• Tidak ada hasil yang ditemukan

Control Systems on the Engel Group: Equivalence and Classification

N/A
N/A
Protected

Academic year: 2025

Membagikan "Control Systems on the Engel Group: Equivalence and Classification"

Copied!
29
0
0

Teks penuh

(1)

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305442311

Control Systems on the Engel Group: Equivalence and Classification

Presentation · July 2016

DOI: 10.13140/RG.2.1.4997.0161

CITATIONS

0

READS

35

2 authors:

Some of the authors of this publication are also working on these related projects:

Quadratic Hamilton-Poisson SystemsView project

Invariant Control Systems on Lie GroupsView project Catherine Eve Mc Lean. Née Bartlett

Rhodes University 6PUBLICATIONS   7CITATIONS   

SEE PROFILE

Claudiu Cristian Remsing Rhodes University

66PUBLICATIONS   303CITATIONS    SEE PROFILE

All content following this page was uploaded by Claudiu Cristian Remsing on 20 July 2016.

(2)

Control Systems on the Engel Group

Equivalence and Classification

C.E. Bartlett C.C. Remsing*

Geometry, Graphs and Control (GGC) Research Group Department of Mathematics, Rhodes University

6140 Grahamstown, South Africa

Differential Geometry and its Applications

Brno, Czech Republic, July 11-15, 2016

(3)

Outline

The Engel group

Invariant control systems DF-equivalence

Classification under DF-equivalence SDF-equivalence

Classification under SDF-equivalence Invariant optimal control

Cost-extended control systems C-equivalence

Classification under C-equivalence

(4)

The Engel group Eng

Matrix representation

Eng =

 

 

 

 

1 z 1 2 z 2 w 0 1 z z − x

0 0 1 y

0 0 0 1

: w , x , y, z ∈ R

 

 

 

 

Fact

Eng is a 4D (connected and simply connected) nilpotent Lie group.

(5)

The Engel Lie algebra eng

Matrix representation

eng =

 

 

 

 

0 z 0 w 0 0 z x 0 0 0 y 0 0 0 0

= wE 1 + xE 2 + yE 3 + zE 4 : w , x, y , z ∈ R

 

 

 

 

Commutator table for standard basis

E 1 E 2 E 3 E 4

E 1 0 0 0 0

E 2 0 0 0 E 1

E 3 0 0 0 E 2

E 4 0 −E 1 −E 2 0

(6)

Invariant control systems

Left-invariant control affine system (Σ : A + u 1 B 1 + · · · + u ` B ` )

(Σ) dg

dt = Ξ (g , u )

= g (A + u 1 B 1 + · · · + u ` B ` ), g ∈ Eng, u ∈ R `

state space: the Engel group Eng (a connected Lie group, in general) input set: R ` , 1 ≤ ` ≤ 4

A, B 1 , . . . , B ` ∈ eng

dynamics: family of left-invariant vector fields Ξ u = Ξ (·, u)

parametrization map: Ξ (1, ·) : R ` → g, u 7→ A + u 1 B 1 + · · · + u ` B `

is an injective (affine) map

(7)

Trajectories, controllability, and full rank

admissible controls: piecewise continuous curves u(·) : [0, T ] → R ` trajectory: absolutely continuous curve s.t. ˙ g (t) = Ξ(g (t), u(t )) controlled trajectory: pair (g (·), u (·))

controllable system: any two states can be joined by a trajectory full rank: Lie(Γ) = g (necessary condition for controllability)

Σ : A + u 1 B 1 + · · · + u ` B `

trace: Γ = A + Γ 0 = A + hB 1 , . . . , B ` i is an affine subspace of g homogeneous: A ∈ Γ 0

inhomogeneous: A ∈ / Γ 0

(8)

Detached feedback equivalence (1/2)

Control system

(Σ) dg

dt = Ξ (g , u)

= g (A + u 1 B 1 + · · · + u ` B ` ) Definition (DF-equivalence)

Σ and Σ 0 are DF-equivalent if there exist a diffeomorphism φ : Eng → Eng an affine isomorphism ϕ : R ` → R ` such that

T g φ · Ξ (g , u) = Ξ 0 (φ(g ), ϕ(u)) (g ∈ Eng, u ∈ R ` ).

(9)

Detached feedback equivalence (2/2)

Remark (DF-equivalence)

one-to-one correspondence between trajectories φ preserves left-invariant vector fields:

φ ∗ Ξ u = Ξ 0 ϕ(u) (Ξ u = Ξ (·, u ))

Characterization (for simply connected Lie groups, in general)

Full-rank systems Σ and Σ 0 are DF-equivalent if and only if there exists a Lie algebra automorphism ψ ∈ Aut (eng) such that

ψ · Γ = Γ 0 .

(10)

Classification (under DF-equivalence): single input

Single-input (inhomogeneous) control system

Σ : A + uB

Classification (1,1)

Any full-rank single-input control system is DF-equivalent to exactly one of the following systems

Σ (1,1) 1 : E 3 + uE 4 Σ (1,1) 2 : E 4 + uE 3 .

(11)

Classification (under DF-equivalence): two inputs

Two-input control system

Σ : A + u 1 B 1 + u 2 B 2

Classification (2,0)

Any full-rank two-input homogeneous control system is DF-equivalent to the system

Σ (2,0) : u 1 E 3 + u 2 E 4 .

(12)

Classification (under DF-equivalence): two inputs

Classification (2,1)

Any full-rank two-input inhomogeneous control system is DF-equivalent to exactly one of the following systems

Σ (2,1) 1 : E 4 + u 1 E 1 + u 2 E 3 Σ (2,1) 3 : E 4 + u 1 E 2 + u 2 E 3

Σ (2,1) 5 : E 1 + u 1 E 3 + u 2 E 4 Σ (2,1) 7 : E 2 + u 1 E 3 + u 2 E 4 .

Σ (2,1) 2 : E 3 + u 1 E 1 + u 2 E 4 Σ (2,1) 4 : E 3 + u 1 E 2 + u 2 E 4

Σ (2,1) 6 : E 2 − E 1 + u 1 E 3 + u 2 E 4

(13)

Classification (under DF-equivalence): three inputs

Three-input control system

Σ : A + u 1 B 1 + u 2 B 2 + u 3 B 3

Classification (3,0)

Any full-rank three-input homogeneous control system is DF-equivalent to exactly one of the systems

Σ (3,0) 1 : u 1 E 1 + u 2 E 3 + u 3 E 4 Σ (3,0) 2 : u 1 E 2 + u 2 E 3 + u 3 E 4 .

(14)

Classification (under DF-equivalence): three inputs

Three-input control system

Σ : A + u 1 B 1 + u 2 B 2 + u 3 B 3

Classification (3,1)

Any full-rank three-input inhomogeneous control system is DF-equivalent to exactly one of the following systems

Σ (3,1) 1 : E 3 + u 1 E 1 + u 2 E 2 + u 3 E 4 Σ (3,1) 3 : E 1 + u 1 E 2 + u 2 E 3 + u 3 E 4

Σ (3,1) 2 : E 2 + u 1 E 1 + u 2 E 3 + u 3 E 4

Σ (3,1) 4 : E 4 + u 1 E 1 + u 2 E 2 + u 3 E 3 .

(15)

Strongly detached feedback equivalence (1/2)

Control system

(Σ) dg

dt = Ξ (g , u)

= g (A + u 1 B 1 + · · · + u ` B ` ) Definition (SDF-equivalence)

Σ and Σ 0 are SDF-equivalent if there exist a diffeomorphism φ : Eng → Eng a linear isomorphism ϕ : R ` → R ` such that

T g φ · Ξ (g , u) = Ξ 0 (φ(g ), ϕ(u)) (g ∈ Eng, u ∈ R ` ).

(16)

Strongly detached feedback equivalence (2/2)

Remark (SDF-equivalence)

one-to-one correspondence between trajectories φ preserves left-invariant vector fields:

φ ∗ Ξ u = Ξ 0 ϕ(u) (Ξ u = Ξ (·, u ))

Characterization (for simply connected Lie groups, in general)

Full-rank systems Σ and Σ 0 are SDF-equivalent if and only if there exists a Lie algebra automorphism ψ ∈ Aut (eng) such that

ψ · Γ = Γ 0 and ψ · A = A 0 .

(17)

Classification (under SDF-equivalence): single input

Single-input (inhomogeneous) control system

Σ : A + uB .

Classification (1,1)

(a) If Σ is DF-equivalent to Σ (1,1) 1 : E 3 + uE 4 , then Σ is SDF-equivalent to exactly one of the following systems

Σ (1,1) 1 : E 3 + uE 4 Σ (1,1) 12 : E 3 + E 4 + uE 4 .

(b) If Σ is DF-equivalent to Σ (1,1) 2 , then Σ is SDF-equivalent to Σ (1,1) 2 .

(18)

Classification (under SDF-equivalence): two inputs

Two-input control system

Σ : A + u 1 B 1 + u 2 B 2

Classification (2,0)

The system Σ (2,0) : u 1 E 3 + u 2 E 4 is SDF-equivalent to exactly one of the following systems

Σ (2,0) : u 1 E 3 + u 2 E 4 Σ (2,0) 12 : E 3 + u 1 E 3 + u 2 E 4

Σ (2,0) 13 : E 4 + u 1 E 3 + u 2 E 4 .

(19)

Classification (under SDF-equivalence): two inputs

Two-input control system

Σ : A + u 1 B 1 + u 2 B 2

Classification: 1/7 (2,1)

The system Σ (2,1) 4 : E 3 + u 1 E 2 + u 2 E 4 is SDF-equivalent to exactly one of the following systems

Σ (2,1) 4 : E 3 + u 1 E 2 + u 2 E 4 Σ (2,1) 42 : E 2 + E 3 + u 1 E 2 + u 2 E 4

Σ (2,1) 43 : E 3 + E 4 + u 1 E 2 + u 2 E 4 .

(20)

Classification (under SDF-equivalence): three inputs

Three-input control system

Σ : A + u 1 B 1 + u 2 B 2 + u 3 B 3

Classification: 1/2 (3,0)

The system Σ (3,0) 1 : u 1 E 1 + u 2 E 3 + u 3 E 4 is SDF-equivalent to exactly one of the following systems

Σ (3,0) 1 : u 1 E 1 + u 2 E 3 + u 3 E 4 Σ (3,0) 12 : E 1 + u 1 E 1 + u 2 E 3 + u 3 E 4

Σ (3,0) 13 : E 3 + u 1 E 1 + u 2 E 3 + u 3 E 4 Σ (3,0) 14 : E 4 + u 1 E 1 + u 2 E 3 + u 3 E 4 .

(21)

Classification (under SDF-equivalence): three inputs

Three-input control system

Σ : A + u 1 B 1 + u 2 B 2 + u 3 B 3

Classification: 1/4 (3,1)

The system Σ (3,1) 2 : E 2 + u 1 E 1 + u 2 E 3 + u 3 E 4 is SDF-equivalent to exactly one of the following systems

Σ (3,1) 2 : E 2 + u 1 E 1 + u 2 E 3 + u 3 E 4 Σ (3,1) 22 : E 2 + E 3 + u 1 E 1 + u 2 E 3 + u 3 E 4

Σ (3,0) 23 : E 2 + E 4 + u 1 E 1 + u 2 E 3 + u 3 E 4 .

(22)

Invariant optimal control problems

Problem

Minimize cost functional J = R T

0 χ(u(t )) dt over controlled trajectories of a system Σ

subject to boundary data.

Formal statement LiCP

dg

dt = g (A + u 1 B 1 + · · · + u ` B ` ) , g ∈ Eng, u ∈ R ` g (0) = g 0 , g (T ) = g 1

J = Z T

0

(u (t) − µ) > Q (u (t) − µ) dt −→ min

µ ∈ R ` , Q ∈ R `×` positive definite

(23)

Cost-extended control system

Definition

A cost-extended control system is a pair (Σ, χ), where

Σ : A + u 1 B 1 + · · · + u ` B ` (left-invariant control affine system) χ(u) = (u (t) − µ) > Q (u(t) − µ) (quadratic cost).

Remark

(Σ, χ) + boundary data ←→ invariant optimal control problem

(24)

Cost equivalence (1/3)

Cost-extended control system Σ : A + u 1 B 1 + · · · + u ` B ` χ(u) = (u (t) − µ) > Q (u(t) − µ)

Definition (C-equivalence)

(Σ, χ) and (Σ 0 , χ 0 ) are C-equivalent if there exist a Lie group isomorphism φ : Eng → Eng an affine isomorphism ϕ : R ` → R ` such that

φ ∗ Ξ u = Ξ 0 ϕ(u) and ∃ r >0 χ 0 ◦ ϕ = rχ.

(25)

Cost equivalence (2/3)

Remark 1

(Σ, χ) and (Σ 0 , χ 0 )

cost equivalent = ⇒ Σ and Σ 0

detached feedback equivalent

Remark 2

Σ and Σ 0

detached feedback equivalent w.r.t. ϕ ∈ Aff ( R ` )

= ⇒ (Σ, χ ◦ ϕ) and (Σ 0 , χ)

cost equivalent for any χ

(26)

Cost equivalence (3/3)

Classification under C-equivalence: algorithm

1

classify underlying systems under DF-equivalence

2

for each normal form Σ i ,

determine transformations T

Σi

preserving system Σ

i

normalize (admissible) associated cost χ by dilating by r > 0 and composing with ϕ ∈ T

Σi

T Σ = (

ϕ ∈ Aff (R ` ) : ∃ ψ ∈ d Aut (Eng), ψ · Γ = Γ ψ · Ξ(1, u) = Ξ(1, ϕ(u))

)

(27)

Controllability of systems (on the Engel group) (1/2)

Definition (general)

A control system Σ : A + u 1 B 1 + · · · + u ` B ` is controllable if any two states can be joined by a trajectory.

Remark 1

Any controllable system has full rank (i.e., Lie (Γ) = eng).

Remark 2

Any nilpotent Lie group is completely solvable.

Controllability criterion (for simply connected completely solvable Lie groups, in general)

A control system (on Eng) is controllable if and only if Lie (Γ 0 ) = eng.

(28)

Controllability of systems (on the Engel group) (2/2)

Σ : A + u 1 B 1 + · · · + u ` B ` (A, B 1 , . . . , B ` ∈ eng, 1 ≤ ` ≤ 4) Result

Any controllable control system Σ is DF-equivalent to exactly one of the following (nine) systems

Σ (2,0) : u 1 E 3 + u 2 E 4 Σ (2,1) 5 : E 1 + u 1 E 3 + u 2 E 4 Σ (2,1) 6 : E 2 − E 1 + u 1 E 3 +u 2 E 4

Σ (2,1) 7 : E 2 + u 1 E 3 + u 2 E 4 .

Σ (3,0) 1 : u 1 E 1 + u 2 E 3 + u 3 E 4 4 Σ (3,0) 2 : u 1 E 2 + u 2 E 3 + u 3 E 4

Σ (3,1) 2 : E 2 + u 1 E 1 + u 2 E 3 + u 3 E 4 Σ (3,1) 3 : E 1 + u 1 E 1 + u 2 E 3 + u 3 E 4

Σ (4,0) : u 1 E 1 + u 2 E 2 + u 3 E 3 + u 4 E 4 .

(29)

Classification (under C-equivalence)

Classification: 1/9

Any controllable cost-extended system (Σ, χ) with Σ DF-equivalent to Σ (2,0) : u 1 E 3 + u 2 E 4 is C-equivalent to exactly one of the following systems

(Σ (2,0) , χ (2,0) ) :

( Σ (2,0) : u 1 E 3 + u 2 E 4

χ(u) = u 1 2 + u 2 2

(Σ (2,0) 12 , χ (2,0) ) :

( Σ (2,0) 12 : E 3 + u 1 E 3 + u 2 E 4

χ(u) = u 1 2 + u 2 2

(Σ (2,0) 13β , χ (2,0) ) :

( Σ (2,0) 13β : E 4 + βE 3 + u 1 E 3 + u 2 E 4 χ(u) = u 1 2 + u 2 2 .

Here β ≥ 0 parametrizes a family of distinct class representatives.

Referensi

Dokumen terkait

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265735881 Modelling complex features from histone modification signatures

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346416093 The association between incidence and mortality of brain cancer

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339468838 The Correlation between Work Stress and Hypertension among

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320345554 Blood Lead Concentration and Working Memory Ability on Primary

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341966599 Synthesis, Characterization, and Antibacterial Activity of ZnO

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305621846 Examining the Validity and Reliability for a Measurement Model

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/292137799 Automated Visual Inspection: Position Identification of Object

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331658556 Us vs.. The user has requested enhancement of the downloaded