This work was supported by the Federal Ministry of Education and Research and the Thuringian Ministry of Culture (FKZ03ZIK062, FKZ03ZIK465, FKZB714-09064, FKZ16SV5473, FKZKF2731202AK0, FKZ03Z1M511 and FKZ 03WKCB010) within the Initiative “Centre for Innovation Competence,” MacroNano®.
References
1. S. Drecker, Necessity is the mother of invention, GIT Lab Fachz, 12, 1120–1121, 2004.
2. C. Bonten, and M. Anders, Anforderungen an Kunststoffe für Pharma-Industrie und Medizintechnik, MedPLAST, 15, 28–29, 2005.
3. E. Berthier, E.W. Young, and D. Beebe, Engineers are from PDMS-land, Biologists are from Polystyrenia, Lab Chip, 12 (7), 1224–1237, 2012.
4. Dynalab Corp., Technical Info Polycarbonate, http://www.dynalabcorp.com/technical_
info_polycarbonate.asp, 2014.
5. K. Lau, Plasmagestützte Aufdampfprozesse für die Herstellung haftfester optischer Beschichtungen auf Bisphenol-A-Polycarbonat, MLU Halle-Wittenberg, Halle (Saale), 2006.
6. P.R. Lantos, Plastics in medical applications, Journal of Biomaterials Applications, 2 (3), 358–371, 1988.
7. A. Rivaton, Recent advances in bisphenol-A polycarbonate photodegradation, Polym Degrad Stabil, 49 (1), 163–179, 1995.
Figure 3.10 Patterned attachment of fibroblast on the PC surface coated with polyethylenimine (PEI).
Cells attached only to the selected regions patterned with PEI. The obtained sinusoid structures were seen even after 7 days of cultivation.
90 Handbook of Polymers for Pharmaceutical Technologies
8. A. Rivaton, B. Mailhot, J. Soulestin, H. Varghese, and J.L. Gardette, Comparison of the pho-tochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohex-ane-polycarbonate, Polym Degrad Stabil, 75 (1), 17–33, 2002.
9. N. Ben-Jonathan, and R. Steinmetz, Xenoestrogens: The emerging story of bisphenol A, Trends Endocrin Met, 9 (3), 124–128, 1998.
10. L. Huc, A. Lemarie, F. Gueraud, and C. Helies-Toussaint, Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells, Toxicology In Vitro: An International Journal Published in Association with BIBRA, 26 (5), 709–717, 2012.
11. J.T. Gowder, Nephrotoxicity of bisphenol A (BPA) – An updated review, Current Molecular Pharmacology, 6 (3), 163–172, 2013.
12. T. Geens, H. Neels, and A. Covaci,Distribution of bisphenol-A, triclosan and n-nonylphe-nol in human adipose tissue, liver and brain, Chemosphere, 87 (7), 796–802, 2012.
13. M.A. Kafi, T.H. Kim, J.H. An, and J.W. Choi, Electrochemical cell-based chip for the detec-tion of toxic effects of bisphenol-A on neuroblastoma cells, Biosens Bioelectron, 26 (7), 3371–3375, 2011.
14. U.S. Food and Drug Administration, FDA continues to study BPA, http://www.fda.gov/for-consumers/consumerupdates/ucm297954.htm, 2012.
15. B. Hiebl, K. Lutzow, M. Lange, F. Jung, B. Seifert, F. Klein, T. Weigel, K. Kratz, and A.
Lendlein, Cytocompatibility testing of cell culture modules fabricated from specific candi-date biomaterials using injection molding, J Biotechnol, 148 (1), 76–82, 2010.
16. M. Worgull, “Hot embossing,” in: Micromanufacturing Engineering and Technology, Boston:
William Andrew Publishing, Boston, pp. 68–89, 2010.
17. H. Becker, and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sens Actu, A: Phys, A83 (1–3), 130–135, 2000.
18. G. Binyamin, T.D. Boone, H.S. Lackritz, A.J. Ricco, A.P. Sassi, S.J. Williams, “Plastic micro-fluidic devices: Electrokinetic manipulations, life science applications, and production technologies,” in: R.E. van der Oosterbroek, and A. Berg, eds., Lab-on-a-Chip: Miniaturized Systems for (Bio)Chemical Analysis and Synthesis, Amsterdam: Elsevier, 83–112, 2003.
19. R.-D. Chien, Hot embossing of microfluidic platform, Int Commun Heat Mass Transfer, 33 (5), 645–653, 2006.
20. M. Heckele, and W.K. Schomburg, Review on micro molding of thermoplastic polymers, J Micromech Microeng, 14 (3), R1-R14, 2004.
21. J.L. Charest, L.E. Bryant, A.J. Garcia, and W.P. King, Hot embossing for micropatterned cell substrates, Biomaterials, 25 (19), 4767–4775, 2004.
22. S. Giselbrecht, Polymere, mikrostrukturierte zellkulturträger für das tissue engineering [Polymeric, microstructured tissue culture substrates for tissue engineering], Dissertation, Universität Karlsruhe; Karlsruhe, Germany, 2005.
23. S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmuller, K.F. Weibezahn, and A. Welle, 3D tissue culture substrates produced by microthermoforming of pre-pro-cessed polymer films, Biomedical Microdevices, 8 (3), 191–199, 2006.
24. G.S. Sekhon, S. Kumar, C. Kaur, N.K. Verma, and S.K. Chakarvarti, Effect of thermal anneal-ing on pore density, pore size and pore homogeneity of polycarbonate NTFs, Radiat Meas, 43 (8), 1357–1359, 2008.
25. H. Persson, and K. Ådán, Modeling and experimental studies of PC/ABS at large deforma-tions, Master thesis, Division of Solid Mechanics, Lund University, Lund, Sweden, 2004.
26. M.D. Mager, V. LaPointe, and M.M. Stevens, Exploring and exploiting chemistry at the cell surface, Nature Chemistry. 3 (8), 582–589, 2011.
27. X. Liu, J.M. Holzwarth, and P.X. Ma, Functionalized synthetic biodegradable polymer scaf-folds for tissue engineering, Macromolecular Bioscience, 12 (7), 911–919, 2012.
Establishing Advanced Cell Cultivation Systems 91 28. M. Perán, M.A. García, E. López-Ruiz, M. Bustamante, G. Jiménez, R. Madeddu, J.A.
Marchall, Functionalized nanostructures with application in regenerative medicine, International Journal of Molecular Sciences, 13, 3847–3886, 2012.
29. S.J. Lee, J.S. Choi, K.S. Park, G. Khang, Y.M. Lee, and H.B. Lee, Response of MG63 osteo-blast-like cells onto polycarbonate membrane surfaces with different micropore sizes, Biomaterials, 25 (19), 4699–4707, 2004.
30. A. Welle, M. Kröger, M. Doring, K. Niederer, E. Pindel, and I.S. Chronakis, Electrospun ali-phatic polycarbonates as tailored tissue scaffold materials, Biomaterials, 28 (13), 2211–2219, 2007.
31. U. Fernekorn, J. Hampl, F. Weise, C. Augspurger, C. Hildmann, M. Klett, A. Läffert, M.
Gebinoga, K.-F. Weibezahn, G. Schlingloff, M. Worgull, M. Schneider, and A. Schober, Microbioreactor design for 3-D cell cultivation to create a pharmacological screening sys-tem, Engineering in Life Sciences, 11 (2), 133–139, 2011.
32. R. Wu, T.F. Al-Azemi, and K.S. Bisht, Functionalized polycarbonate derived from tartaric acid: Enzymatic ring-opening polymerization of a seven-membered cyclic carbonate, Biomacromolcules, 9 (10), 2921–2928, 2008.
33. Y. Zhou, R.-X. Zhuo, and Z.-L. Liu, Synthesis and characterization of novel ali-phatic poly(carbonate-ester)s with functional pendent groups, Macromolecular Rapid Communications, 26 (16), 1309–1314, 2005.
34. X. Hu, S. Liu, X. Chen, G. Mo, Z. Xie, and X. Jing, Biodegradable amphiphilic block copoly-mers bearing protected hydroxyl groups: Synthesis and characterization, Biomacromolecules, 9 (2), 553–560, 2008.
35. S.L. Bourke, and J. Kohn, Polymers derived from the amino acid L-tyrosine: Polycarbonates, polyarylates and copolymers with poly(ethylene glycol), Adv Drug Deliv Rev, 55 (4), 447–
466, 2003.
36. J. Kim, M.H. Magno, P. Alvarez, A. Darr, J. Kohn, and J.O. Hollinger, Osteogenic differ-entiation of pre-osteoblasts on biomimetic tyrosine-derived polycarbonate scaffolds, Biomacromolecules, 12 (10), 3520–3527, 2011.
37. M. Acemoglu, S. Bantle, T. Mindt, and F. Nimmerfall, Novel bioerodible poly(hydroxyalkylene carbonates)s: A versatile class of polymers for medical and pharmaceutical applications, Macromolecules, 28, 3030–3037, 1995.
38. T.F. Al-Azemi, and K.S. Bisht, Novel functional polycarbonate by lipase-catalyzed ring-open-ing polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one, Macromolecules, 32 (20), 6536–6540, 1999.
39. E.J. Vandenberg, and D. Tian, A new, crystalline high melting bis(hydroxymethyl)polycar-bonate and its acetone ketal for biomaterial applications, Macromolecules, 32 (11), 3613–
3619, 1999.
40. W.C. Ray III, and M.W. Grinstaff, Polycarbonate and poly(carbonate-ester)s synthesized from biocompatible building blocks of glycerol and lactic acid, Macromolecules, 36, 3557–
3562, 2003.
41. Y. Zhou, R.-X. Zhuo, and Z.-L. Liu, Synthesis and characterization of novel ali-phatic poly(carbonate-ester)s with functional pendent groups, Macromolecular Rapid Communications, 26 (16), 1309–1314, 2005.
42. M. Kawalec, A.P. Dove, L. Mespouille, and P. Dubois, Morpholine-functionalized polycarbon-ate hydrogels for heavy metal ion sequestration, Polymer Chemistry, 4 (4), 1260–1270, 2013.
43. M.-J. Bañuls, F. García-Piñón,, R. Puchades, and A. Maquieira, Chemical derivatization of com-pact disc polycarbonate surfaces for SNPs detection, Bioconjugate Chem, 19, 665–672, 2008.
44. J. Tamarit-Lopez, S. Morais, M.-J. Banuls, R. Puchades, and A. Maquieira, Development of hapten-linked microimmunoassays on polycarbonate discs, Anal Chem, 82, 1954–1963, 2010.
92 Handbook of Polymers for Pharmaceutical Technologies
45. C.H. Li, and G.L. Wilkes, The mechanism for 3-aminopropyltriethoxysilane to strengthen the interface of polycarbonate substrates with hybrid organic-inorganic sol-gel coatings, Journal of Inorganic and Organometallic Polymers, 7 (4), 203–216, 1997.
46. P. Jankowski, D. Ogończyk, A. Kosinski, W. Lisowski, and P. Garstecki, Hydrophobic modi-fication of polycarbonate for reproducible and stable formation of biocompatible micropar-ticles, Lab Chip, 11 (4), 748–752, 2011.
47. D. Ogończyk, P. Jankowski, and P. Garstecki, Functionalization of polycarbonate with pro-teins: Open-tubular enzymatic microreactors, Lab Chip, 12, 2743–2748, 2012.
48. P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, Hydrophilic polycar-bonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions, Microfluid Nanofluid, 14, 767–774, 2013.
49. S. Suye, Y. Kumon, and A. Ishigaki, Immobilization of glucose oxidase on poly-(L-lysine)-modified polycarbonate membrane, Biotechnol Appl Biochem, 27, 245–248, 1998.
50. J. Yang, J. Lv, M. Behl, A. Lendlein, D. Yang, L. Zhang, C. Shi, J. Guo, and Y. Feng, Functionalization of polycarbonate surfaces by grafting PEG and zwitterionic polymers with a multicomb structure, Macromolecular Bioscience, 13, 1681–1688, 2013.
51. Y. Feng, H. Tian, M. Tan, P. Zhang, Q. Chen, and J. Liu, Surface modification of polycar-bonate urethane by covalent linkage of heparin with a PEG spacer, Transactions of Tianjin University, 19, 58–65, 2013.
52. S. Ye, S. Chen, L. Fang, and Y. Lu, Multifunctional praseodymium-coordinated polycarbon-ate films, J Mpolycarbon-ater Chem, 20, 3827–3830, 2010.
53. Y. Ito, Surface micropatterning to regulate cell functions, Biomaterials, 20 (23–24), 2333–
2342, 1999.
54. M. Thery, Micropatterning as a tool to decipher cell morphogenesis and functions, Journal of Cell Science, 123 (24), 4201–4213, 2010.
55. C.J. Bettinger, R. Langer, and J.T. Borenstein, Engineering substrate topography at the micro- and nanoscale to control cell function, Angew Chem Int Edit, 48 (30), 5406–5415, 2009.
56. J.H. Lee, S.J. Lee, G. Khang, and H.B. Lee, Interaction of fibroblasts on polycarbonate mem-brane surfaces with different micropore sizes and hydrophilicity, J Biomat Sci-Polym E, 10 (3), 283–294, 1999.
57. A. Ohl, and K. Schroder, Plasma-induced chemical micropatterning for cell culturing appli-cations: A brief review, Surf Coat Tech, 116, 820–830, 1999.
58. D.P. Subedi, L. Zajickova, V. Bursikova, and J. Janca, Surface modification of polycarbon-ate (bisphenol A) by low pressure rf plasma, Himalayan Journal of Sciences, 1 (2), 115–118, 2003.
59. D.P. Subedi, D.K. Madhup, K. Adhikari, and U.M. Joshi, Plasma treatment at low pressure for the enhancement of wettability of polycarbonate, Indian J Pure Ap Phy, 46 (8), 540–544, 2008.
60. A. Welle, E. Gottwald, and K.F. Weibezahn, Patterned polymer surfaces for cell culture applications, Biomed Tech (Berl), 47, 401–403, 2002.
61. V. Jokinen, P. Suvanto, and S. Franssila, Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers, Biomicrofluidics, 6 (1), 016501–016501–10, 2012.
62. A. Welle, and E. Gottwald, UV-based patterning of polymeric substrates for cell culture applications, Biomed Microdevices, 4 (1), 33–41, 2002.
63. S.A. Ruiz, and C.S. Chen, Microcontact printing: A tool to pattern, Soft Matter, 3 (2), 168–
177, 2007.
64. G. Knedlitschek, F. Schneider, E. Gottwald, T. Schaller, E. Eschbach, and K.F. Weibezahn, A tissue-like culture system using microstructures: Influence of extracellular matrix material on cell adhesion and aggregation, J Biomech Eng-T Asme, 121 (1), 35–39, 1999.
Establishing Advanced Cell Cultivation Systems 93 65. U. Fernekorn, J. Hampl, C. Augspurger, C. Hildmann, F. Weise, M. Klett, A. Läffert, M.
Gebinoga, A. Williamson, and A. Schober, In vitro cultivation of biopsy derived primary hepatocytes leads to a more metabolic genotype in perfused 3D scaffolds than static 3D cell culture, Rsc Adv, 3 (37), 16558–16568, 2013.
66. A. Amann, M. Zwierzina, G. Gamerith, M. Bitsche, J.M. Huber, G.F. Vogel, M. Blumer, S.
Koeck, E.J. Pechriggl, J.M. Kelm, W. Hilbe, and H. Zwierzina, Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells, Plos One, 9 (3), e92511, 2014.
67. E. Bitterle, E. Karg, A. Schroeppel, W.G. Kreyling, A. Tippe, G.A. Ferron, O. Schmid, J.
Heyder, K.L. Maier, and T. Hofer, Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles, Chemosphere, 65 (10), 1784–1790, 2006.
68. C. Eberlein, C. Rooney, S.J. Ross, M. Farren, H.M. Weir, and S.T. Barry, E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin alphavbeta6 and maintained through TGFbeta sig-nalling, Oncogene, 34 (6), 704–16, 2015.
69. E. Kim, W.B. Jeon, S. Kim, and S.K. Lee, Decrease of reactive oxygen species-related bio-markers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles, Journal of Nanoscience and Nanotechnology, 14 (5), 3356–3365, 2014.
70. J.J. Li, S. Muralikrishnan, C.T. Ng, L.Y. Yung, and B.H. Bay, Nanoparticle-induced pulmo-nary toxicity, Exp Biol Med (Maywood), 235 (9), 1025–1033, 2010.
71. A. Khademhosseini, R. Langer, J. Borenstein, and J.P. Vacanti, Microscale technologies for tissue engineering and biology, P Natl Acad Sci USA, 103 (8), 2480–2487, 2006.
72. J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.H.T. Nguyen, D.M. Cohen, E. Toro, A.A.
Chen, P.A. Galie, X. Yu, R. Chaturvedi, S.N. Bhatia, and C.S. Chen, Rapid casting of pat-terned vascular networks for perfusable engineered three-dimensional tissues, Nat Mater, 11 (9), 768–774, 2012.and M.L. Shuler, Microtechnology for mimicking in vivo tissue envi-ronment, Ann Biomed Eng, 40 (6), 1289–1300, 2012.
73. S.N. Bhatia, U.J. Balis, M.L. Yarmush, and M. Toner, Effect of cell-cell interactions in preser-vation of cellular phenotype: Cocultipreser-vation of hepatocytes and nonparenchymal cells, Faseb J, 13 (14), 1883–1900, 1999.
74. R.S. McCuskey, Morphological mechanisms for regulating blood flow through hepatic sinu-soids, Liver, 20 (1), 3–7, 2000.
95
Vijay Kumar Thakur and Manju Kumari Thakur, Handbook of Polymers for Pharmaceutical Technologies, Volume 2 (95–120) © 2015 Scrivener Publishing LLC
*Corresponding author: [email protected]