• Tidak ada hasil yang ditemukan

Control Systems on the Heisenberg Group: Equivalence and Classification

N/A
N/A
Protected

Academic year: 2025

Membagikan "Control Systems on the Heisenberg Group: Equivalence and Classification"

Copied!
29
0
0

Teks penuh

(1)

Control Systems on the Heisenberg Group: Equivalence and Classification

Catherine Bartlett

Geometry, Graphs and Control (GGC) Research Group Department of Mathematics (Pure and Applied)

Rhodes University, Grahamstown 6140

Workshop on Geometry, Lie Groups and Number Theory, University of Ostrava, 24 June 2015.

(2)

1 Heisenberg group H3

2 Invariant control systems Classification

3 Cost-extended control systems Classification

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 2 / 29

(3)

Outline

1 Heisenberg group H3

2 Invariant control systems Classification

3 Cost-extended control systems Classification

(4)

Heisenberg group H

3

Matrix representation H3=

1 x2 x1

0 1 x3

0 0 1

|x1,x2,x3∈R

 .

H3 is a matrix Lie group:

closed subgroup of GL(3,R)⊂R3×3

— is a submanifold of R3×3

— group multiplication is smooth can be linearized

— yields Lie algebrah3 =T1H3

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 4 / 29

(5)

Heisenberg Lie algebra h

3

Matrix representation h3=

0 x2 x1 0 0 x3

0 0 0

 |x1,x2,x3 ∈R

 .

Standard basis E1 =

0 0 1 0 0 0 0 0 0

, E2=

0 1 0 0 0 0 0 0 0

, E3 =

0 0 0 0 0 1 0 0 0

.

Commutator relations

[E2,E3] =E1, [E1,E2] =0, [E1,E3] =0.

(6)

The automorphism group of h

3

Lie algebra automorphism Mapψ:h3 →h3 such that

ψ is a linear isomorphism

ψ preserves the Lie bracket: ψ[X,Y] = [ψX, ψY].

Proposition

The automorphism group of h3 is given by

Aut(h3) =

v2w3−v3w2 v1 w1

0 v2 w2

0 v3 w3

 : v1,v2,v3,w1,w2,w3 ∈R, v2w3−v3w2 6= 0

 .

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 6 / 29

(7)

Outline

1 Heisenberg group H3

2 Invariant control systems Classification

3 Cost-extended control systems Classification

(8)

Control systems

Left-invariant control affine system

˙

g =gΞ (1,u) =g(A+u1B1+· · ·+u`B`), g ∈H3, u ∈R`, A, B1, . . . ,B` ∈h3.

Admissible controls: u(·) : [0,T]→R`. Trajectory: absolutely continuous curve

g(·) : [0,T]→H3

such that ˙g(t) =g(t) Ξ (1,u(t)) for almost everyt∈[0,T].

Parametrization map: Ξ(1,·) :R`→h3. Trace: Γ =A+ Γ0 =A+hB1, . . . ,B`i.

Drift: A.

Homogeneous system: A∈Γ0. Inhomogeneoussystem: A∈/Γ0.

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 8 / 29

(9)

Controllability

Definition

A system is controllable if for any g0,g1∈H3 there exists a trajectory g(·) : [0,T]→H3 such that

g(0) =g1 and g(T) =g1. Full-rank condition

Σ = (H3,Ξ) has full rankif its trace Γ =A+ Γ0 =A+hB1, . . . ,B`i generates h3 i.e.

Lie(Γ) =h3. Neccessary conditions for controllabilty

H3 is connected Γ has full rank.

(10)

Left-invariant control affine system on H

3

1-input inhomogeneous system on H3

˙

g =g(A+uB), u ∈R, with

g =

1 x2 x1

0 1 x3

0 0 1

∈H3, A=

0 a2 a1

0 0 a3

0 0 0

,B =

0 b2 b1

0 0 b3

0 0 0

∈h3,

i.e.,

0 x˙21

0 0 x˙3

0 0 0

=

1 x2 x1

0 1 x3

0 0 1

0 a2 a1

0 0 a3

0 0 0

+u

0 b2 b1

0 0 b3

0 0 0

.

System of differential equations





˙

x1=a1+a3x2+u b1+u b3x2

˙

x2=a2+u b2

˙

x3=a3+u b3, u∈R.

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 10 / 29

(11)

Equivalence classes

DF-equivalence, SDF-equivalence,S-equivalence

Σ = (H3,Ξ) and Σ0 = (H30) aredetached feedback equivalent (DF-equivalent)if there exists a diffeomorphism φ: H3→H3 and an affine isomorphism ϕ:R` →R` such that

Tgφ·Ξ(g,u) = Ξ0(φ(g), ϕ(u)), ∀g ∈H3,u ∈R`.

Σ = (H3,Ξ) and Σ0 = (H30) are strongly detached feedback equivalent (SDF-equivalent) ifϕ:R` →R` is a linear map.

Σ = (H3,Ξ) and Σ0 = (H30) are state space equivalent (S-equivalent)if ϕ:R`→R` is the identity map.

(12)

Algebraic characterization

Proposition (H3 simply connected)

Σ and Σ0 are

1 DF-equivalentiff ∃ψ∈Aut(h3) such that ψ·Γ = Γ0.

2 SDF-equivalentiff ∃ψ∈Aut(h3) such that ψ·Γ = Γ0 and ψ·A=A0.

3 S-equivalentiff ∃ψ∈Aut(h3) such that ψ·Ξ(1,·) = Ξ0(1,·).

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 12 / 29

(13)

Two-input inhomogeneous systems

S-equivalence SDF-equivalence

DF-equivalence

E1+u1E2+u2αE3

E1+E2+ u1α1E2+u2α2E3

E1+E2+u1α1E3+ u22E2+γ)E3

E2+u1αE1+u2E3

E2+u1E3+ u2(αE1+γE3) E1+u1E2+u2E3

E1+E2+ u1E2+u2E3

E2+u1E1+u2E3

E1+u1E2+u2E3

E2+u1E1+u2E3

(2,1)

α, α1, α26= 0, γ∈R.

(14)

DF -equivalence (ψ · Γ = Γ

0

)

S-equivalence SDF-equivalence

DF-equivalence

E1+u1E2+u2αE3

E1+E2+ u1α1E2+u2α2E3

E1+E2+u1α1E3+ u22E2+γ)E3

E2+u1αE1+u2E3

E2+u1E3+ u2(αE1+γE3) E1+u1E2+u2E3

E1+E2+ u1E2+u2E3

E2+u1E1+u2E3

E1+u1E2+u2E3

E2+u1E1+u2E3

(2,1)

α, α1, α26= 0, γ∈R.

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 14 / 29

(15)

SDF -equivalence (ψ · Γ = Γ

0

and ψ · A = A

0

)

S-equivalence SDF-equivalence

DF-equivalence

E1+u1E2+u2αE3

E1+E2+ u1α1E2+u2α2E3

E1+E2+u1α1E3+ u22E2+γ)E3

E2+u1αE1+u2E3

E2+u1E3+ u2(αE1+γE3) E1+u1E2+u2E3

E1+E2+ u1E2+u2E3

E2+u1E1+u2E3

E1+u1E2+u2E3

E2+u1E1+u2E3

(2,1)

α, α1, α26= 0, γ∈R.

(16)

Classification: SDF -equivalence

DF-equivalence class: E1+u1E2+u2E3 (1/2) Suppose Σ isDF-equivalent to E1+u1E2+u2E3.

May assume Σ has trace

Γ =E1+hE2,E3i.

Σ is of the form A+u1E2+u2E3 whereA=E1+a1E2+a2E3. Ifa1 =a2= 0, Σ is SDF-equivalent to E1+u1E2+u2E3. Subgroup of automorphisms preserving Γ:

AutΓ(h3) =

1 0 0

0 v2 w2 0 v3 w3

 : v2,v3,w2,w3 ∈R v2w3−v3w2 = 1

 .

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 16 / 29

(17)

DF -equivalence class: E

1

+ u

1

E

2

+ u

2

E

3

(2/2)

Ifa21+a22 6= 0, then

ψ=

1 0 0

0 a2a1 1+a22

a2

a21+a22

0 −a2 a1

∈AutΓ(h3) and ψ·A=E1+E2.

Σ isSDF-equivalent toE1+E2+u1E2+u2E3. Two systems

E1+u1E2+u2E3 and E1+E2+u1E2+u2E3. Now ψ·E1 =E1 for any ψ∈AutΓ(h3).

HenceE1+u1E2+u2E3 is notSDF-equivalent to E1+E2+u1E2+u2E3.

(18)

S-equivalence (ψ · Ξ(1, ·) = Ξ

0

(1, ·))

S-equivalence SDF-equivalence

DF-equivalence

E1+u1E2+u2αE3

E1+E2+ u1α1E2+u2α2E3

E1+E2+u1α1E3+ u22E2+γ)E3

E2+u1αE1+u2E3

E2+u1E3+ u2(αE1+γE3) E1+u1E2+u2E3

E1+E2+ u1E2+u2E3

E2+u1E1+u2E3

E1+u1E2+u2E3

E2+u1E1+u2E3

(2,1)

α, α1, α26= 0, γ∈R.

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 18 / 29

(19)

Classification: S -equivalence

SDF-equivalence class: E1+u1E2+u2E3 (1/2) May assume Σ has

Γ =E1+hE2,E3i and A=E1. Σ has matrix form

Σ :

1 0 0

0 b2 c2

0 b3 c3

where b2c3−c2b36= 0 .

Subgroup of automorphisms preserving A and Γ:

AutA,Γ(h3) =

1 0 0

0 v2 w2 0 v3 w3

 : v2,v3,w2,w3 ∈R, v2w3−w2v3 = 1

 .

(20)

SDF -equivalence class: E

1

+ u

1

E

2

+ u

2

E

3

(2/2)

We have

ψ=

1 0 0

0 b c3

2c3−b3c2

−c2

b2c3−b3c2

0 −b3 b2

∈AutA,Γ(h3) such that

ψ·

1 0 0

0 b2 c2

0 b3 c3

=

1 0 0

0 1 0

0 0 b2c3−b3c2

.

Thus Σ isS-equivalent toE1+u1E2+u2αE3.

Each α yields a distinct equivalence class, since if forψ∈AutA,Γ(h3),

ψ·

1 0 0 0 1 0 0 0 α

=

1 0 0 0 1 0 0 0 α0

 =⇒ α=α0.

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 20 / 29

(21)

Outline

1 Heisenberg group H3

2 Invariant control systems Classification

3 Cost-extended control systems Classification

(22)

Cost-extended control systems

Optimal control problem Σ = (H3,Ξ)

˙

g =gΞ(1,u), g ∈H3,u∈R`. Boundary data

g(0) =g0, g(T) =g1, g0,g1∈H3, T >0.

Cost functional J =

Z T 0

(u(t)−µ)>Q(u(t)−µ) dt→min, µ∈R` Q positive definite `×`matrix.

Cost-extended system (Σ, χ) Σ = (H3,Ξ)

Cost functionχ:R` →R

χ(u) = (u−µ)>Q(u−µ)

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 22 / 29

(23)

Cost equivalence

Cost equivalence

(Σ, χ) and (Σ0, χ0) arecost equivalent (C-equivalent)if∃φ: H3→H3 and ϕ:R`→R` such that

Tgφ·Ξ(g,u) = Ξ0(φ(g), ϕ(u)) and rχ=χ0◦ϕ for somer >0.

Proposition

(Σ, χ) and (Σ0, χ0) are C-equivalent if∃ψ∈Aut(h3) andϕ:R` →R` such that

ψ·Ξ(1,u) = Ξ0(1, ϕ(u)) and rχ=χ0◦ϕ for somer >0.

Corollary

If (Σ, χ) and (Σ0, χ0) are C-equivalent then Σ and Σ0 areDF-equivalent.

(24)

Cost equivalence

Feedback transformations leaving Σ = (H3,Ξ) invariant

TΣ={ϕ∈Aff(R`) :∃ψ∈Aut(h3), ψ·Ξ(1,u) = Ξ(1, ϕ(u))}.

Proposition

(Σ, χ) and (Σ, χ0) are cost equivalent iff∃ϕ∈ TΣ such that χ0 =rχ◦ϕ for somer >0.

r(χ◦ϕ)(u) =r(u−µ0)>ϕ>Qϕ(u−µ0) for µ0−1(u).

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 24 / 29

(25)

Classification

Proposition

Any two-input homogeneous cost-extended system on H3 is C-equivalent to exactly one of

(2,0), χ(1)) :

(2,0)(1,u) =u1E2+u2E3

χ(1) =u21+u22, (Σ(2,0), χ(2)) :

(2,0)(1,u) =u1E2+u2E3

χ(2) = (u1−1)2+u22. Proof sketch (1/4)

Any (2,0) system on H3 is detached feedback equivalent Σ(2,0)= (H3(2,0)).

Determine TΣ(2,0).

(26)

Proof sketch (2/4)

In matrix form ψ·Ξ(2,0)(1,u) =

v2w3−v3w2 v1 w1

0 v2 w2

0 v3 w3

 0 0 1 0 0 1

=

 v1 w1

v2 w2

v3 w3

.

Also in matrix form Ξ(2,0)(1, ϕ(u)) =

 0 0 1 0 0 1

ϕ11 ϕ12

ϕ21 ϕ22

=

0 0

ϕ11 ϕ12 ϕ21 ϕ22

.

v2w3−v3w26= 0 =⇒ ϕ11ϕ22−ϕ21ϕ126= 0 =⇒ TΣ(2,0) = GL(2,R).

Recall

χ◦ϕ(u) = (u−µ0)>ϕ>Qϕ(u−µ0) for µ0−1(µ).

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 26 / 29

(27)

Proof sketch (3/4)

Now

Q =

a1 b b a2

with a1, a2, a1a2−b2 >0.

And so

ϕ1 =

1 r

a1ba2

2

0

b

a2

r a1ba2

2

1 a2

∈ TΣ(2,0).

Such that

χ1 = (χ◦ϕ1)(u) = (u−µ0)>

1 0 0 1

(u−µ0), µ0 ∈R2. If µ0=0, then (Σ, χ) is C-equivalent to (Σ(2,0), χ(1))

(28)

Proof sketch (4/4)

Suppose µ0 6=0.

There exists α >0 and θ∈R such that µ01=αcosθ and µ02 =αsinθ.

Hence

ϕ2=

αcosθ −αsinθ αsinθ αcosθ

∈ TΣ(2,0)

and

χ2(u) = 1

α21◦ϕ2)(u) = (u1−1)2+u22. Therefore (Σ, χ) is C-equivalent to (Σ(2,0), χ(2))

(2,0), χ(1)) and (Σ(2,0), χ(2)) are not C-equivalent as there is no r >0 and ϕ∈ TΣ(2,0) such that

χ(1)=rχ(2)◦ϕ.

Catherine Bartlett (Rhodes) Control Systems on H Workshop 2015 28 / 29

(29)

Concluding remarks

The classification of cost-extended systems can be based on the classification of the underlying control systems. Based on:

— DF-equivalence or

— SDF equivalence.

The classification of cost-extended systems can be reinterpreted as the classification of the left-invariant metric-point affine structures.

Referensi

Dokumen terkait

In this research, the writer limits the problem on the structural analysis of translation equivalence which is found in the novel The Da Vinci Code and its translation to

There are two problems to be discussed in this study, the first is the equivalence of the Indonesian translation of idioms in J.K Rowling’s Harry Potter and the Sorcerer’s Stone

This means that 26% of budgetary slack variables influenced by budget participation, role ambiguity, cohesiveness group and locus of control the remaining 74%

The Practicality of Using the Circular Matrix to Determine the Spectrum Circle Graphs and Inquiry-Based Cubic Graphs on Mathematics Education Students of Universitas..

The average increase in knowledge and attitudes in the intervention group was higher than the control group, so it can be concluded that the WhatsApp peer group is considered

The result that effectiveness of consulting and auditor expertise with internal control system on financial audit opinion has significant influence either directly or through

No Group Total Score Pre-Test Post-Test 1 Experimental 430 544 2 Control 216 302 Testing Hypothesis T-test used to find the relationship of applying talking chips technique in

From the result of research finding, showed that Students Team Achievement Division STAD and the control group with lecturing and Small Group Discussion SGD was effective used in