage

(V)

Power/total loading (mW/mgPd)

PdCeO2/C (ACTA-SpA)

0.795 3.1736

PdNi/C 0.653 3.1916 PdRuNi/C 0.768 2.5798 PdRuSn/C 0.623 0.2386

Cathode: 0.1mg/cm2 FeCo (ACTA-SpA)

cell polarisation and current density curves loading vs. ocv

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 5 10 15 20 25

Current density (mA/cm2)

Potential (V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Power density (mW/cm2 ) PdRuNi/C

ACTA-Spa.

anode PdNi/C

(14)

XRD micrographs of electrocatalysts

20 40 60 80 100

2 Theta (degree)

Int en si ty (a. u. )

C (002)

Ru (101)

Pd (200)

Pd (220)

PdRuNi/C (a)

RuNi/C

Pd (111)

20 40 60 80 100

2 Theta (degree)

Intensity (a.u.)

RuNi/C C (002)

Ru (101)

Ru/C

(insert XRD patterns of Ru/C and Ru-Ni/C)

(15)

© CSIR 2011 www.csir.co.za

Conclusions

• Pd-Ni/C and Pd-Ru-Ni/C were prepared by chemical reduction method

• nanocatalysts (A&B) higher activities towards ethanol electro- oxidation

• effect of ethanol concentration variation – current density

• binary Pd-Ni/C performs better than ternary nanocatalyst -

current density

(16)

16

Jacaranda trees, Main Campus, University of Pretoria

ACKNOWLEDGEMENTS

Energy & Processes Team

CSIR Executive

(17)

Thank You

(18)

References

- G.F. McLean et al. International Journal of Hydrogen Energy 27 (2002) 507 – 526

- A.V. Tripkovic´ et al. Electrochimica Acta 47 (2002) 3707/3714

- T.S. Mkwizu, et.al. 219

th

ECS Meeting, 1 – 6 May, 2011, Montreal, Canada

© CSIR 2011 www.csir.co.za

Referensi

Dokumen terkait

Moreira, 2017). Students learn through active engagement with concepts and principles when solving problems, while teachers can motivate students to gain experience through

Inhibiting the interaction between PD-L1 and PD-1 molecules with monoclonal antibodies may mediate antitumor activity and enhance T-cell responses, thus promote tumor regression and